
A dynamic neuro-synaptic hardware platform for Spiking Neural Networks

Jiaming Wu,1 Adrien d’Hollande,1 Haoran Du,1 and Marcelo Rozenberg1
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Digital computers are built with two types of elements, bits which interact via logic gates.
Quantum computers use qubits which are coupled through quantum gates. Similarly, a neuro-
computer requires two hardware elements: neurons interconnected with synapses. We introduce
a bio-inspired spiking neuro-synaptic unit built with conventional electronic components. Our
hardware is based on a text-book theoretical model of a spiking neuron and its synaptic and
membrane currents. All model parameters are tunable, and the timescales are bio-compatible.
The spiking neuron is fully analogue, and its excitability is implemented with a memristor. The
synaptic and membrane currents are both excitatory and inhibitory with tunable intensity and
bio-mimetic dynamics. We demonstrate various basic neuro-computing primitives, and how to
combine basic network motifs to achieve more complex neuro-computing functions. The neuro-
synaptic unit can be considered as the building blocks for constructing neural networks of arbitrary
geometry. Its compact and simple design, along with the wide accessibility of ordinary electronic
components, make our methodology an attractive platform to build neural interfaces for medical
devices, robotics and artificial intelligence systems such as reservoir computing. We also discuss other
possible extensions of our work: (i) to use the neuro-synaptic circuit as a template to incorporate
oxide memristors that are under intense research in material science; (ii) to port the design to very
large scale integration (VLSI) electronics to implement massive networks that may be less affected
by the mismatch issue. Our device is a general-purpose neuromorphic building block which allows
to implement a neuro-computer operating in real continuous time with perfect scaling. It may open
the way to run theoretical neuroscience network models, beyond what is currently possible in digital
computer simulations, thus achieving Neuro-Computing Supremacy. We provide a bill of materials
and printed circuit board designs to implement the device.

I. INTRODUCTION

A. Neuro-Computing paradigms

Neuromorphic Computing (NC) is a field aimed at
implementing systems that can perform functions taking
inspiration from nervous systems and brains. Examples
range from face recognition to autonomous navigation to
robotic motion, and many more that are revolutionizing
modern life. To implement those systems there are two
main approaches. One is based on software running
on digital computers, and the other is fabricating
neuromorphic hardware that mimics the components
of a neural network. In both cases, the NC systems
rely on models from theoretical neuroscience, computer
science or physics. Every model has a definition of its
components, called neurons and synapses. Neurons are
the degrees of freedom of a neural network, since they can
be in different states. Synapses describe the couplings
and interactions between them (see Fig. 1).

We may recall a paradigmatic example of an NC
system, the Hopfield model, to clarify the roles of neurons
and synapses, which are often a matter of confusion.
This is a model for associative memory, introduced in
the 80s [1]. It bears close similarity with magnetic
spin models in Physics (see Fig. 1). The neurons are
defined as discrete variables, where Si = ±1 denotes
the ith member of the network. The synapses are the
interactions between neurons, where the real parameters
Jij denotes the interaction between neurons i and j.

The model has an energy given by the expression E =
1/N

∑
JijSiSj , where N is the number of neurons. Each

memory corresponds to a local minimum of the energy
landscape. The genius of Hopfield was to formulate a
simple recipe to choose the Jij couplings, which provide
such a landscape. The model can recall a memory by
association. Namely, given an arbitrary initial state Si

for i = 1 to N , an algorithm of energy minimization will
retrieve its associated memory.
This example also allows us to illustrate the case of

FIG. 1. Schematic view of the pre-synaptic (red) and post-
synaptic (blue) neurons. The neurons are coupled by a
synapse. The action potential reaching the end of the axon
terminals of the pre-neuron induces a synaptic input current
in the post-neuron, which can be excitatory (positive) or
inhibitory (negative). Inset: analogy with Hopfield model,
where neurons are spins Si, and synapses are the couplings
Jij .
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a software NC system. In fact, the Hopfield model, as
any of the modern Deep Neural Networks for Artificial
Intelligence, are algorithms running on digital computers.
The computers may be conventional or the so-called
“neuromorphic chips”, such as TrueNorth or Loihi, which
are digital processors with an optimized architecture to
run those types of models [2]. Bit-like variables and Jij
couplings are the simplest modelization for neurons and
synapses and allow for computation with massive neural
networks, such as those used in Artificial Intelligence.
However, severe limitations emerge quickly if one wants
to adopt a more bio-mimetic spiking neural network
(SNN) model.

Neurons are a special type of cells in the body that are
characterized by having electric activity. They are not
just active or inactive, but emit action-potentials that
are fast voltage spikes. Synapses involve the dynamical
process of transferring neurotransmitters between a pre-
synaptic and a post-synaptic neuron, so they are not just
real-valued parameters (see Fig. 1) [3].

The dynamical models of spiking neurons range from
schematic to bio-realistic. In the first case, the most
paradigmatic one is the leaky-integrate-and-fire (LIF)
[3, 4]. For the latter, the most famous one is the Hodgkin-
Huxley model which describes the generation of action
potential in the giant axon of the squid [5]. These
models are described by multiple non-linear differential
equations. Similarly, to describe the synaptic couplings
further differential equations are needed. Hence, to
numerically study an SNN requires the solution of
a challenging system of multiple coupled non-linear
differential equations. The scaling of these SNNs is
typically bad, as the number of differential equations
grows fast with the size of the network and its synaptic
connectivity. Possibly an even more serious problem is
the scaling of the simulation time. An action potential
spike typically lasts 1 ms, and the firing rate of a neuron
is roughly between 1 and 100 Hz. Then a time-step of
0.1 ms is often adopted. The timescale associated with
the global behavior can be considered of the order of
minutes, so there is at least a 106 factor for the number
of simulation time-steps, just for one neuron. However,
this scaling quickly worsens with a growing number of
neurons, at least by a factor of N , in the most favorable
case. Nevertheless, there are several implementations of
useful numerical simulators of SNNs available (see [6] for
a recent review and benchmark).

It is not an easy question what is the largest SNN size
that current simulators can handle [6], as this depends
on the model, the connectivity, the computer architecture
and power, etc. Whatever this estimate may be, it would
become severely reduced if one considers continuous
models, without hard-resets of variables, where the spike-
emission is not described by time-stamps and synapses
are dynamical. Namely, where the full non-linearity of
the problem is properly treated.

Finally, another severe limitation imposed on software
approaches is the numerical and electric power

requirements needed to carry out the computation.
Power efficiency becomes a relevant aspect, specially for
practical applications such as navigation control, neuro-
prostheses, wearable implants, brain-machine interfaces,
etc [7, 8].

B. Neuro-Computing in hardware

A very different approach to NC is based on the
idea of implementing neurons and synapses directly in
hardware. In fact, a hardware implementation has the
very attractive feature of ideal scaling because time
represents itself. In other words, the system evolves in
real time and the time evolution occurs irrespective of the
number of neurons in the network. If it takes one minute
to simulate the behavior of one neuron, it takes the same
one minute to simulate the behavior of a network of size
N .
Modern silicon electronic technology based on

complementary metal-oxides systems (CMOS) can
implement, a priori, almost any desired mathematical
model. This approach has several decades of
development, starting with the pioneering work of C.
Mead, who coined the term Neuromorphic Electronics
[9]. He observed that transistors operating in the sub-
threshold regime, i.e. not as digital switches but as
variable conductances, show a behavior analogous to
the activation of ionic channels in neuron membrane
models. There are currently many electronic chips
that integrate millions of silicon neurons which typically
require tens of transistors each [10, 11]. Surprisingly, the
implementation of dynamical synapses in hardware has
received comparably less attention [12], although they
are a key feature in theoretical neuroscience [13]. The
connectivity of those large-scale SNNs is usually handled
by the so-called Address Event Representation (AER),
where each spike emission is represented by a time-stamp
and the address of the pre-synaptic neuron [11]. Then,
the connectivity in an AER system is implemented by a
digital system that generates and inputs a stereotyped
signal of a certain intensity, representing the synaptic
strength, at the address of the corresponding post-
synaptic neuron.
A remarkable example of this type of hardware

implementation is the DYNAP-SE chip, which counts
4 × 256 neuro-synaptic computing units [14]. Each
one implements an adaptive-exponential integrate-and-
fire neuron [3] that generates discrete spike events, plus
a dynamical synapse that can implement biomimetic
currents, which are routed via an AER system. This
chip exhibits the appealing feature of ultra low-
power consumption. However, as all other electronic
implementations that work in the transistor sub-
threshold regime, it suffers from the device mismatch
problem. This remains a significant challenge, although
there are interesting ideas proposed to mitigate it
[15]. Another inconvenience of this approach is that it
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requires a high level of technical expertise and fabrication
capabilities [11]. Moreover, it takes a rather long time to
design and implement each electronic chip, which then
cannot be modified.

Here we propose to consider a drastically alternative
approach, introducing a spiking neuro-synaptic (NS) unit
of unprecedented simplicity, having the ideal scaling
property of hardware implementations, being easily
reproducible, at a very low cost [16]. Moreover, our
neuromorphic circuit realizes standard neuro-synaptic
mathematical models, having fully tunable parameters.
The circuit generates biomimetic spiking traces that
resemble those of biological systems and can work at bio-
realistic timescales. It produces electric signals that are
well adapted to build brain-machine interfaces, hence, is
an ideal methodology for the implementation of neuro-
prostheses. Our NS unit is fully analog, including
the spike emission mechanism and the synaptic current
injections that are not handled by an AER module.
Unlike electronic chips, the spikes are produced by
thyristors, which are not in the sub-threshold regime.
Hence, our method mitigates the issues of device
mismatch mentioned before.

