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Deep neural network models have recently been shown to be effec-
tive in predicting single neuron responses in primate visual cortex ar-
eas V4. Despite their high predictive accuracy, these models are gen-
erally difficult to interpret. This limits their applicability in character-
izing V4 neuron function. Here, we propose the DeepTune framework
as a way to elicit interpretations of deep neural network-based mod-
els of single neurons in area V4. V4 is a midtier visual cortical area
in the ventral visual pathway. Its functional role is not yet well un-
derstood. Using a dataset of recordings of 71 V4 neurons stimulated
with thousands of static natural images, we build an ensemble of
18 neural network-based models per neuron that accurately predict
its response given a stimulus image. To interpret and visualize these
models, we use a stability criterion to form optimal stimuli (DeepTune
images) by pooling the 18 models together. These DeepTune images
not only confirm previous findings on the presence of diverse shape
and texture tuning in area V4, but also provide rich, concrete and nat-
uralistic characterization of receptive fields of individual V4 neurons.
The population analysis of DeepTune images for 71 neurons reveals
how different types of curvature tuning are distributed in V4. In ad-
dition, it also suggests strong suppressive tuning for nearly half of
the V4 neurons. Though we focus exclusively on the area V4, the
DeepTune framework could be applied more generally to enhance
the understanding of other visual cortex areas.

computational neuroscience | visual cortex | V4 | tuning | stability |
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Understanding the function of primate visual pathways is
a major challenge in computational neuroscience. Along

the ventral visual pathway, cortical area V4 is of particular
interest. It is a large retinotopically-organized area located
intermediate between the early primate visual cortex areas such
as V1 and V2 and high-level areas in the inferior temporal (IT)
lobe. V4 is believed to be crucial for visual object recognition
and visual attention, but its functional role remains mysterious.
Computational studies of primary visual cortex have produced
powerful quantitative models of V1 (1). Contrastingly, area
V4 is more difficult to model computationally than V1. This
is mainly due to its highly nonlinear response (2) and diverse
tuning properties (3).

To understand the tuning properties of V4 neurons, one
dominant traditional approach is to use handcrafted and lim-
ited synthetic stimuli (e.g. (4, 5)) to probe V4 neurons. For
example, by comparing V4 neuron responses to Cartesian
gratings with those to polar and hyperbolic (non-Cartesian)
gratings, Gallant et al. (4, 6) found that V4 neurons are most
selective for non-Cartesian gratings containing multiple ori-
entations. Through a parameterized set of contour stimuli
varying in angularity, curvature, and orientation, Pasupathy
and Connor (5, 7) discovered that V4 neurons are selective to

curved contour features. While such studies have successfully
quantified V4 neuron responses to synthetic shapes, the tun-
ing properties of most V4 neurons cannot be fully explored
through these limited sets of stimuli (3).

An alternative approach to designing synthetic stimuli is
using a large collection of natural images directly as stim-
uli. This approach reduces the difficulty in stimuli design,
but creates a huge challenge in modeling. Specifically, it has
been found that previously proposed simple and shallow com-
putational models of V4 neurons perform poorly on natural
images (3, 8, 9). For instance, David et al. (8) introduced the
spectral receptive field (SRF) model to account for second
order nonlinear response properties. The SRF model enhances
our understanding of V4 orientation tuning properties, but its
average prediction performance for the V4 neurons studied
is far from satisfying (3). More recently, advances in deep
convolutional neural networks (CNNs) with multiple layers
of linear and non-linear operations have led to more accurate
predictive models for neurons in V4 and IT (10–12). While
this deep, convolutional and non-linear architecture is the key
to the high predictive performance, it also makes the models
difficult to interpret. This limits their usefulness in advancing
neuroscience. A natural question arises: can we use these
complex and accurate models to infer tuning properties of V4
neurons?
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DRAFT

