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Physics 120a: Primer on Multi-pole Filters and Modularity 

David Kleinfeld, Spring 2008 

 

STEADY STATE ANALYSIS 

Our circuit analysis is much simplified if we make use of the concept of complex impedance, which 

is appropriate for steady-state signals in terms of the spectral, or frequency, content. 

 

For a capacitor we know that I = C dV
dt

. For V of the form V t( ) = dω  V ω( )
−∞

−∞

∫  e− iω t , the relation 

between I(ω) and V(ω) is I ω( ) = iωC  V ω( )  and we identify ZC ω( ) = 1
iωC

 as the impedance – an 

effective resistance that affects the phase as well as the amplitude of the signal in a frequency 

dependent manner – of the capacitor. 

 

Similarly, for an inductor we know that I = 1
L

dτ
−∞

t

∫  V and we identify ZL ω( ) = iωL  as the 

impedance of the inductor. 

 

The approach of complex impedances allows us to solve algebraic equations in the frequency domain 

(again, for steady state) rather than differential equations (convolution integrals) in the time 

domain. 

 

As an example, consider a RC low-pass filter, i.e., 

V1 V2

C

R

 

Kirchoff’s Law gives 
V2 −V1
R

+V2 iωC( ) = 0  or V2 =
1

1+ iωRC
V1 .  A little rearrangement leads to 

V2 =
1− iωRC
1+ ωRC( )2

V1   , or in vector (phasor to the “j” crowd) form, V2 =
e− i tan

−1 ωRC( )

1+ ωRC( )2
V1   . 
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CASE OF A TWO-POLE LOW-PASS FILTER WITHOUT BUFFERING 

Consider a circuit that has a sequence of two RC filters with node voltages V1(ω), V2(ω), and V3(ω), 

i.e., 

C

RV1 V2 V3

C

R

 
Kirchoff’s Law gives 

V2 −V1
R

+V2 iωC( ) + V2 −V3
R

= 0  

and 

V3 −V2
R

+V3 iωC( ) = 0 . 

Thus 

V2 2 + iωRC( ) −V3 = V1  
and 

V2 = V3 1+ iωRC( ) . 
Combining gives: 

V3 1+ iωC( ) 2 + iωRC( ) −1⎡⎣ ⎤⎦ = V1  

so that 

V3 =
1

1− ωRC( )2 + i3ωRC
V1   =  

1− ωRC( )2 − i3ωRC
1− ωRC( )2⎡⎣ ⎤⎦

2
+ 3ωRC( )2

V1   =  
e
− i  tan−1 3ωRC

1− ωRC( )2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1− ωRC( )2⎡⎣ ⎤⎦
2
+ 3ωRC( )2

V1  

or 

V3 =
e
− i  tan−1 3ωRC

1− ωRC( )2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1+ 7 ωRC( )2 + ωRC( )4
V1   =  

e
− i  tan−1 3ωRC

1− ωRC( )2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

6.854 + ωRC( )2⎡⎣ ⎤⎦ 0.146 + ωRC( )2⎡⎣ ⎤⎦
V1  

from which we see that the break frequencies have considerably moved from ωRC( )  = 1.  By the 

way, the asymptotic behavior is: 

V3
ω→∞⎯ →⎯⎯

e− iπ

ωRC( )2
V1   =  −

1
ωRC( )2

V1  
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CASE OF A TWO-POLE LOW-PASS FILTER WITH BUFFERING 

We now consider the rather different situation that occurs when an OpAmp is used to isolate the 

two stages of the RC filter i.e., 

C

R
V1 V2

V3

C

R

-
+ V’2

 
 The node voltages are V1(ω) and V2(ω) for the first stage and V2’(w) and V3(w) for the second 

stage, where from our model for the OpAmp, 

′V2 ω( ) = A ω( )
1+ A ω( )V2 ω( ) Low

Frequencies⎯ →⎯⎯⎯ V2 ω( )  

Kirchoff’s Law gives 

V2 −V1
R

+V2 iωC( ) = 0  

or 

V2 1+ iωRC( ) = V1  
and 

V3 −V2
R

+V3 iωC( ) = 0  

or 

V3 1+ iωRC( ) = V2  
so that 

V3 =
1

1+ iωRC( )V2   =  
1

1+ iωRC( )2
V1   =  

1
1− ωRC( )2 + i2ωRC

V1   =  
1− ωRC( )2 − i2ωRC
1− ωRC( )2⎡⎣ ⎤⎦

2
+ 2ωRC( )2

V1  

or 

V3 =
e
− i  tan−1 2ωRC

1− ωRC( )2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1− ωRC( )2⎡⎣ ⎤⎦
2
+ 2ωRC( )2

V1   =  
e
− i  tan−1 2ωRC

1− ωRC( )2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1+ ωRC( )2
V1  

which shows that the break frequencies are both at ωRC = 1.  The asymptotic behavior is, as 

above: 

V3
ω→∞⎯ →⎯⎯

e− iπ

ωRC( )2
V1   =  −

1
ωRC( )2

V1 . 
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An important issue is to realize that the relationship between V3 and V1 is just the product of the 

response of two single pole filter stages.  If we back-up a bit, and consider a single stage, 