With our approach, we may implement up to hundreds
of units, which may be sufficient for research, flexible and
tunable brain-machine-interfaces, robotics, and artificial
intelligence, such as reservoir computing. Nevertheless, if
a massive number of neuro-synaptic units were required,
the present methodology can be ported to CMOS very
large scale integration (VLSI). [17].

The present paper is organized as follows: We
shall first describe the NS model and its circuit
implementation, emphasizing the connection to
mathematical models and its parameter tunability.
Then, we shall demonstrate the implementation of the
simplest motifs of spiking neural networks, that realize
neuromorphic primitives, i.e. basic neuro-computing
functions. We shall discuss how our work may open
the way for a new type of neuro-computer. We pose an
interesting question lying ahead: whether such a neuro-
computer may achieve computational neuro-supremacy,
i.e., the ability to perform computations beyond what is
possible for software running on conventional (digital)
computers. This is a notion that is analogue to
that of quantum-supremacy in the field of quantum
computation. Finally, we provide technical details on all
our circuits and a list of materials, which are available
upon reasonable request.

II. NEURO-SYNAPTIC UNIT: THEORETICAL
MODEL AND ITS PHYSICAL EMBODIMENT

A. Theoretical model

The NS hardware unit takes inspiration from a basic
model in Wilson’s textbook on theoretical neuroscience
(cf. Ch.12 of [13]). It is a set of differential equations for

a spiking neuron of type-I supplemented with synaptic
currents. A type-I neuron characteristically fires action
potential spikes at arbitrary low rates, such as cortical
neurons [13, 18].
When a pre-synaptic (or upstream) neuron emits a

spike, which is a very fast event, typically lasting 1
ms, the action potential liberates a certain amount of
neurotransmitters (see Fig. 1) into the synaptic cleft,
which is about 20 nanometers wide [19]. Those molecules
reach the dendrites of the post-synaptic (or downstream)
neuron where they open ionic channels that induce
synaptic currents integrated in the cell body. The
neurotransmitters can either be excitatory or inhibitory,
depending on whether they contribute or prevent the
emission of a spike by the post-synaptic neuron. This
depends on the sign of the synaptic current: if positive,
or depolarizing, brings the potential of the neuron closer
to the firing threshold; if negative, or hyperpolarizing, it
has the opposite effect.
This synaptic current process typically occurs in the

range of tens to hundreds of milliseconds. Thus, at
a much longer timescale than the spike emission and
has its own dynamics. This introduces an additional
and relevant timescale in SNN dynamics, which is well
recognized to have significant consequences [20].
In the 60’s Rall introduced a set of differential

equations to model this phenomenon, which is widely
adopted [3, 13, 21, 22]. When applied to a delta function
representing the sharp spike emission, they provide as
a solution a synaptic current with the functional form
known as Rall’s alpha function α(t) = t/τ2s exp(−t/τs).
Thus, the sharp (∼ 1 ms) spike emitted by the pre-neuron
is perceived by the post-neuron as a broad synaptic
current input that peaks and decays in a typical timescale
τs (∼ 10 - 100 ms).
Rall’s differential equations for the synaptic current

are incorporated in Wilson’s book model (cf Eq. 12.18 of
[13]). Those equations, along with the expression for a
general integrate-and-fire spiking neuron from Gerstner’s
book (cf Eq. 5.2 of [3]), conform to the mathematical
model that underlies our hardware implementation. The
set of equations reads,

Cm
dVm

dt
= f(Vm) + Iα + I0 (1)

τs
dIe
dt

= −Ie + IδH(Vpre − Ω) (2)

τs
dIα
dt

= −Iα + Ie (3)

where Vm is the neuron’s membrane potential, Cm is the
membrane capacitance, τs = RsCs is the synapse time-
constant with Cs and Rs being the capacitance and leak
resistance of the synapse, respectively. I0 is an external
input current to the neuron. Ie and Iα are dynamical
synaptic currents (analog to f and g in Wilson’s book
[13]). Also closely following the notation of Wilson, H
denotes a step-function (or Heaviside function) that is
unity if the pre-synaptic voltage Vpre is larger than the
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synaptic threshold Ω, or zero otherwise [13]. Thus, the
pre-synaptic action potential is modeled as a narrow
pulse of rectangular shape that represents a δ(t)-like
spike. The condition (Vpre > Ω) sets the width of the
narrow pulse, that we call τa, and its magnitude we
denote Iδ. Hence, this spike carries a charge

QN = Iδτa (4)

that physically may represent the amount of
neurotransmitter liberated by the pre-neuron into
the synapse.

The current Ie results from the first leaky-integration
(2) of the sharp rectangular current pulse. Hence, with
τa ≪ τs one obtains the exponential current,

Ie(t) =
QN

τs
exp(−t/τs) (5)

This current is the input to the third equation (3), so
after this second leaky-integration one gets the alpha-
function [3, 13, 22]

Iα(t) =
QN

τs

t

τs
exp(−t/τs) (6)

These currents have bio-mimetic line shapes [3,
13]. They realize the synaptic currents of four basic
types, namely, fast exponential excitatory (AMPA) or
inhibitory (GABAa), and slow alpha-function excitatory
(NMDA) or inhibitory (GABAb) (cf Ch.3 of [3]).

B. Analogue Leaky-Integrate-and-Fire

To fully specify the model, we need to define the non-
linear function f(Vm) in Eq. 1 that generates the spikes.
In the interest of simplicity, we start by recalling the
leaky-integrate-and-fire (LIF) model, which is the most
widely used. In the LIF, shown in Fig. 2, the body (soma)
of the neuron is represented as a capacitor Cm that
charges by integrating the input ionic currents arriving
at its dendrites. This integration suffers leakage losses
which are represented by the membrane resistor Rm. The
third component of the LIF model is a voltage-dependent
switch S that is normally open, but closes when the
potential Vm(t) on the capacitor reaches a threshold Vth.
At that point, one says that a spike is “fired” at a time
t = tfire, the voltage Vm is reset to a low resting value
and the switch is set back to open. It is important to
realize that the LIF is a mathematical model and the
spike is an abstract “event” defined by the condition
Vm = Vth [3]. In other words, there is no dynamical
description of the spike [23]. In this modelization, the
non-linear function f(Vm) is implemented by the V -
dependent switch.

Here, we shall adopt the above idealized description
as a basis for our hardware implementation, which we
shall also augment to provide an embodiment of the
physical emission of an action-potential spike (see Fig. 2).

The first step is, as shown in Fig. 2, to add a small
“load” resistor with Ra ≪ Rm. Then, when S closes
at Vm = Vth, the Cm quickly discharges on Ra and
the current on this resistor produces a voltage spike.
The fast discharge time is τa = RaCm, which provides
a definite parametrization to the width of the δ-like
spike that we mentioned above (4). Interestingly, we

FIG. 2. aLIF model: (a) The leaky-integrate-and-fire model
with a voltage dependent switch S is augmented with a
discharge resistance Ra to produce an explicit action potential
(left). The switch can be implemented by a thyristor T with
a resistor Rm between its gate and anode. This resistor also
provides the leak resistance of the model while the thyristor
is not conducting (mid panel). The combination of T+Rm

realizes the concept of a memristor, with the functionality of a
voltage-gated conductance, central to all neuron models (right
panel). (b) LIF behavior: input current pulses (lower panel)
are leaky-integrated producing the increase of the membrane
voltage Vm (mid panel). When Vm reaches the dynamical
threshold Vth (vertical arrows), the forward resistance of the T
collapses and there is the emission of an output of a continuous
action-potential spike Vap (top panel). Circuit technical
details and parameter values for all figures are provided in
the Appendix.

may give this spike generation mechanism a biological
interpretation as the action potential that is initiated in
the axon hillock [24]. The axon hillock is characterized
by a high concentration of Na channels, over 100 times
more than in the cell body (soma) [25]. We can thus think
of the closing of the V -dependent switch as representing
the massive opening of those channels and the enhanced
membrane conductance at the axon hillock described by
the small resistance Ra. Despite the extended use of the
LIF model, we are not aware of this simple extension.
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The second step to specify the embodiment of the
model is to implement the V -dependent switch. The
simplest circuit to do this exploits the concept of a
volatile memristor, which is V -dependent resistance
(or V -gated conductance) [26]. We have recently,
demonstrated that a combination of a thyristor and a
resistor can implement such a memristive two-terminal
device that provides the desired functionality [27, 28].

A voltage-gated conductance is in fact a key ingredient
common to all conductance-based neuron models, such
as Hodgkin-Huxley, Morris-Lecar, Hindmarsh-Rose, etc,
[13]. Those theoretical models are formulated with
differential equations that describe the spike emission as a
continuous dynamical process. It results from the strong
non-linearity of the equations, namely the property of
excitability [13]. We note that simplified models, such as
Izhikevich and AdEx [3], which are popular for numerical
simulations, do not fall in that category. This is because
they require a discontinuous reset, for the sake of their
numerical simplicity [3, 23].

Our memristor spiking model implementation is shown
in Fig. 2 and it is described by the following equations,

Cm
dVm

dt
= − Vm

Rm[S] +Ra
+ I0 (7)

Vap =
Vm

Rm[S] +Ra
Ra (8)

where Rm[S], with S=hi,lo, denotes a volatile memristor
whose resistance can switch between two states: a
high resistance Rm[hi] and low resistance Rm[lo]. The
commutation depends on the applied voltage, thus S =
S(Vm), implementing a V -dependent conductance [28].
The second equation (8) is a voltage divisor providing
the action-potential Vap on the axon-hillock resistor Ra.
When the memristor is in the Rm[hi] ≫ Ra (i.e. open
switch) then Vap is negligible. When it commutes to
Rm[lo] ≪ Ra (i.e. closed switch) there is an action-
potential spike explicitly described by Vap(t) (see Fig. 2).