In this paper, we propose the DeepTune framework as a tool
to visualize and interpret predictive models of single neurons.
In order to make the interpretations be less dependent on
arbitrary neural network architecture choices, we build an
ensemble of 18 CNN-based models per neuron instead of a
single model. The models vary in architecture, but all have
comparable high and state-of-the art prediction accuracies.
Each model uses a CNN to extract features from an input
image. The CNN is pre-trained to perform object classification
on the ImageNet dataset (13). The extracted features are then
used as predictors to train a regularized linear regression model
with the neuron firing rate as the response. This approach of
applying a pre-trained model to a new prediction task is known
as transfer learning (14). For each neuron, we then generate
DeepTune images that are obtained via gradient optimization
of the fitted models. Aggregating the DeepTune generation
process from 18 models via a stability criterion, we further
introduce the consensus DeepTune images for each neuron. We
show that interpreting the components of DeepTune images
that are consistent across 18 models and the consensus one can
help better characterize the tuning property of a neuron and
gain robustness against modeling choices. Finally, we perform
population analysis of all DeepTune images from 71 neurons
to illustrate the curvature tuning diversity and suppressive
tuning in V4.

Results

We have recorded firing rates of 71 well isolated neurons in V4
from two awake-behaving male macaques. These recordings
were previously used to study the sparseness of neural codes in
the area V4 (but without predictive models) (15). The stimuli
consist of a random sample of circular patches of grayscale
digital photographs from a commercial digital library (Corel).
Uniformly random sampled images without replacement were
then concatenated into long sequences so that each 16.7 ms
frame contained a random image from the library. When
presented to the macaques, all images were centered on the
estimated classical receptive field (CRF, see SI Data Collection
for CRF estimation procedure). The image size was adjusted
to be two to four times the CRF diameter (Figure 1-C). The
training data set for each neuron contains 8,000-24,000 natural
images (4,000-12,000 distinct ones * 2). Spike counts were
measured at 60Hz, resulting in two measurements per image.
For the holdout test dataset, 600 images (300 distinct ones
* 2) were shown for each neuron in a fixed order, distinct
from the images shown for the training dataset. The sequence
of test images was repeated; for each neuron, each image in
the test dataset was shown 8-10 times. The resulting spike
counts were averaged to provide a more precise estimate of
the expected spike count. In addition, repeats also allowed for
estimating the amount of variance in the neuron explainable
by the stimulus image (16) (see SI Data Collection for details).

CNN-based models are highly predictive of V4 neuron re-
sponses on natural stimuli. We introduce a transfer learning
framework (Figure 1) to build predictive models in two stages
for our V4 stimulus-response data as just described. For a
given layer of a pre-trained CNN and for each input stim-
uli, in the first stage (Figure 1-A), we extract intermediate
outputs from that layer of CNN as features. In the second
stage (Figure 1-B), these features serve as predictors in a reg-

Fig. 1. DeepTune framework through transfer learning: first, we use features from
pre-trained convolutional neural networks (CNNs) in regularized regression to predict
(spike) firing rates of neurons in the visual area V4; second, stability-driven DeepTune
images across 18 CNN-based predictive models are generated for interpretation. A.
Architecture of a convolutional neural network (CNN) pre-trained to perform 1000-
class image classification task on the ImageNet dataset (e.g. AlexNet). B. An input
image is propagated forward in a fixed layer of the CNN, yielding a feature vector
representation of the image. This vector is used to fit a regularized linear regression
model to predict firing rates of each V4 neuron. C. The classical receptive field (CRF)
during the experiment is set in the middle of the stimuli with width l while the whole
image has the width 3l. D. 18 accurate predictive models are obtained using features
from layers 2, 3, 4 of three pre-trained AlexNet, GoogleNet, VGG, with either `1 (lasso)
or `2 (ridge) regularized linear regression. DeepTune, a stability-driven interpretation
and visualization framework of CNN-based model (across multiple such models) is
proposed to characterize V4 neurons’ tuning preferences (more details in the Results
section 2). The consensus DeepTune image for one neuron (corresponds to Neuron
1 in Figure 3-A) is shown and displays a stable curvature pattern with edges forming
an approximately ninety-degree angle.

