3-3 CONTOUR INTEGRATION

One of the most powerful means for evaluating definite integrals is provided
by the theorem of residues from the theory of functions of a complex vari-
able. We shall illustrate this method of contour integiation by a number of
examples in this section. Before reading this material, the student who does
not know the theory of functions of a complex variable reasonably well
‘should review (or learn) certain parts of this theory. These parts are pre-
sented in the Appendix of this book to serve as an aid in the review (or as a
guide to the study).

The theorem of residues [Appendix, Eq. (A-15)] tells us that if a function
f(2) is regular in the region bounded by a closed path C, except for a finite
number of poles and isolated essential singularities in the interior of C,
then the integral of f(z) along the contour C is

f f(z) dz = 2mi ) residues
¢

where ) residues means the sum of the residues at all the poles and essential
singularities inside C.

The residues at poles and isolated essential singularities may be found
as follows.
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If f(z) has a simple pole (pole or order one) at z = z,, the residue is
a_ =z — z0)f(D)]:-1, (3-32)

If f(2) is written in the form f(z) = q(z)/p(z), where g(2) is regular and p(z)
has a simple zero at z,, the residue of f(z) at z, may be computed from

a =2 (3-33)
P |z=z20
If z, is a pole of order n, the residue is
- A ) e - o) (3-34)
a—l—(n—l)! dz ° z=z¢ '

If z, is an isolated essential singularity, the residue is found from the
Laurent expansion (Appendix, Section A-2, item 7).
We illustrate the method of contour integration by some examples.

EXAMPLE

© dx
o 1+ x2

I= (3-35)
Consider § dz/(1 + z2) along the contour of Figure 3-1. Along the real
axis the integral is 27. Along the large semicircle in the upper-half plane
we get zero, since
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Figure 3-1 Contour for the integral (3-35)
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The residue of 1/(1 + z%) = 1/(z + i)(z — i) at z =i is 1/(2{). Thus

1
21=2m'(_;) —n I==

2i 2
Note that an important part of the problem may be choosing the “return
path” so that the contribution from it is simple (preferably zero).

EXAMPLE

Consider a resistance R and inductance L connected in series with a
voltage V(t) (Figure 3-2). Suppose F{(f) is a voltage impulse, that is, a
very high pulse lasting for a very short time. As we shall see in Chapter 4,
we can write to a good approximation

A

Figure 3-2 Series R-L circuit

where A is the area under the curve V(¢).
The current due to a voltage ' is ¢*'/(R + iwL). Thus the current due

to our voltage pulse is
(1) = A > do (‘f /w(3 36)
2n)_w R+ ioL la)L T2 'l )L A

Let us evaluate this integral.
If t <0, the integrand is exponentially small for Im w - — 0o, so that we
may complete the contour by a large semicircle in the lower-half w-plane,
along which the integral vanishes.®* The contour encloses no singularities,
so that I(t) =0
If t > 0, we must complete the contour by a large semicircle in the upper-
half plane. Then

~Rt/L
A) e A —RiL

I(t):27u(2—7T TR

3 A rigorous justification of this procedure is provided by Jordan's lemma; see Copson
(C8) p. 137 for example.
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