Notice that the first differential equation above may
seem linear, but it is not. In fact, the non-linearity,
necessary for the excitability of the model, is provided
by the commutation property of the memristor device
[28].

The circuit implementation of the LIF model that we
just described features a fully continuous spike generation
mechanism. Therefore, our circuit-model, although not
bio-realistic but bio-mimetic, can be considered as a
member of the class of conductance-based neuron models
and we call it the analog-LIF (aLIF) model. In Fig. 2 we
show the measured traces of the neuron circuit, which
shows the leaky-integration of input current pulses and
the resulting output emitted spikes Vap(t).

C. Physical embodiment of the neuro-synaptic
model equations

One of the main goals of the present work is to provide
a simple and transparent physical instantiation of the set
of equations (1-3), which our the mathematical reference.
We would like that each circuit component could be
directly related to the theoretical model parameters.
Furthermore, we would like the hardware implementation
to be modular, such that the sub-circuit units can be
associated to build arbitrary spiking neural networks,
and eventually a neuro-computer. We shall see in the
rest of the paper that all these goals are accomplished by
the NS unit that we describe below.
For the spiking generation mechanism, which is

encoded in the first equation (7), we adopt the aLIF
circuit model discussed in the previous section. Thus,
we rewrite below the reference model (1,3) including the
aLIF and renaming some variables for convenience,

Cm
dVm

dt
= − Vm

Rm[S] +Ra
+ Is2 + I0 (9)

Vpost =
Vm

Rm[S] +Ra
Ra (10)

τs
dIs1
dt

= −Is1 + IδH(Vpre − Ω) (11)

τs
dIs2
dt

= −Is2 + Is1 (12)

where Vpost = Vap denotes the output post-synaptic
action-potential, and Is1 and Is2 denote the synaptic
currents of the two leaky-integration stages. Similar to
provided for the spike generation via the aLIF circuit, the
synaptic current equations (11, 12) also have a concrete
physical embodiment as we show in the circuit in Fig. 3.
We indicate in the figure the correspondence between the
equations of the model and the circuit blocks.
We shall now describe the implementation in detail.

For the sake of clarity, we shall explain the circuit in
Fig. 3 from input to output, i.e. from the pre-synaptic
neuron on the left (Vpre) to post-synaptic neuron on the
right (Vpost).

1. Neuro-Synaptic circuit blocks

The first block (A) is an aLIF representing the pre-
synaptic neuron. It generates the action potential spike
Vpre that is the input to the NS unit. It was described
in detail before.
The second block (B) implements the differential

equation (11) of our model. The current term Is1(t)
is the dynamical variable and the IδH(Vpre − Ω) is an
independent term.
The Iδ(t) current are rectangular-pulses emitted by

each spike Vpre. Their width is τa (see II B) and their
intensity is controlled by a resistor RW in a conventional
current-source implementation. The technical details are
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FIG. 3. (a) Schematic diagram of the neuro-synaptic unit
circuit blocks and their relation with the biological neuron.
(b) Physical embodiment of model Eqs. 9-12 with sub-circuit
blocks denoting the pre- and post-synaptic neurons and the
synaptic block in-between. The synaptic block has two stages
that perform a leaky-integration each. The input pre-synaptic
potential produces a δ(t)-like current spike. A double leaky-
integration of pulse provides an α(t)-like synaptic current into
the post-synaptic neuron, which also receives the external
input I0.

provided in the Appendix. Here, it is important to
mention that RW controls the synaptic coupling that is
denoted Wij between neurons i and j, in the terminology
of Artificial Neural Networks.

These Wij couplings are key parameters for networks
that implement synaptic learning, such as through spike
time-dependent plasticity [3]. In that case, one may
adopt non-volatile memristors for the RW , as we shall
discuss elsewhere.

The synaptic current pulse Iδ has a short duration,
so it approximates a delta function Iδ that is leaky-
integrated by the RsCs pair. This circuit provides the
time constant τs and implements the differential equation
in the current Is1(t), which is the output of the second
block.

The third circuit block (C) implements (12) in a similar
fashion. There, the current Is2(t) is the dynamic variable
and the current Is1 enters as the independent term. To do
this we need to take Is1 output from the second block and
input it to the third one. The tricky part is to “copy the
current” from one to the other, independently of the load
represented by the latter. We resolve this by a standard
electronic circuit, aptly called a “current mirror” (CM),
and provide the technical details in the Appendix.

We note a useful feature of our CM implementation,
namely, given the input, the output can be chosen
either positive or negative in polarity. This feature
is extremely convenient, as we can implement either
excitatory or inhibitory synaptic currents. In other
words, this feature allows to choose the sign of the
synaptic coupling parameters Wij in an artificial neural
networks.

This circuit block leaky-integrates the input current

Is1 with timescale constant τs = RsCs, similarly as the
previous stage. The output of this block is the current
signal Is2(t) and the same CM solution is adopted to
input it (or its negative copy) to the last block which is
the aLIF circuit of the post-synaptic neuron.
The last circuit block (D) of Fig. 3 implements Eqs. 9

and 10, i.e. the aLIF neuron model [28]. This sub-circuit
has already been discussed in detail above. Here we just
note that it corresponds to the post-synaptic neuron, so
the action-potential spike emitted by this last block is
denoted by Vpost(t).

2. Synaptic current forms

The reader may have realized that our implementation
provides the freedom to adopt either one or two leaky-
integration synaptic blocks. If only one (yellow) block
is used, the single spike input Iδ is transformed into the
Is1(t) ∼ ± exp(−t/τs). While, if two blocks are adopted,
the resulting output to a single input Iδ spike is Is2(t) ∼
±α(t/τs).

FIG. 4. Traces at the different stages of the NS unit. (a)
The pre-synaptic neuron action-potential spike is the input
to the NS unit. (b) The action-potential is transformed into
a δ(t)-like pulse with an intensity Iδ (modulated by RW )
and a duration given by the spike emission time ∼ τa. The
pulse carries a total “neurotransmitter” charge QN ≈ Iδτa.
(c) first leaky-integration stage (Eq. 11) which provides and
exponential current Ie=Is1 with timescale τs = RsCs. QN is
the time-integral of the current (d) second leaky-integration
stage (Eq.12) which provides an α(t)-like synaptic current Iα
= Is2. Note that, as in the mathematical model, both QN

and τs remain constant (to a reasonable approximation) after
each successive leaky-integration. They are also in reasonable
good agreement with the nominal parameter values QN ≈ 80
nC (calculated from Eq. 15) and τs = 1.6 ms.

In the panels of Fig. 4, we show an example of the
temporal traces of the currents at different points of
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the NS unit circuit of Fig. 3. The first one is the pre-
synaptic action potential spike, the output of the box A
in Fig. 3 , which shows the triangular shape produced
by the fast discharge of Cm on Ra with τa ∼ ms, as we
described before. This pre-synaptic potential, through
the condition Vpre > Ω ≈ 0.7V in our implementation
(see Appendix), produces the Iδ(t) current-pulse, which
is input to the box B. It has duration τa and intensity
Iδ ≈ V+/RW , where V+ (≈ 4V) is set by the circuit
voltage source (see the Appendix). The sharp pulse is
then leaky-integrated (cf Eq.11) to produce the synaptic
current Is1(t) with the exponential form as in Eq.11, at
the output of the box B. The second leaky-integration
produces the synaptic current Is2(t) with the alpha-form
as in Eq.12, at the output of the box C. As shown
by the good quality of the fits in the Fig. 4, the NS
faithfully implements those functional forms and keeps
constant the normalization of the integrated charge QN

to a reasonably good approximation.

3. Synaptic current versus conductances

There is one important point about our
implementation that is worth clarifying here. Theoretical
models are formulated in terms of either membrane
conductances or synaptic currents (see Ch.3 and Fig.3.2
in [3]). However, we shall show that these two options
are essentially the same.

The key point is to realize that neurons spend most
of their time at and around their resting potential,
Vm ≈ Vrest ≈ −70 mV. The potential Vm slowly drifts
up or down under the influence of synaptic currents.
Eventually, a small upward change of about 10 mV,
drives the neuron to emit a short action potential spike
and quickly returns to Vm ≈ Vrest. Thus, since the
general expression of synaptic currents in theoretical
models reads [3]

Isyn(t) = −gsyn(t)(Vm(t)− E), (13)

where gsyn(t) is the synaptic conductance and E is a
constant potential parameter, which is chosen either
higher or lower than Vrest for excitatory or inhibitory
currents, respectively [3, 13]. Hence, from Vm(t) ≈ Vrest

all the time except in brief firing events lasting a few
ms, to a good approximation the temporal dependence
of Isyn is the same as gsyn(t), so one can model either.
This feature is also the reason why one often reads in
neuroscience literature expressions such as “to inject a
conductance” [29].

D. Synaptic current timescales: spike-by-spike to
rate coding

An important question in neuroscience is what is the
nature of the neural code. In neural networks, do
neurons code through the timing between spikes or by

the neuron spiking rate? Our neuro-synaptic unit is well-
equipped to implement both of these representations.
The key parameters to compare are the timescale for
successive spike emission, i.e. the membrane timescale
τm ∼ RmCm, versus the synaptic integration timescale
τs ∼ RsCs.
If τs ≤ τm then the synaptic leaky-integration can

follow individual spike emission and spike-by-spike time
coding is possible. On the other hand, if τs ≥ τm,
the effect of the successive spikes gets accumulated and
a synaptic current Is proportional to the firing rate
f results. In Fig. 5 we illustrate the different coding
regimes. We show the input spikes Vpre of a pre-synaptic
neuron acting on the synaptic unit (cf Fig. 3) and the
resulting output synaptic currents Is2 that it generates.