ularized linear regression (such as Ridge (17) or LASSO (18))
with time-lagged spike rates as the responses. Specifically, for
one stimulus image at time t denoted as zt ∈ Rs×s (s = 227
in the AlexNet CNN model (19)), the given layer of CNN
transforms this image into a flattened feature vector xt ∈ Rd

(d = 256× 13× 13 in the AlexNet-Layer2 CNN model). This
feature transform is denoted as function h : Rs×s 7→ Rd. Since
the responses of V4 neurons to a sequence of images are sen-
sitive to the recent history of images shown to the subject,
we build the models with multiple time lags. More precisely,
we regress yt against the training image features from last k
frames of video prior to and including time t, i.e. zt, ..., zt−k+1.
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The time lag k is set to be 9 (consisting frames at 0, 16.7, . . . ,
133.6 ms) as in previous studies with similar data recordings
(e.g. (8, 20)). Finally, our predictive model for a single neuron
response takes the following form

F : Rs×s×k → R

(zt, ..., zt−k+1) 7→
k−1∑
j=0

βT
j+1h(zt−j),

where (β1, . . . ,βk) ∈ Rd×k are the regression parameters to
be estimated and h is the fixed CNN feature transform. The
model parameters are learned by solving the following regular-
ized linear regression problem

(
β̂1, . . . , β̂k

)
= arg min

β1,...,βk

1
2

T∑
t=k

(
yt −

k−1∑
j=0

βT
j+1h(zt−j)

)2

+

λ1

k∑
j=1

∥∥βj

∥∥
1

+ λ2

k∑
j=1

∥∥βj

∥∥2
2
.

If not specified in the rest of the paper, the regularization is
taken to be `2 norm by setting λ1 = 0 (Ridge). The analysis
with `1 norm regularization (LASSO) by setting λ2 = 0 to
enforce sparsity is discussed in SI Stability of Analysis.

The CNNs used are pre-trained CNNs for classification
tasks. They are trained based on a 1000-object classification
task on the ImageNet dataset from the ImageNet Large Scale
Visual Recognition Challenge (13). One legitimate concern of
deploying neural networks in modeling is that interpretations
about the models may depend on the details of the neural
network architecture choices. To address this problem, we use
three different neural network architectures to model V4 neu-
rons: AlexNet (19), GoogleNet (21) and VGG (22). All three
networks have high classification performance on ImageNet
recognition challenge and are known to provide transferable
image features in other computer vision tasks such detection
and segmentation (14, 23). To vary the number of layers, we
use features from layer two, three and four of each network.
Later in this section, we show that using layer 1 and layers
higher than layer 4 leads to lower prediction accuracies or has
too large receptive fields not comparable with those of V4
neurons. Finally, on top of the CNN features, either Ridge
or Lasso regression is used to predict the (spike) firing rates.
As a result, we obtain 18 models for each neuron (3 nets ×
3 layers × 2 regression models). Next we provide detailed
prediction performance of these 18 models and compare them
to previous models in the literature before we propose the
stability-driven interpretation and visualization framework of
DeepTune based on a stable aggregation of all 18 models.

To determine quantitatively how well our models describe
the responses of each neuron, we test their performance on
the holdout test set. All our models were estimated using the
training data set. The correlation between the firing rates
predicted by the model and the actual average firing rates on
the test set is used as the prediction performance for all our
18 models. As a baseline for comparison, we also fit a V1-like
Gabor wavelet model (24, 25). The Gabor wavelet model first
extracts image features by applying a bank of linear Gabor
wavelet filters to the input image at varying orientations, spa-
tial frequencies and phases, followed by half-wave rectification

