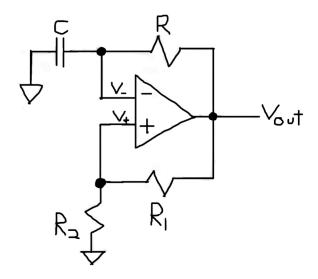
Notes on Relaxation Oscillators Physics 120, David Kleinfeld, Spring 2018

This is a basic oscillator circuit in which the voltage across a capacitor relaxes toward a time varying target voltage. Consider the circuit below, using a high gain op-amp as a comparator:



The time-varying voltage at V_+ serves as a target level that is a fraction $R_2/(R_1+R_2)$ of the output voltage V_{out} . The time-varying voltage at V_- heads toward this value and when it exceeds the value, the output of the amplifier changes sign, thus the target changes sign, and the voltage at V_- heads toward this new value.

We know that $V_{out} = A(V_+ - V_-)$ where A >> 1.

Since V_{out} is bounded by V_{supply} . this means that

 $V_{\rm out} = \begin{cases} +V_{\rm supply} & V_+ > V_-. \\ -V_{\rm supply} & V_- < V_+. \end{cases}$

The voltage divider assures that the value of V₋, which can asymptote at V₋ = V_{out}, will be compared to a value for V₊ that is smaller than V_{out}, *i.e.*, $V_+ = \frac{R_2}{R_1 + R_2} V_{out}$.

V_(t) will evolve in time according to:

$$C\frac{dV_-}{dt} + \frac{V_- - V_{out}}{R} = 0$$

with $\tau \equiv RC$. Thus:

$$\frac{dV_-}{dt} + \frac{1}{\tau}V_- = \frac{1}{\tau}V_{out}$$

The solution to this homogeneous part of this equation is:

$$V_{-}(t) = V_{-}(0)e^{-t/\tau}$$
.

so that the full solution is:

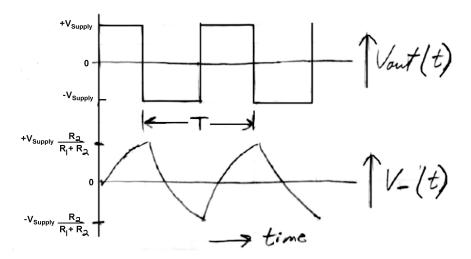
$$V_{-}(t) = V_{-}(0)e^{-t/\tau} + \int_{0}^{t} \left(\frac{1}{\tau}V_{out}\right)e^{-(t-x)/\tau} dx$$

We take t = 0 as the time of the last transition and consider the interval of time up to the next transition, i.e., t = T/2, so that V_{out} is a constant. The value of $V_{(0)}$ just after the transition, i.e., $V_{(0^+)}$, is opposite in sign to that of V_{out} , so

$$V_{-}(0) = -\frac{R_2}{R_1 + R_2} V_{out}.$$

Thus:

$$V_{-}(t) = -\frac{R_2}{R_1 + R_2} V_{out} e^{-t/\tau} + V_{out} (1 - e^{-t/\tau})$$



At t = T/2 the value of V_(t) will reach the threshold level

$$V_{-}(\frac{T}{2}) = +\frac{R_2}{R_1 + R_2} V_{out}$$

S0

$$\frac{R_2}{R_1 + R_2} V_{out} = -\frac{R_2}{R_1 + R_2} V_{out} e^{-\frac{T}{2}/\tau} + V_{out} \left(1 - e^{-\frac{T}{2}/\tau}\right)$$

or

$$T = 2 \tau \log \left(1 + 2^{R_2} / R_1 \right).$$

As a partial check, when $R_2 \rightarrow \infty$ we have $T \rightarrow \infty$. Also, when $R_2 \rightarrow 0$ we have $T \rightarrow 4 \tau {\binom{R_2}{R_1}}$.