FIG. 5. Left: Spike-by-spike coding. Each emitted pre-
synaptic spike produces individual α-type spikes of synaptic
current. Center and right: Rate coding. The pre-synaptic
emitted spikes have a high rate and produce a synaptic current
build-up by accumulation or leaky-integration. The current
intensity encodes the spiking frequency rate, Is = Is(f).

To determine whether the system is in the spike-
by-spike or rate-code regime, we need to consider the
activation function of the neuron model f(Iin) that is
shown in Fig. 6. The frequency, or equivalently, the
interspike interval (ISI=1/f) depends on the external
input current excitation, so it is more accurate to
compare this timescale (instead of τm) with the leaky-
integration timescale τs. Hence, per our previous
discussion, we have that 1/f > τs would correspond to
spike-by-spike, while 1/f < τs to the rate-code mode.
Thus, higher spiking frequencies naturally correspond to
the rate-code regime, and this is well illustrated in Fig. 5
We may make here a side comment on the activation

function f(Iin). As shown in the Fig. 6 this function
also exhibits a maximal current threshold Imax, where
the firing frequency suddenly decreases down to zero
[28]. This is actually a biomimetic property of our
neuron model. The eventual decrease of the spiking
frequency at high current excitation is a phenomenon
that is observed in biological neurons, where is known
as “depolarization block” [30]. It is often considered
relevant for the understanding of epileptic seizures [31].
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FIG. 6. Response functions of Neuron and Synapse sub-
circuit units. (a) The spiking rate as a function on the input
current f(Iin) produced by the aLIF neuron sub-circuit (box
D in Fig. 3) Imin denotes the threshold of excitation and Imax

the value where the neuron stops spiking. (b) The synaptic
current Is(f) of the leaky-integrator sub-circuit (boxes B and
C in Fig. 3) in the spike rate regime. The slope is given by
the neurotransmitter charge QN , as in (14). In dashed line,
the theoretical Is(f) for the nominal value of QN is computed
with (15).

It is an important question to determine what controls
the intensity of the synaptic current in the rate-coding
mode. We have discussed in Section IIC 2 how the
intensity of the synaptic current that is produced by a
single action potential spike is controlled by the resistor
RW . More specifically, we showed that for spike-by-
spike coding, RW controls the total charge due to a
single spike, i.e., QN =

∫
Isdt. This charge per spike is

conserved across the leaky-integration stages, i.e. there
is no current amplification.

For the rate-coding case, the successive spikes are
accumulated, hence we expect that the synaptic current
will be given by QNf . A subtle point to note, however,
and as seen in Fig. 5, is that the accumulation takes
a certain time to reach a steady-state, which is the
leaky-integration time-constant τs. Therefore, after the
transient integration time, we have,

Ise ≈ QNf (14)

for the excitatory case.
This simple relation is in good agreement with our

circuit measurements shown in Fig. 6, including the
quantitative value of the slope QN ≈ 80 nC (see Fig. 4).

We may provide the explicit dependence of QN

with the circuit model parameters. Recalling that the
expression for the charge contribution of each spike, we
have,

QN ≈ Iδτa ≈ (V+/RW )RaCm (15)

Finally, we should note that all the previous
considerations remain also valid for the case of inhibitory
synaptic currents (since we just change the polarity of
the last current mirror). Hence, in that case the Is(f)
response function is simply the reflection of Eq. 14,
namely,

Isi ≈ −QNf (16)

III. RESULTS

A. Basic spiking neural network motifs and
neuro-computational primitives

The methodology that we described above, in terms
of circuit blocks is modular, therefore, is well adapted
to implement arbitrary biomimetic SNNs. In the next
sections, we shall illustrate how one can establish basic
network motifs, such as a single neuron with synaptic
self-excitation or self-inhibition, and then two mutually
inhibiting neurons. The spiking states of these motifs
realize neuro-computational functions or primitives.
The basic motifs that we shall consider are shown

in Fig. 7. The simplest motif is, of course, an
isolated spiking neuron. We have already discussed its
behavior in Section II B. The first non-trivial motifs
display self-feedback, which is the simplest case of a
recursive SNN. The self-excitatory case provides an
instantiation of an important neuro-computing primitive,
called dynamical memory, short-term memory or simply
activity “bump”. The second case is a self-inhibitory
neuron, which implements two other important neural
primitives: spiking adaptation and bursting [3, 13].
Then, we shall leverage those basic primitives to build

more complex two-neuron SNNs. We shall consider two
different motifs, and implement three different types of
central pattern generators (CPG) [13, 32]. These are also
fundamental neuronal functions that are widely studied
as they broadly appear in neuroscience [33, 34] and
robotics [35, 36]. While in the present introductory work,
we shall stop at two-neuron motifs, it should be clear that
the present methodology is general and permits building
larger SNNs with arbitrary architecture.

B. Self-excitation: Activity bump and dynamical
memory

In this section, we begin with the simplest motif: a
self-excitatory neuron (see Fig. 7), which can implement
a basic neuro-computational primitive, namely, a
dynamical-memory. This reverberating self-sustained
state is also of central importance in neuroscience, where
it is called short-term memory (cf. Ch.6 in [13]) or
working memory [37]. The excitation “bump” neuro-
computational function occurs in models of great current
interest, such as place and grid cells [38] and in head
direction systems [39]. It also appears in models of the
oculomotor system, which allows to fix the gaze in a given
direction [40].
In a biological neuron, the self-excitatory current

may represent the intrinsic transient inward Ca2+ ionic
current, known as IT (see Ch.10 in [13]). If, alternatively,
the self-synaptic connection is extrinsic, such as due to
the neuron’s own axon connecting the dendrites, it is
called an autapse, which is a topic of current interest
[41–44]. This may be relevant to epilepsy, where it was
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FIG. 7. SNN motifs: (a) Single spiking neuron. (b)
Single spiking neuron with excitatory feedback. This motif
represents both an autapse (self axon-dendrite connection)
or an intrinsic excitation current, like the inward Ca2+, IT .
(c) Single spiking neuron with inhibitory feedback. This motif
represents both an autapse or an intrinsic adaptation current,
like the hyperpolarizing IAHP that is also mediated by Ca2+

(see 10.3 of [13]). (d) CPG master-slave motif with a burster
neuron (master) that inhibits a regular spiking neuron (slave).
(e) CPG of mutually inhibiting neurons with self-adaptation.
The same motif has two cases: two bursters or two frequency-
adaptation neurons, which give qualitative different traces.

reported that in epileptic humans about 30% of cortical
neurons of layer V form autapses [45]. Moreover, very
recently, it was observed that the ictal source point of
epileptic seizures occurs in layers IV, V, and VI [46].

For a self-excitatory synaptic current, the system of
equations of our model (9-12) becomes,

Cm
dVm

dt
= − V

Rm[S] +Ra
+ Isse + I0 (17)

Vap =
Vm

Rm[S] +Ra
Ra (18)

τs
dIs1
dt

= −Is1 + IδH(Vap − Ω) (19)

τs
dIsse
dt

= −Isse + Is1 (20)

where for the self-excitation, the spike potentials become
Vpre = Vpost = Vap. Additionally, to indicate the
synaptic self-excitatory current, Is2 is renamed Isse. The
system of equations above corresponds to the neuro-
computing circuit shown in Fig. 8. The key feature of
the activity bump is that the neuron can reach a spiking
state, and remain self-excited, despite the input external
current I0 being sub-threshold, namely I0 < Imin. As we
shall discuss below, the self-excitation state is maintained
by the build-up of the self-synaptic current Isse.

To start the bump of activity it is necessary to apply a
short excitatory external current pulse I∆ on top of the
constant sub-threshold current I0, as shown in Fig. 9.
Since I0 is sub-threshold, we observe that there is no
activity during the first 2 seconds. Then an excitatory

FIG. 8. Self-synaptic current circuit. I0 is the external
current input, Vap is the output train of action potential
spikes. The output spikes are feedback to the neuron through
the self-synaptic current Isse.

pulse is applied, that fulfills two requirements: (i) it
has to drive the neuron to the excitatory regime above
threshold, i.e. Imin < I0+I∆ < Imax; (ii) its duration τ∆
has to allow for the build-up of the self-synaptic current
Isse, i.e. τ∆ > τs.
We observe in Fig. 9 that the spiking starts as soon as

I∆ begins and within the next second ∼ τs the Isse starts
to build up and the frequency rate increases. Within
the next second by the time Isse is terminated, the self-
feedback is well in place. The persistent state is realized
as I0 + Isse > Imin. The spike rate of the bump of
activity stabilizes at the self-consistent rate f∗ as we
discuss below.
We can recall the two response functions that

characterize the neuro-synaptic unit (see Fig. 6) and use
them to formulate the bump state as a self-consistent
problem. On one hand, we have f(Iin), the neuron
activation function. On the other, the synaptic current
Is(f) that results from the synaptic circuit, given an
input spike-rate f from a neuron. We should also note
from Fig. 9 that τs > 1/f , so we are indeed in the rate
coding regime.
In the self-excitatory motif, the synaptic current is

feedback to the neuron, hence Is = Isee (see Fig. 6.
Therefore, we can cast the bump as a self-consistent
problem: (i) the total input current is Iin = I0 + Isse[f ],
where I0 denotes a constant sub-threshold external
current and Isse is the self-excitatory contribution that
depends on the spiking frequency; (ii) the total Iin
produces a spike-rate f(Iin), which itself produces
the feedback current Isse. Therefore, the problem of
simultaneously fulfilling (i) and (ii) is to find the self-
consistent frequency f∗ such that, f∗ = f [I0 + Isse(f