Fig. 2. CNN-based models outperform a V1-like Gabor wavelet model in terms of
noise-corrected correlation coefficient (16) as the prediction performance measure.
A. Histogram of noise-corrected correlation coefficients over the population of 71
V4 neurons for 4 models are shown, where the baseline model is a V1-like Gabor
wavelet model, Model 1 corresponds to AlexNet-Layer2, Model 2 AlexNet-Layer3,
Model 3 VGG-Layer2, and Model 4 GoogleNet-Layer2. Ridge regression is used in all
4 models. B. Scatter plots comparing noise-corrected correlation coefficients of 71
neurons between each pair among Models 1-4. Results for the other 14 models are
shown in SI Stability of Analysis, Figure S6. C. Average prediction performance across
71 neurons for models from all 7 layers of AlexNet with ridge regression. The model
based on AlexNet-Layer1 has the closest performance to that of the V1-like Gabor
wavelet model; while models from layers 2 to 5 have higher predictive performance. D.
Average prediction performance across 71 neurons for all 18 models. All 18 models
perform similarly in prediction and much better than the Gabor wavelet model and
the ridge-based models perform overall better than the lasso-based ones. Moreover,
higher layers and more complex CNNs seem to result in worse performance for lasso,
but not for ridge.

and a compressive nonlinearity, then regresses the responses
of each neuron using Ridge regression (17).

Our AlexNet-Layer2 (+Ridge) model has a average correla-
tion coefficient of 0.44 (or 0.52 for noise-corrected correlation
coefficient (16)) on the holdout test set. It achieves the state-
of-the-art prediction accuracy for V4 neurons on natural image
stimuli (8, 26). Comparing to (8), our average correlation co-
efficient is about 0.15 higher. As shown in Figure 2-D, all
of the 18 models have average correlation coefficients higher
than 0.42. For nearly all of the 71 V4 neurons, they are all
more accurate than the V1-like Gabor wavelet model (with an
average correlation coefficient 0.33). Due to space limitations,
we plot the results only for 4 models, which are all based on
AlexNet-Layer2, AlexNet-Layer3, VGG-Layer2, GoogleNet-
Layer2 (and ridge) in Figure 2-A and 2-B. The first two models
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are chosen in order to demonstrate stability of prediction re-
sults and interpretations across different CNN layers, while the
other two models are chosen to show stability across different
CNN architectures (See SI Stability of Analysis for a complete
comparison of the results from all 18 models). In Figure 2-C,
we compare the average prediction performance for models
from all 7 layers of AlexNet for 71 neurons. The model based
on AlexNet-Layer1 has similar performance to that of the
V1-like Gabor wavelet model; while models from layers 2 to 5
have much higher predictive performance (e.g. 0.44 for layer 2,
0.46 for layer 5). This justifies the recent finding (14) that the
intermediate layers of pre-trained CNNs (on large-scale image
classification tasks), like AlexNet, can extract more complex
features than the first layer and Gabor wavelets.

In order to be consistent with the literature (8, 26, 27), we
also report the proportion of explainable variance captured by
a model. It attempts to control for differences in noise levels
between experimental setups, individual neurons, and brain
regions. We estimate the explainable variance through the
noise-corrected correlation coefficient (16) using the repeated
data in the holdout set (see SI Stability of Analysis for more
information). Averaged over the 71 V4 neurons, the AlexNet-
Layer2 and ridge model captures 30.3% of the explainable
variance. This performance matches the 30% of computational
models for area V2 (20). The unexplained portion of the
response is very likely to have resulted from two factors: visual
tuning properties not described by the AlexNet-Layer2 (and
ridge) model and non-stimulus influences on the response.
The latter is unlikely to be removed completely given our
experimental setups (20). Note that the prediction task on
the natural images in this paper is substantially harder than
that on images with artificial objects overlaid in (10). Besides
this work (10) on simpler natural image stimuli, our CNN-
based models demonstrate a large improvement in prediction
performance over previous works with natural image stimuli
similar to ours (8, 26). In the next section, we take advantage
of this high prediction accuracy to better characterize of V4
tuning properties via DeepTune images.