Kirchoff’s Law gives: 

V2 −V1
R

+V2 iωC( ) = 0  

so that 

V2 =
1

1+ iωRC( )V1   =  
1− iωRC
1+ ωRC( )2

V1   =  
e− i  tan

−1 2ωRC( )

1+ ωRC( )2
V1  

The relation between V3 and V2 in the original problem (Fig. 2) is given by the square of this, i.e., 

V3 =
e− i  tan

−1 2ωRC( )

1+ ωRC( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

V1   =  
e− i  2 tan

−1 ωRC( )

1+ ωRC( )2
V1  

Recall that 

e− i  2 tan
−1 ωRC( )  =  cos 2 tan−1 ωRC( )⎡⎣ ⎤⎦ − i sin 2 tan

−1 ωRC( )⎡⎣ ⎤⎦  

  =  cos2 tan−1 ωRC( )⎡⎣ ⎤⎦ − sin
2 tan−1 ωRC( )⎡⎣ ⎤⎦ − i2sin tan−1 ωRC( )⎡⎣ ⎤⎦cos tan

−1 ωRC( )⎡⎣ ⎤⎦  

  =  
1

1+ ωRC( )2
−

ωRC( )2
1+ ωRC( )2

− i2 ωRC

1+ ωRC( )2
1

1+ ωRC( )2
  =  

1− ωRC( )2 − i2ωRC
1+ ωRC( )2

 

  =  e
− i  tan−1 2ωRC

1− ωRC( )2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
 

and we recover the previous result of 

V3 =
e
− i  tan−1 2ωRC

1− ωRC( )2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1+ ωRC( )2
V1 . 

In general, as we employ N RC stages (poles) that are separated by OpAmp buffers, the amplitude 

falls off as 1+ ωRC( )2⎡⎣ ⎤⎦
−N/2 ω→∞⎯ →⎯⎯ ωRC( )-N .  The phase is a complicated, albeit smooth function 

that varies from 0 at ω = 0 to Nπ/2 as ω → ∞.  Various designs exists for filters that maintain 

the same asymptotic behavior but have different fall-off and phase behavior, particularly near 

ωRC ≈ 1. 
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RESONANCE AND THE TWO-POLE LC FILTER 

Our next example uses a single LC pair, rather than 2 RC pairs, i.e., 

V1 V2

C

L

 
Kirchoff’s Law gives 

V2 −V1
iωL

+V2 iωC( ) = 0  

or 

V2 =
1

1−ω 2LC
V1  

This shows the previous frequency-dependent fall-off, i.e., V2
ω→∞⎯ →⎯⎯

e− iπ

ω 2LC
V1 , but also shows 

resonance at ω2LC = 1, which is not desirable.  This can be tempered by the addition of a small 

resistance in series with the inductor, and/or a large resistance in parallel with the capacitor. 

 

We will consider a special case of equal resistors and see under what conditions we can dampen 

the resonance.  The circuit diagram is: 

V1
V2

C

LR

R

 
By working in terms of equivalent impedance, the analysis is straight forward. 

The inductor/resistor pair has impedance iωL + R = R(1 + iωL/R). 

The capacitor/resistor pair as impedance (R/iωC)/[R + (1/iωC)] = R/(1 + iωRC) 

Kirchoff’s Law gives 

V2 −V1
R 1+ iω L R( ) +V2

1+ iωRC
R

⎛
⎝⎜

⎞
⎠⎟
= 0  

or 

V2 =
1

1+ iωRC( ) 1+ iω L R( ) +1V1  =  
1

2 −ω 2LC + iω RC + L R( )V1  = 
2 −ω 2LC − iω RC + L R( )
2 −ω 2LC( )2 +ω 2 RC + L R( )2

V1  

or 
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V2 =
e
− i tan−1

ω RC+L R( )
2−ω 2LC

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 −ω 2LC( )2 +ω 2 RC + L R( )2
V1   =  

e
− i tan−1

ω RC+L R( )
2−ω 2LC

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 1+ ω 2LC( )2 −ω 2 LC − RC + L R
2

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥ 

V1  

from which we immediately see that the amplitude is finite at resonance when ω2LC = 1. 

 

A considerable simplification occurs for the choice LC =
RC + L R

2
⎛
⎝⎜

⎞
⎠⎟
2

, which factors to RC = L R  

or RC( )2 = LC , and drives the third term in the denominator to zero, i.e., 

V2  = 
e
− i tan−1 2ωRC

2− ωRC( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 1+ ωRC( )4  
V1 . 

Note the complete loss of resonance; the factor of 2 in the denominator reflects voltage division 

by the resistors. 

 

The above form must be contrast with that for the two-pole RC filter with buffering, for which 

V2 =
e
− i  tan−1 2ωRC

1− ωRC( )2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1+ ωRC( )2
V1  

They both have the same asymptotic limit, but the fall-off near ω = (RC)-1 is sharper for the two-

pole RC filter than with the LCR filter.  On the other hand, the LCR circuit does not require an 

Op-Amp. 