∗)].
The solution to this problem can obtained by a

geometrical construction. It corresponds to the crossing
point (I∗in,f

∗) between the two response functions
measured on the NS unit (see Fig. 6). From the first
response, we call f1 = f1(Iin), which is shown by the
blue line in Fig. 9. From the second response, we invert
the variables to get, f2 = f2(Is) = f2(Isse), shown in
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FIG. 9. (a) Top: Spike trace of the excitation bump. The
blue line schematically denotes the applied external sub-
threshold current I0 with the short excitation I∆ that starts
the bump, and inhibition that terminates it. Bottom: The
instantaneous spike-rate emission f of the neuron (black line).
The self-synaptic current Isse build-up during excitation
and relaxation during inhibition (red line). The state
has an external continuous sub-threshold I0 = 44.7µA. (b)
Geometrical construction to determine the self-consistent
frequency f∗. Insets: f∗ as function of RW and I0. The
parameters are τs = 0.47 s, I0 = 44.7µA, +I∆ = 22.9µA,
−I∆ = −24.4µA. For clarity, the number of spikes is reduced
to 1/10 of the originally measured amount.

dotted yellow line in Fig. 9 (and compare to Fig. 6).
From (i) above we have Iin = I0 + Isse, then we get
f2 = f2(Iin − I0), which is the yellow solid line in Fig. 9.
The geometrical solution is obtained requiring f1 = f2,
which gives the crossing point (I∗in, f

∗), as shown as a
red cross in Fig. 9.

We can further explore how the self-consistent firing
rate f∗ systematically depends on two main parameters
of the model, as we show in Fig. 9. One is the
synaptic weight RW , that controls the intensity of the
feedback current. This intensity is controlled by the
“neurotransmitter” charge QN , which is modulated by
the synaptic resistor RW (see Fig. 4 and Section IID).
The other parameter is the external current intensity I0,

which is always kept sub-threshold for the activity bump.
One could in principle set I0 = 0 and still realize a bump.
The requirement is a strong enough feedback, such that
at Isse > Imin.
The continuous dependence of the f∗ on the model

parameters is shown in the insets of Fig. 9.
One of the long-standing issues in theoretical models

of this type of dynamical attractors concerns their
stability with respect to perturbations, since it is based
on a positive feedback loop [19, 40]. Therefore, it is
important to note a conceptual point in this regard.
The methodology that we adopt in the present work is
based on the physical implementation of a theoretical
model. Thus, the stability of the dynamical attractor
model is directly demonstrated by construction. Namely,
if it works, therefore it must be stable. Nevertheless,
we may further demonstrate this feature by explicitly
applying strong external perturbations to the activity
bump state. This is shown in Fig. 10. Despite these
strong perturbations, even halting the spikes in the
inhibitory case, the dynamical attractor return promptly
to its stable state, as shown in the inset. A key feature for
the stability, however, is that the perturbations should
not last much longer than the synaptic timescale τs.
Hence, we may say that this state can keep a short-
term memory encoded by f∗ during that characteristic
timescale.

FIG. 10. Stability of the bump attractor state. Top panel:
an excitatory current pulse of intensity +I∆ = 22.9µA (blue
line) is applied during 1.2s, producing an increase in the
firing rate, which rapidly relaxes after the perturbation stops.
Bottom panel: an inhibitory perturbation −I∆ = −24.4µA
is applied during 0.8s producing a halt on the spiking. The
bump recovers rapidly after the perturbation stops. Inset:
evolution of the synaptic currents Is1 and Is2 = Isse during
the perturbation. The parameters are τs = 0.47 s, I0 =
44.7µA. The number of spikes is reduced to 1/5 for the sake
of clear display.

Finally, from these stability considerations, it follows
that to stop the active bump state one needs to apply
an inhibitory current pulse −I∆, which is sufficient long
and strong. More precisely: (i) its magnitude has to
be such that the total input current Iin = I0 + Isse −
I∆ < Imin, i.e. falls below the onset of excitability so
stops the firing and allows the feedback to relax; (ii) its
duration, therefore, should be longer than τs, such that



11

the self-synaptic current Isse relaxes sufficiently, as shown
in Fig. 10, such that the condition (i) is fulfilled.

C. Self-inhibition: Adaptation and Bursting

In this section, we turn to another minimal motif,
namely that of neuron self-inhibition (see Fig. 7). As
we shall see, this motif produces two important spiking
modes: adaptation and bursting. These modes will be
the basis for the multi-neuron motif for central pattern
generators, which we shall describe later in the next
section.

1. Adaptation

Adaptation is a relevant function in neuroscience.
An example of this type of self-inhibition is the
afterhyperpolarization current IAHP , which is mediated
by Ca2+ (see Ch.10 in [13]). Similarly, as mentioned
in the previous section, this motif may also be realized
by an external connection between the neuron’s own
axon and its dendrites. This case is called an inhibitory
autapse, which is now known to be a common feature
of some neocortical and PV neurons, with the function
of regulating the rate of spike emission [42, 45, 47, 48].
Self-inhibition is also a main ingredient of two of the
most popular schematic theoretical models, Izhikevich
and AdEx [3, 49]. In both models, the self-inhibition
is described by a second dynamical equation for the
adaptation or recovery variable.

Below, we shall explore the dynamical behavior
of this important motif by means of our hardware
implementation. In this case, the system of equations
of our theoretical model (9-12) becomes,

Cm
dV

dt
= − V

Rm[S] +Ra
− Issi + I0 (21)

Vpre =
V

Rm[S] +Ra
Ra (22)

τs
dIs1
dt

= −Is1 + IδH(Vap − Ω) (23)

τs
dIssi
dt

= −Issi + Is1 (24)

where we now need to excite the aLIF neuron with a
supra-threshold external current I0, unlike in the previous
section. Also, we rename the synaptic current Is2 as
−Issi to denote the synaptic self-inhibition. The circuit
configuration is identical to that shown in Fig. 8 for the
self-excitation, with the sole difference that the mirrored
current Is2 is now of inverted polarity.
While it is possible to have some degree of adaptation

in the spike-by-spike regime, when τm > τs, the most
natural, interesting, and biologically relevant case is the
rate-code regime, i.e. for τm ∼ 1/f ≪ τs. Hence,
we focus here on the latter. In Fig. 11 we show the

behavior of the aLIF with a self-adapting current. The
adaptation results from the build-up of the inhibitory
current intensity Issi on the synaptic sub-circuit, which
occurs within the synaptic timescale τs. The total
current exciting the neuron gets reduced to Iin = I0−Issi,
which leads to the reduction of the firing rate with respect
to the original one f(I0). This phenomenon of spiking
rate reduction is called frequency adaptation.
As we did before, we may also consider this state as a

self-consistent problem, where we need to find the spike
rate f∗. Now, the self-consistent condition is given by
f∗ = f∗(Iin) = f∗[I0 − Issi(f

∗)]. As we discussed
before, in Section IID Eq. 16, the response function
Issi(f) ≈ −QNf , i.e., identical to the response function
Isse(f) with a change of sign. So the inhibitory current
represents a discharge of Cm.
In Fig. 11 we show the geometrical construction for the

case of a negative self-synaptic current, which follows the
same steps outlined before.
Similarly, as in the case of self-excitation, the self-

consistent frequency can be controlled by modulating the
intensity of the feedback current. This can be achieved
by varying the model parameters, such as RW and I0, as
shown in the insets of Fig. 11.
Also similarly as done before for the bump, the

stability of the adapted self-consistent state can also be
tested by applying perturbations. Our results are shown
in Fig. 12, where we demonstrate very good stability.
Before leaving this section we should make a final

point. As already mentioned before, it is one’s choice to
adopt one or two leaky-integration blocks. This choice
can be made in both, the excitatory or the present
inhibitory case. Below we explicitly write the model
equations, where we adopt the simplified notation of
Eq. 1, for the sake of clarity, and adapt them for the case
of one inhibitory leaky-integration stage. The system
reads,

Cm
dVm

dt
= f(Vm)− Issi + I0 (25)

τs
dIssi
dt

= −Issi + IδH(Vap − Ω) (26)

The reader may verify that these equations now share
the same form as the Izhikevich and AdEx models [3,
49]. The Iδ term represents the spikes due to the action
potentials Vap(t), which are analog to the potential spikes
of fast variable V (t) in the theoretical models. In all
cases, these spikes are identically leaky-integrated by the
recovery variable.

2. Bursting

We have adopted the intuitive perspective of
considering states as the solution of self-consistent
problems. Therefore, it is interesting to pose the
following question: what would happen if we increase the
intensity of the adaptation, so that the resulting total
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FIG. 11. Adaptation traces. (a) Top: Spiking trace showing
the progressive reduction of the frequency. The blue line
indicates the external current input I0 = 92.8µA. Bottom:
The instantaneous spike-rate f . The red line shows the self-
synaptic adaptation current Issi builds-up over a timescale
τs ≈ 1 s. f∗ denotes the self-consistent asymptotic frequency.
(b) Geometrical construction to determine the self-consistent
frequency f∗. Insets: f∗ as function of RW and I0. The
number of spikes is reduced to 1/20 for the sake of clear
display.

input current to the neuron falls below the excitability
threshold? Namely, Issi is such that Iin = I0 − Issi(f) <
Imin, so that the strong self-inhibition would stop the
firing, hence the self-consistent solution is no longer
possible.