DeepTune as a naturalistic visual representation of tuning. It
has long been challenging to fully characterize shape tuning
properties in area V4. There are two main difficulties: the
absence of highly predictive and biologically plausible compu-
tational models for the nonlinear response properties of V4 (3),
and the lack of systematic methods to generate relevant com-
plex natural stimuli to probe V4 neurons more efficiently.
Given the state-of-the-art predictive performance of our CNN-
based models, it is natural to ask whether these models could
also provide a better characterization of shape tuning (e.g.
angular, curvature or orientation tuning) or texture tuning
in area V4. However, unlike existing studies using relatively
simple Gabor wavelets (24, 25) or Fourier transform (8), com-
plex nonlinear CNN features in our models make it extremely
challenging to consistently interpret our models.

Inspired by computer vision advances in visualizing
CNNs (28, 29), we introduce DeepTune images as a natu-
ralistic visual representation of tuning for a V4 neuron. The
DeepTune images are made of a collection of reconstructed
images that jointly represent the shape tuning properties of a
neuron. For each neuron and for each given model, a Deep-
Tune image (or preferred DeepTune image) is obtained by
optimizing over the input image space to maximize a regular-

ized model output (predicted neuron response). Starting from
a random image (e.g. white noise image with zero mean and
fixed small variance), we use the gradient ascent method to
gradually increase the model output until convergence. For-
mally, given a fixed predictive model at a particular time lag
(the single lag time that causes best prediction performance
in a 10% validation set split of the training set) f : Rs×s 7→ R,
we seek an input image z ∈ Rs×s that minimizes the following
objective function:

−f(z) + λpRp(z) + λTVRTV(z).

The regularization terms are included to capture prior infor-
mation about natural images. That is, the optimization search
is constrained to be close to the set of smooth and naturalistic
images (29). The specific regularization choices above are
motivated by image denoising techniques (30) and by natural
image statistics (31). The first regularizer Rp (the `p-norm of
a vectorized image pixels) encourages the intensity of pixels to
stay small. By choosing a large p (p = 6 in our analysis), this
regularizer prevents the solution image from taking extremely
large pixel values. The second regularizer RTV controls the
total variation norm of an image. It encourages the image
to be smooth and removes excessive high-frequency details
(see SI Methods for more information).

The collection of DeepTune images is constructed from all
18 predictive models. In addition, we verify that 10 indepen-
dent random initializations of starting images do not change
the output much (see SI Stability of Analysis). Similarly, an
inhibitory DeepTune is obtained by minimizing instead of
maximizing the model output. We note that the DeepTune
images differ from the traditional receptive fields in neuro-
physiology (24, 32) in two ways: multiple images are used to
describe tuning properties of a single neuron; they are more
naturalistic representations of tuning with a higher resolution.

Figure 3-A shows the DeepTune images from 4 of our 18
models built for Neuron 1. We visually observe that these
DeepTune images share a stable curvature pattern with edges
forming an angle of nearly 90 degrees. The rest 14 DeepTune
images produced from the other 14 models differ slightly, but
the main curvature pattern remains relatively stable (see SI
Stability of Analysis). That is, the curvature angle stays close
to 90 degrees and the spatial location of the curvature pat-
tern remains at left side of the image. To further quantify
the curvature angle and spatial frequency, we compare the
power spectral densities (PSD) of these DeepTune images in
Figure 3-B. All four DeepTune images share a strong and
stable frequency component in the range of 45 to 135 degrees
with spatial frequencies of 2 to 5 cycles per receptive field
(green). Note that the high frequency components from the
Model-4 DeepTune image are not consistent with the other
three models. Especially, GoogleNet-Layer2 model has high
frequency components that are not present in three other
models. Therefore these components likely reflect noise and
should be discounted. In Figure 3-C, we visualize the spectral
receptive field (SRF) model (8) for Neuron 1. The SRF visual-
ization shows the frequency components of the stimulus image
selected by SRF model. The color map (red-blue) is chosen
to be different from that of the DeepTune Fourier transform
(green-pink). The color map difference serves a reminder of
the difference between PSD and SRF. As observed from the
DeepTune image PSD, the SRF model also shows that Neuron
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DRAFTFig. 3. DeepTune images from four of our 18 models built for Neuron 1. A. DeepTune images based on Models 1-4 for Neuron 1. These images share a visually stable
curvature pattern with edges forming an approximately ninety-degree angle. B. Power spectral densities (PSDs) of the DeepTune images in polar coordinates. Through the
PSDs, all four DeepTune images share a strong and stable frequency component in the range of 45 to 135 degrees with spatial frequency of 2 to 5 cycles per receptive field
(the green color). C. Visualization of spectral receptive field (SRF) (8) model for Neuron 1. The SRF visualization emphasizes in red the frequency components of the stimulus
image selected by the SRF model. The pattern selectivity according to SRF is consistent with the stable part of the PSDs of DeepTune images (highlighted in red circles). D.
Images from training set with the highest responses for Neuron 1. Similar curvature patterns to the DeepTune visualization are visible in these images. E. The measured and
predicted (spike) firing rates in the test set from Models 1-4 as well as the SRF model for Neuron 1. Images from the test set with the highest responses are visualized on top of
the corresponding spike rate. Similar curvature patterns are visible in these images. Correlation coefficients between the measured and predicted firing rates are shown in the
right panel. All four models outperform the SRF model. F. The consensus DeepTune image for Neuron 1. Both excitatory, inhibitory DeepTune images and the corresponding
PSDs are shown. The excitatory pattern based on the consensus DeepTune exhibits the curvature contour that is similar to those from the four models in panel A. The inhibitory
pattern visually consists of lines orthogonal to the preferred curvature contour, confirmed via PSD visualization on the right. G. Each box-plot corresponds to a CNN-based
model among the 18 models and is based on 71 raw-pixel correlation coefficients. Each such coefficient corresponds to a neuron and is calculated between the consensus
DeepTune image and a DeepTune image from that model and for that neuron. DeepTune images from AlexNet-Layer2 and GoogleNet-Layer 3 have the highest similarity on
average to the consensus DeepTune image.

1 exhibits a strong preference to the frequency component in
the range of 45 to 135 degrees with spatial frequency of 2 to 5
cycles per receptive field. In addition to DeepTune and SRF,
this curvature tuning is further supported by the curvature
patterns in the images from training and test sets with the
highest responses for Neuron 1 (Figure 3-D and E). Figure 3-E
illustrates the measured and predicted firing rates in test set
from the 4 models as well as the predicted firing rates from
the SRF model. For this Neuron 1, our 4 models have similar
prediction accuracies (correlations on the holdout set between
0.61 to 0.64), while the SRF model has difficulty capturing
the peak firing rates as seen in the lower plot of Figure 3-E,
with a corresponding correlation of 0.42.

In addition to the visual comparison of 18 distinct Deep-
Tune images generated from 18 models, we introduce consensus
DeepTune to capture in a single image the stable patterns
across 18 models. The consensus DeepTune image is obtained
via a similar optimization scheme as in the original DeepTune
optimization for a single model, but with an aggregation of
gradient information from all 18 models. The aggregated

gradient maintains the stable components in the gradients
and discounts the unstable components (more details in SI
Methods). Both excitatory and inhibitory consensus DeepTune
images for Neuron 1 are shown in Figure 3-F. The excitatory
consensus DeepTune (Figure 3-F) exhibits curvature contour
patterns that visually matches all 4 models (Figure 3-A). The
power spectral density (PSD) to the right of the consensus
DeepTune image in Figure 3-F similarly matches the individual
models. This PSD displays strong frequency components in
the range of 45 to 135 degrees with spatial frequencies of 2 to
5 cycles per receptive field. On the other hand, the inhibitory
consensus DeepTune consists of lines orthogonal to the cur-
vature contour (see SI Stability of Analysis for comparison
with inhibitory DeepTune images from all 18 models). Some
blobs are also visible in the inhibitory consensus DeepTune
image, suggesting that the response of Neuron 1 is attenu-
ated by blob-like texture patterns. This is further supported
by observing that the inhibitory PSD contains strong high
frequency components on the top center.