Let’s analyze what would be the expected behavior.
The self-inhibition takes a time τs to build up and
stop the firing. However, this quiescence provokes
the relaxation decay of the feedback current, within a
timescale τs. Recalling that I0 > Imin, the total input
Iin = I0−Issi will grow as Issi decreases and, eventually,
the neuron will get re-excited and start spiking again.
Thus, this dynamical bi-stability points to periods of
spike emission alternating with quiescent ones. Such a
state is called bursting, which is another basic neuro-
computing primitive of the self-adaptation motif.

The bursting state is implemented by the NS unit as

FIG. 12. Stability of the frequency-adaptation state. Top
panel: an excitatory perturbation current pulse of intensity
+I∆ = 22.6µA (blue line) is applied during a short period.
Produce an increase in the firing rate, which rapidly relaxes
after the perturbation stops. Bottom panel: an inhibitory
perturbation −I∆ = −24µA (red line) is applied producing
a halt on the spiking. The adapted state recovers rapidly
after the perturbation stops. Inset: evolution of the synaptic
currents Is1 and Is2 = Issi during the perturbation. The
parameters are τs = 1 s, I0 = 92.8µA. The number of spikes
is reduced to 1/20 for clarity.

we show in Fig. 13. From the qualitative discussion,
it should be clear that the bursting state is controlled
by the two timescales τm and τs. The latter controls
the alternation period or burst cycle, and the former
the inter-spike intervals during each burst. Hence, we
have τm ≪ τs so the neuron is in the rate-coding
regime. Moreover, from the previous discussion, one
should expect that the intra-burst spiking frequency
has to evolve around the excitability threshold Imin.
As shown in Fig. 13 this is indeed the case, with Issi
oscillating around the threshold Imin within a fraction of
a µA.
We may gain further and deeper analytic

understanding of those small oscillations. This is
revealed by a simple analysis of the model equations,
which to our knowledge has not been done before.
We consider the model equations and take the time
derivative of (24) and replace it into (23) to obtain,

τ2s
d2Issi
dt2

+ 2τs
dIssi
dt

+ Issi = Iδ[f(t)] (27)

This differential equation is analogue to the familiar
Driven Damped Harmonic Oscillator model [50] with
resonant frequency 1/τs. The “friction” or damping is the
second term and “external driving force” Iδ[f(t)]. From
the behavior of this well-known system, we may expect
two different states: one where the damping dominates
and another where the oscillations persist. Indeed, as
shown in Fig. 13 the synaptic current Issi(t) exhibits
a beautiful oscillatory behavior with a period close to
τs = 1 s, as predicted by (27).
However, our Driven Damped Oscillator has a twist,

since the driving force is not arbitrary but depends on
the neuron’s spiking trace through the feedback loop.
So we can discuss the nature of the oscillation in more
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FIG. 13. Burster or pace-maker state. Top: Spike traces
showing bursts of activity separated by quiescent states.
Middle: The total input current Iin is oscillating narrowly
around the threshold Imin. Bottom: The self-inhibitory
current Issi resembling a harmonic oscillation with period
≈ τs = 1s, as discussed in the text.

detail. Let’s assume that the system is bursting and
show that this assumption is consistent. The current
Iδ[f(t)] consists of trains of fast spikes at frequency f
separated by silent periods, thus having a rhythmic time
dependence with period τs. The trains of current spikes
are twice leaky-integrated with timescale τs, therefore
Issi(t) builds up within the same timescale as the period.
Similarly, during the quiescent phase, the inhibitory
current relaxes on the same timescale. Then, the periodic
build-up and relaxation of Issi(t) modulates the firing
behavior of f(t), hence of Iδ, and the bursting state
is consistent. The point to make is that the “driving
force” Iδ(t) is in resonance, as has the trains of spikes
are emitted at a frequency 1/τs which is the natural
frequency of the oscillator (27). Within the same line
of reasoning the simple adaptation can be understood as
an over-damped oscillation.

IV. CENTRAL PATTERN GENERATORS

We are now ready to start building general functional
spiking neural networks. We shall begin by considering
the simplest multi-neuron motif, namely two neurons
coupled by dynamical synaptic currents [20]. We shall
focus on implementing an SNN whose neurons emit
periodically alternating bursts. Such a 2-neuron network
is called a Central Pattern Generator (CPG) and has a
very important role in neuroscience [32]. This type of
spiking activity is fundamental for motor systems with
periodic dynamics, such as heartbeats, walking, eating,
etc. Moreover, CPGs are also a key component in
robotics, self-propelled systems, and biomedical devices.
Therefore, our simple and systematic methodology may

open an interesting avenue for applications.
The CPGs involve an external excitation that induces

the basic tonic spiking of each neuron, which is then
sculpted by inhibitory synaptic currents acting on
different timescales. As this is a vast field, we shall adopt
the review of Marder and Bucher [32] as guidance to
select a few paradigmatic systems to build. Nevertheless,
in doing that we shall also obtain new insights provided
by the present hardware-based approach.
We shall consider three different basic CPGs [32] that

correspond to two different two-neuron motifs (d) and (e)
in Fig. 7. One has master-slave or feed-forward inhibition
architecture, while the other has recurrent connections
of mutual inhibition. In the model circuits here, we
adopt all synaptic currents, intra- and inter-neuron, as
inhibitory α(t)-type functions.

1. Master-Slave CPG

We start with the simplest case, motif (d) in Fig. 7.
Such CPG has a bursting neuron (N1), acting as a pace-
maker, that sculpts the firing rate of a regular spiking
neuron (N2) by projecting inhibition. The pace-making
neuron is realized by a bursting neuron, as discussed in
the previous section. The slave neuron shows regular
spiking when uncoupled, as shown in Fig. 14. When
the inhibitory projection is introduced, the slave neuron
develops a burst spiking pattern that is the inverse
of its master’s (see Fig. 14). Hence, the two-neuron
system displays a sequence of alternating bursts which
is characteristic of CPGs.
A requirement to achieve this state is that the inter-

neuron synaptic projection from the master has to be
strong enough to silence the slave, i.e. to drive the slave
under its excitation threshold. So for the currents acting
on N2, we have

Iin = I0 − Ispi < Imin (28)

where Ispi denotes the synaptic projected-inhibitory of
N1 on N2. The intensity of the projection can be easily
controlled by the resistance RW of the Ispi synaptic
circuit.

2. Mutual-Inhibitory CPG

We turn now to the second motif, with mutual
inhibition. In this case, we shall consider two
qualitatively different possibilities: two coupled bursters
and two coupled adaptive neurons. For simplicity,
we shall consider symmetric systems. However, it is
important to acknowledge that inherent variability exists
in all hardware as a result of manufacturing tolerances.
Nevertheless, as with biological neural neurons that are
also non-identical, the emergent function has to be robust
to that type of variability.
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FIG. 14. CPG master-slave: (top) Uncoupled case: N1 is a
pace-making burster and N2 is a regular tonic spiking neuron.
(bottom) Coupled case: the N2 slave is inhibited by the
activity of N1 creating a complementary bursting pattern.
Parameters are τssi = 1s for the pace-making and τspi = 1ms
for the fast inhibitory projection.

Two mutually coupled pacemakers present a more
straightforward case; therefore, we begin our discussion
with this scenario. We consider two neurons that, if
decoupled, both produce the same bursting (cf III C 2),
up to the intrinsic variability just mentioned. Therefore,
the actual observed behavior is of two similar periodic
bursting but not identical, as shown in Fig. 15. By
introducing coupling in the form of projection of mutual-
inhibition (see motif (e) in Fig. 7), we create anti-
correlation in the respective firing patterns. As we can
see in the second panel of Fig. 15 the state of the two-
neuron network finds a compromise where they burst
in anti-phase. Therefore, they both lock into a single
common frequency. This emerging frequency is close to
the uncoupled ones, but relatively reduced due to the
global effect of additional inhibition.

In this case, it is interesting to observe the synaptic
currents, which we show in Fig. 15. They bring
interesting insights. Following the green dotted line we
can correlate the burst of each neuron with the respective
effects on their synaptic currents. The first thing to
realize is that the burst induces α(t)-type currents, which
can be clearly appreciated. The maximum of the α(t)
indicates the respective time-constants, which we denote
τssi = 0.47 s and τspi = 0.1 s for synaptic self-inhibitory
(red) and synaptic projected-inhibitory (blue).

If we focus on the synaptic currents of N1, shown in
the third panel of Fig. 15, we can see that the burst
starts when the self-inhibitory Issi decreases to almost
its lowest intensity. Conversely, the burst is terminated
shortly after due to the build-up of Issi, i.e. occurring
within a timescale somewhat shorter than τssi. On the
other hand, we observe that the anti-synchrony is due to
the strong inhibitory projection, which has a relatively
faster timescale τspi and prevents the superposition of
bursts. Similar considerations can be made for the other
neuron’s currents. We can also observe that the different
initial traces in the two decoupled neurons (top panel)
also reflect some differences in the respective produced

FIG. 15. CPG mutual inhibitory pace-maker. (a) Uncoupled
case: N1 and N2 are pace-making bursters with nominal equal
but in practice similar frequencies. (b) Coupled case: N1 and
N2 settle into a common anti-synchronous bursting pattern.
(c) Synaptic currents of N1: In red the self-inhibitory Issi
with τssi = 0.47 s. In blue the N1 to N2 projected inhibition
Ispi with τspi = 0.1 s. The green line marks the beginning of
an N1 burst. (d) idem for the synaptic currents of N2. For
clarity, the number of depicted spikes is reduced by 1/5 of the
originally measured amount.

currents. Nevertheless, the two neurons robustly lock to
a common and stable pattern of alternated bursts.

It would be interesting, but beyond the scope of
the present study, to perform a full exploration of the
different emergent states of the two coupled bursters.
Nevertheless, we can qualitatively discuss some relevant
aspects regarding the relative timescales, which is a new
feature.

In the case discussed above, we note that both, the
duration of the bursts and of the projected inhibition τspi,
are relatively short, leading to the anti-synchrony already
discussed. However, one may choose to increase τspi, so
that is significantly longer than the bursts. Then the
projection from, say N1 to N2, will be delayed concerning
the burst in N1. This projected inhibition would make
the burst of N2 in anti-synchrony less likely. The result
is that the emergent state would be that of synchrony
between N1 and N2. This situation is qualitatively
similar to that analyzed by van Vreeswijk et al. for the
case of two simple spiking neurons coupled by a retarded
mutual inhibition [20].

We may finally turn to another, more subtle form of
CPG, which shares the same motif (e) in Fig. 7, but is
found in a different regime. This CPG is realized with
two neurons that exhibit spike-frequency adaptation, i.e.
are tonic spiking when uncoupled (cf III C 1). This type
of CPG model is a classic topic of neuroscience, as it finds
a biological realization in the heartbeat neural activity of
the leech [33, 34, 51].

The behavior of this mutually-adaptive CPG is shown
in Fig. 16. It also shows alternate burst emission
but with a different mechanism. We note that for
illustrative purposes, we have maintained the synaptic
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time constants the same as in the previous case. The
present mechanism is achieved by mainly driving N1 and
N2 to the adaptation regime, reducing the intensity of
the self-inhibition (see III C 1).

FIG. 16. CPG mutual inhibitory adaption. (a) Uncoupled
case: N1 and N2 are adaptive neurons with tonic spiking.
(b) Coupled case: N1 and N2 settle into a common
anti-synchronous bursting pattern. (c) The instantaneous
frequency rate of N1. The green lines denote the beginning
and end of a burst. The horizontal dash-dot line indicates the
adapted frequency f∗ when the neurons are decoupled. (d)
Total input current Iin(t) to N1. The beginning and end of
the burst coincide with the crossing of the excitation threshold
Imin. (e) Synaptic currents of N1: In red the self-inhibitory
Issi with τssi = 0.47 s. In blue the N1 to N2 projected
inhibition Ispi with τspi = 0.1 s. (f) idem for the synaptic
currents of N2. For clarity, the number of depicted spikes is
reduced by 1/5 of its original measured number.

As seen in the Fig. 16 the CPG traces show qualitative
differences with respect to the previous case. One is that
the burst shows some overlap. Also in contrast to the
previous case, we can now observe a significant frequency
modulation, where f(t) decreases at the onset and the
termination of the burst. This modulation is correlated
to the total input current Iin(t), which shows a similar
behavior. Note that it crosses the excitability threshold
Imin as it produces the bursts.

To appreciate the mechanism, it is essential to look at
the synaptic currents generated by each neuron. They
are shown in the bottom panels (e) and (f) of Fig. 16.
As before, in red is the self-inhibition Issi , and in blue
is the projected inhibition to the other neuron Ispi. The
green dotted lines are a guide to indicate the beginning
and end of the burst of N1. The analysis for N2 would
be the same.

We focus on the start of the burst of N1. We
observe that its self-inhibition Issi is decreasing towards

its minimum [red line in panel (e)], similarly as in the
CPG case discussed before. However, unlike that case,
now N2 is firing and intensively projecting its inhibition
Ispi on N1 [blue line in panel (f)]. In consequence, the
reason why N1 starts to fire is only due to the decrease
of its self-inhibition. We may say that N1 recovers and
escapes from the grip of N2. This is one of the four
typical CPG mechanisms and is indeed called “intrinsic
escape” [23, 52].
We may also look at the end of the burst phase. There

we observe that both, Issi and the received projection Ispi
are on the rise, so they both contribute to inhibiting N1.
Moreover, the projection of N2 is necessary to increase
the inhibition of N1 and render it quiescent. This is
because N1 is now an adaptation neuron and not a pace-
maker as in the previous case.
This last observation is relevant because it explains an

evident qualitative difference between the patterns of the
two modes of CPG that we considered. By comparing
the spiking traces of Figs. 15 and 16, we observe that in
the first case, the bursts do not overlap in time, while
in the second they do. The reason is that in the first
case, the ability to burst is an intrinsic feature of each
neuron, while the inhibitory projection solely creates an
anti-correlation between them and lengthens the period.
In contrast, in the second case, the neurons do not
have the pace-making ability to quiet themselves. Thus
the overlap of activity is a necessity. This qualitative
difference is a robust feature that may help in the
classification and understanding of CPGs in biological
systems. For instance, the heartbeat of the leech is a
classic CPG animal model and is a clear example of
overlapping bursts [51]. On the other hand, the CPG
of the stomatogastric ganglion of crustaceans, which is
another paradigmatic animal model, is a clear example
of pace-makers with anti-correlations [32].

V. EXTENSION TO OXIDE MEMRISTORS
AND TO VLSI

In this work, we have introduced a circuit
implementation of a general purpose, theoretical
based, neuro-synaptic model using solely conventional
electronic components. This has the evident advantage
that the methodology can be easily reproduced at a very
affordable cost and wide availability.
Nevertheless, our methodology also opens an exciting

perspective for researchers in material science working
on memristive systems. In fact, our circuit can be
adopted as a template for testing memristive devices and
building small to mid-scale functional networks. More
specifically, there are two places where memristors may
find their place. The first one is in the neuron stage.
There, the memristor device (thyristor-plus-resistor) can
be replaced by a volatile oxide memristor, such as VO2,
V2O3, V3O5, NdNiO3, SmNiO3, NbO2, etc [26, 53–57].
The second place where, in this case, a non-volatile,
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oxide memristive can replace a conventional component
in our NS template would be the synaptic resistance
RW . This resistance controls the intensity of the synaptic
coupling Wij between two neuron units i and j, in the
language of artificial intelligence systems. Non-volatile
oxide memristors such as TiO2, Ta2O5, HfO2, etc, are
popular choices for synaptic cross-bars neuronal networks
[26, 58]. The plasticity in the resistance modulation of
oxide memristors may further endow the network with
learning ability [59].

Another interesting direction to extend our work would
be to adopt the NS design as a model to implement a very
large scale integrated (VLSI) chip. This would enable the
implementation of massive numbers of neuro-synaptic
units, or alternatively independent neuron and synaptic
units. In fact, the porting of the neuron unit has already
been reported [17], where the function of the thyristor
was emulated by two transistors, hence keeping the
simplicity of the model. On the other hand, the synaptic
stage requires current mirrors, which are standard to
VLSI and have already been implemented for a single-
stage of leaky-integration [12, 60]. Hence, a two-stage
integration to implement a bio-mimetic α-type synaptic
current should present no significant impediment.

While a distinctive feature of our implementation is
its simplicity, we should also mention another important
characteristic, relevant to VLSI. Contrary to most
current systems, our neuron unit is not based on the
subthreshold concept [9], therefore one may expect that
its VLSI implementation should not be so severely
affected by the device matching problem, which remains
an unsolved issue [11, 15].

VI. CONCLUSIONS

Here, we have introduced a novel neuro-synaptic
device, which may be a platform to implement general
spiking neural networks with dynamical bio-mimetic
synapses. Our unit may seem like just one more proposal
in an already crowded field. We would like to claim that
it is potentially a disruptive new paradigm.

A lot of overlap and confusion exists in the field
of hardware-based neuromorphic systems. So we may
first distinguish our approach by enumerating what our
system is not: (i) it is not based on electronic hardware
working in the sub-threshold regime, as CMOS chips are.
Thus, it may be less affected by the variability mismatch
issue; (ii) it is not based on digital hardware, which is
not well adapted for the continuous non-linear dynamics
of excitability characteristic of spiking systems; (iii) it
is not based on oxide electronic systems that are still
under research in material science, and are also affected
by the mismatch issue; (iv) it is not based on software
simulations on neuromorphic chips, such as FPGAs,
which present the issue of matching biological timescales
[34].

We may also enumerate what our system is: (i) it is

a general spiking neuro-synaptic model from textbooks,
that is defined by a set of differential equations that we
implemented in hardware; (ii) it is implemented with
elemental electronic circuitry, which provides a physical
embodiment of the differential equations; (iii) it is
implemented in a clear, direct, and quantitative manner,
where every model parameter has a hardware correlate
enabling full tunability; (iv) its electronic components
are widely available and economical, so our system can
be immediately duplicated and the data reproduced;
(v) it provides a direct hardware implementation with
continuously tuned timescales, so it is ready to be
deployed for applications in robotics, medical devices,
control systems, etc.
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VIII. APPENDIX

Here we provide details on the circuit implementations
of our NS unit. We shall describe each block in detail.
We also provide the values of all components used in the
different figures at the end, in Table III.
While the circuits can be easily implemented in

breadboards, we also supply the printed circuit board
(PCB) designs along with a list of components in github:
https://github.com/lps-ssn/neurosynaptic
In Fig. 17 we reproduce the schematic circuit of Fig. 3,

where we have now split the circuit into slightly different
modular blocks. The convenience of this should be
evident, as the two green blocks are identical. Moreover,
with this partition, the system is fully modular. For
instance, one may construct a network of neurons that
communicate δ(t) spikes without any delay by combining
the red neuron blocks. Alternatively, one may just add
one green block at the output of the pre-neuron to
implement exp(−t/τs) synaptic current coupling. One
may also add two green blocks, as in the schematic
circuit, to implement the α(t/τs) synaptic coupling.
Another important feature, as we shall show below is
that the last green block has two further options, one
may implement an excitatory or an inhibitory synaptic
current, both of either exp(−t) or α(t) type.