The consensus DeepTune image captures the stable com-
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ponents of DeepTune images across our 18 models. It can be
visually observed that the DeepTune images from a number
of individual models are very similar to the Consensus Deep-
Tune (see SI Stability of Analysis, Figure S8 ). To quantify
this similarity, we compute the Pearson correlation coefficient
between pixel values of the consensus DeepTune and those
of each DeepTune image. Figure 3-G visualizes boxplots of
these correlation coefficients. Each boxplot corresponds to
one of the 18 models and shows the distribution of 71 cor-
relation coefficients for all 71 neurons for this model. The
median correlations for all of the models are considerably high.
The highest median correlation is 0.83 which is achieved by
AlexNet-Layer2 and GoogleNet-Layer3 with ridge regression.
Models with lasso tend to have lower similarities to the con-
sensus DeepTune. Due to space limitations, in the subsequent
sections we present by default the consensus DeepTune image
as a stable representation of a V4 neuron’s tuning property.
Although a single consensus DeepTune image seems to be
sufficient, the stability analysis across 18 DeepTune images are
necessary to determine the spatial locations of the stable parts.
This is to ensure that we identify only the stable locations of
the consensus DeepTune image to be interpreted.

Model-selected CNN features highlight receptive fields. The
DeepTune images described in the previous section treated the
CNN-based model as an end-to-end network. In this section,
we show that analyzing the intermediate stages of a CNN-
based model for a neuron can provide further information.
The regression weights and the CNN features are of main
interest. This analysis not only provides an independent and
alternative interpretation of V4 neurons, but also allows us
to compare our results to previously studied spatial receptive
fields of V4 neurons.

Taking AlexNet-Layer2 model as an example, we examine
its regression weights (see SI Stability of Analysis, Figure S12
for visualization of weights from other models). Regression
weights with large magnitudes indicate high sensitivity of the
neuron to particular image features. The AlexNet-Layer2
features are of dimension 256× 13× 13. They consist of 256
different convolutional filters that are spatially located on a
grid of size 13×13. The corresponding regression weights at one
time lag is of the same dimension. We examine the regression
weights by asking the following two questions: where on the
image are the regression weights with the largest magnitudes?
What kinds of convolutional filters contribute the most to the
prediction performance?

To answer the first question, we define an average regres-
sion weight map as the sum-of-squares pooling of regression
weights on the CNN features. It is defined across the different
convolutional filters and the time lags at each location on the
13× 13 spatial grid. Formally, for each neuron, let β̂mijk be
the regression weight for filter m at spatial location (i, j) and
lag k. Then the average regression weight map Φ ∈ R13×13 is
defined as follows:

Φij =
256∑

m=1

k∑
k=1

β̂
2
mijk.

Figure 4-A shows the average regression weight map from
the AlexNet-Layer2 model for 4 neurons. On the 13× 13 grid
map, lighter pixel color indicates higher weight map value.
Maps from other models share stable shape and location (see

SI Stability of Analysis, Figure S11 for a comparison across
models). For each neuron, the average regression weight map
presents an estimate for the spatial receptive field. Maps
for V4 neurons exhibit diverse shapes. For example, the
receptive fields for Neurons 1 and 2 have round shapes, while
those for neurons 3 and 4 form straight or curved band shapes.
These CNN-based spatial receptive fields provide an alternative
to (34) for showing diversity in the size and shape of the
receptive fields of V4 neurons. These regression weight maps
are also indicative of the regions where DeepTune images
across 18 models share stable patterns. Figure 4-B displays
the DeepTune images from the AlexNet-Layer2 model for
the 4 neurons, along with the consensus DeepTune images in
Figure 4-C. The corresponding inhibitory DeepTune image and
consensus inhibitory DeepTune image are shown in Figure 4-D
and E respectively. Looking at the patterns of the DeepTune
images, Neuron 1 is tuned to the curvature-contour shapes with
edges forming an approximately ninety-degree angle. Neuron
2 is tuned to blob-like patterns and textures. Neuron 3 is
selective to curvature patterns with a strong diagonal line
preference and Neuron 4 is tuned to corner-like shapes with
edges forming ninety-degree angles. The tuning patterns shown
via DeepTune are consistent with receptive field shapes shown
in regression weight maps.