A. Neuron Block

The excitatory part of the neuron circuit has been
implemented in [28], here we add the synaptic coupling.
The circuit is illustrated in Fig. 18. The voltage spikes
are produced on the “axon hillock” resistor Ra. That
voltage spike needs to be transformed into a strong
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FIG. 17. Details of the neuro-synaptic unit circuit blocks.
The neuron block is in the red box, while the blocks of two
synaptic stages are in the green boxes.

current impulse so one upstream neuron is able to excite,
i.e. to drive spikes on a downstream neuron. Moreover
the intensity of the current needs to be modulated so
as to realize the synaptic weights Wij between the two
neurons i and j. The components to replicate the circuit
are listed in Table I below.

This is implemented through a simple solution,
adopting a conventional current source configuration
taken from the data sheet of the ALD1105PBL chip (has
2 matched pairs of CMOS transistors).

The output synaptic current is δ(t)-like, and is
implemented by a rectangular pulse of current with an
intensity controlled by RW . In the range of interest
Iout ≈ 200µA, i.e well within the excitatory current
interval, it can be approximated by Iout ≈ 4V/RW . An
important point to make is that RW can be replaced by a
non-volatile memristor in the implementation of learning
neuronal networks.

The duration of the rectangular pulse is controlled by
the condition Vspike > Ω ≈ 0.7 V i.e. when the spike
overcomes a the synaptic threshold Ω (cf Eq.11 in the
main text).

We can estimate some typical values to see that
our neuron circuit can easily match bio-compatible
timescales. The duration of a spike is easily estimated as
it is directly given by the discharge timescale of Cm on the
axon hillock resistor Ra. For typical values Cm = 1µF
and Ra = 1 kΩ we obtain τa = 1 ms, which is a typical
biological timescale.

We adopted the thyristor STMicro P0118MA, which
has a trigger current IGT ≈ 2µA. From this value and
the leaky integration time constant τm we can obtain
an approximate expression for the firing rate for a
constant input current I0. The capacitor Cm charges
approximately linearly with VC(t) ≈ (I0/Cm)t, hence
the gate current follows the simple expression IG(t) ≈
VC/Rm = (I0/RmCm)t = I0(t/τm). The condition

Component Mfr Mfr. # Amount
Thyristor STMicro P0118MA 1
Capacitor Nova CCC-52 1
Resistor Nova CBR-11 2
MOSFET ALD, Inc. ALD1105PBL 1

Trimmer Resistor Bourns 3296P-1-203LF 1

TABLE I. List of Materials for the Neuron plus Iδ block.

FIG. 18. Schematic of the Neuron plus Iδ current block. Q1,
Q3 and Q4 are CMOS transistors from the ALD1105PBL
chip. The memristor that implements the voltage-gated
conductance channel of the axon hillock is implemented with
a thyristor (STMicro P0118MA) with Rm connected between
the anode and the gate (blue box). The action potential spike
voltage Vap results from the fast discharge of Cm on Ra when
the memristor is in the lo-R state.

to fire a spike is that the gate current overcomes its
switching threshold IG > IGT . Hence, IG ≈ 2µA =
I0ISI/τm, where ISI is the interspike interval. Thus, the
firing rate results f(I0) ≈ (I0/2 µA)/τm. For typical
values I0 = 60µA, Rm = 1 MΩ and Cm = 1µF, we get
f ≈ 30Hz, which is bio-compatible.

B. Synaptic Block

The detailed circuit that implements the green blocks
of the schematic model of Fig. 3 is shown in Fig. 19.
The components are listed in the Table II below. The
circuit implements the leaky-integration of the input with
a timescale given by τs = RsCs.
This circuit equation is

dq/dt = −q/τs + iin (29)

hence,

dVC/dt = −VC/τs + iin/Cs (30)

and,

τsdIR/dt = −IR + iin (31)

which is exactly the form of Eqs.2, 3, 11 and 12 of the
main text.
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Note that if iin(t) = I0δ(t), then IR(t) ∝ exp(−t/τs)
and if iin(t) = exp(−t/τs), then IR(t) ∝ α(−t/τs). As
discussed in the main text.

The key feature that one needs to achieve with
the circuit to implement the system of equations,
is to capture the feature of successive stage current
integration. Therefore, one needs to reproduce or mirror
the output current on one block as the input for the next
block. As was explained in the main text this is achieved
with a standard solution, namely a current mirror. We
implemented this using again the ALD1105PBL chip.

FIG. 19. The excitatory synaptic current circuit block. Q1,
Q2, Q3, and Q4 are CMOS transistors from the ALD1105PBL
chip.

Component Mfr Mfr. # Amount
MOSFET ALD, Inc. ALD1105PBL 1
Capacitor Nova CCC-52 1
Resistor Nova CBR-11 1

TABLE II. List of Materials for excitatory and inhibitory
synaptic current circuit block.

We may note that there is a price to pay for adopting
this simple solution. The Rs is not connected directly
to the ground, as the equations above require, but to the
gate of the NMOS pair Q1-Q2 in Fig. 19. This introduces
an approximation since the approximated expression for
the output current becomes IRs ≈ (VC − 0.7V )/Rs.

Nevertheless, as shown in the synaptic current traces
shown in Fig. 3, the two stages are well approximated by
the exponential and the alpha functional forms, which
in practice demonstrates that the circuit generates the
appropriate waveforms.

Finally, notice that the output current is positive or
excitatory (i.e. outgoing), hence this block implements
an excitatory synaptic current. The excitatory synaptic
circuit can be easily modified to implement the inhibitory
synaptic current case. It is sufficient to take out half of
the current mirror, so the output becomes a “sink to
ground” of a current of magnitude identical to its input.
Hence, this would be a negative or inhibitory current, for
instance, if connected to a neuron it would decrease the
charge of the membrane Cm. The circuit implementation
is shown in Fig. 20.

FIG. 20. The last synaptic current circuit block can be
inhibitory or excitatory. For the excitatory case Q1, Q2, Q3,
and Q4 are CMOS transistors from the ALD1105PBL chip.
For the inhibitory case Q3 and Q4 are not used.

With these synaptic blocks, we can realize the four
model synaptic currents that we discussed in the text, as
follows. For the AMPA, i.e. excitatory exponential-type,
adopt one block (19). For the NMDA, i.e. excitatory
alpha-type, adopt two identical blocks (19). For the
GABAa, i.e. inhibitory exponential-type, adopt one
block (20). For the GABAb, i.e. inhibitory alpha-type,
adopt two blocks, the first stage (19) and the second stage
(20).

C. Model Parameters

In the table below, we list all the theoretical model
parameters and their counterparts in the hardware
model.
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Figure No.
Theoretical model

parameters
Hardware model
counterparts

Timescales

Fig. 2
Cm 0.1 µF τm ≈ 68 ms
Rm 680 kΩ
Ra 2 kΩ τa ≈ 200 µs

Fig.4

Cm, Rm, Ra same as Fig.2
RW 10 kΩ
Cs 22 nF τs = 1.8 ms
Rs 82 kΩ

Fig.5

Cm, Rm, Ra same as Fig.2
RW 10 kΩ

Cs for (a) 47 µF (a) τs = 4.7 s
Cs for (b) and (c) 1 µF (b, c) τs = 100 ms

Rs 100 kΩ

Fig.6

Cm, Rm, Ra same as Fig.2
RW 5 kΩ
Cs 4.7 µF τs = 470 ms
Rs 100 kΩ

Fig.9
Cm, Rm, Ra same as Fig.2
RW , Cs, Rs same as Fig.8

Fig.10
Cm, Rm, Ra same as Fig.2
RW , Cs, Rs same as Fig.8

Fig.11

Cm 33 nF τm ≈ 22.4 ms
Rm 680 kΩ
Ra 2 kΩ τa ≈ 66 µs
Cs 10 µF τs = 1 s
Rs 100 kΩ
RW 2.2 kΩ
I0 92.8 µA

Fig.12
Cm, Rm, Ra same as Fig.11
Cs, Rs, RW same as Fig.11

I0 92.8 µA

Fig.13
Cm, Rm, Ra same as Fig.11
Cs, Rs, RW same as Fig.11

I0 53.2 µA

Fig.14

Cm, Rm, Ra same as Fig.11
self-synapse Cs, Rs same as Fig.11 τssi = 1 s
self-synapse RW 0.27 kΩ
projection Cs, Rs 10 nF , 100 kΩ τspi = 1 ms
projection RW 1.5 kΩ

RW 4.7 Ω
N1 I0 62.0 µA
N2 I0 46.5 µA

Fig.15

Cm, Rm, Ra same as Fig.11
self-synapse Cs, Rs 4.7 µF , 100 kΩ τssi = 470 ms
self-synapse RW 100 Ω
projection Cs, Rs 1 µF , 100 kΩ τspi = 100 ms
projection RW 0.4 Ω

N1 I0 78.8 µA
N2 I0 70.6 µA

Fig.16

Cm, Rm, Ra same as Fig.11
self-synapse Cs, Rs 4.7 µF , 100 kΩ
self-synapse RW 100 Ω
projection Cs, Rs 1 µF , 100 kΩ
projection RW 0.4 Ω

N1 I0 57.3 µA
N2 I0 52.4 µA

TABLE III. Parameters for figures
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