The second question is: which types of convolutional filters
contribute the most to the prediction performance? To address
this question, we quantify the importance of each convolutional
filter by `2 pooling of the regression weights for a convolutional
filter across spatial locations. Formally, for each neuron, the
filter importance Im of m-th convolutional filter is defined as
follows,

Im =
13∑

i=1

13∑
j=1

k∑
k=1

β̂
2
mijk,

where β̂mijk is defined as before. This filter importance index
provides an independent view of neuron shape tuning through
the most and the least important filters. To interpret the
filter importance, a visualization of each convolutional filter in
CNN is required. To this end, we adopt the filter visualization
technique introduced by (28). For each filter, we show the 9
top image patches from the ImageNet training set that have
the highest filter responses (see SI Methods for more details).
These 9 top image patches are representative of what this
convolutional filter is computing (28, 33). Taking Neuron 1 as
an example, Figure 4-F and G show the top and bottom two
filters among 256 filters in AlexNet-Layer2 model ranked by
the filter importance index, Im.

For each neuron, we observe that the top two filters capture
essential image components corresponding to the tuning pat-
terns shown in the DeepTune images. These tuning patterns
are long curvatures for Neuron 1, blob-like patterns for Neu-
ron 2, diagonal lines for Neuron 3, and corner-like shapes for
Neuron 4. Comparing to the DeepTune images (Figure 4-B-C-
D-E), the most important and least important CNN-features
(Figure 4-C-H-I) provide an alternative interpretation of the
excitatory and inhibitory tuning property of V4 neurons, re-
spectively. Figure 4 shows that these two views (Im based and
DeepTune) are visually consistent.

The wide variety of shape and texture tuning in V4. So far we
have demonstrated that V4 neurons can be selective to both
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DRAFT
Fig. 4. For Neurons 1-4, a comparison of excitatory and inhibitory DeepTune images, average regression weight maps and selected CNN features. A. Average regression
weight map based on the AlexNet-Layer2 model. For each neuron, the average regression weight map also exhibits stable patterns across models (see Stability of Analysis)
and it highlights the receptive field of a neuron. B. Excitatory DeepTune images from the AlexNet-Layer2 Model. Neuron 1 is tuned to the curvature-contour shapes with edges
forming an approximately ninety-degree angle. Neuron 2 is selective for blob-like patterns and textures. A DeepTune image for Neuron 3 shows selectivity to curvature patterns
with a strong diagonal line preference. Neuron 4 is tuned to corner-like shapes with edges forming ninety-degree angles. The rest of the 17 models show consistent patterns as
shown in other DeepTune images (see SI Stability of Analysis, Figure S9). C. Excitatory consensus DeepTune images based on all 18 models. D. Inhibitatory DeepTune
images from the AlexNet-Layer2 Model. E. Inhibitory consensus DeepTune images based on all 18 models. H. Top two excitatory CNN filters based on the filter importance
index. To visualize a convolutional filter from a CNN, the 9 top image patches are presented from the ImageNet training set that have the highest filter responses. These 9 top
image patches are representative of what this convolutional filter is computing (28, 33). The top two selected CNN filters support the findings based on DeepTune images. For
example, Neuron 1 is tuned for curved-contour patterns according to DeepTune images and its top CNN filters are those that activate on curvatures of similar shapes. Neuron
2 is selective for blob patterns and the top CNN filters activate respectively on blob pattern or pieces of a blob pattern. I. Top two inhibitory CNN filters based on the filter
importance index.

shapes (e.g. contour or curvature patterns) and textures. The
finding that V4 are tuned to both shapes and textures agrees
with previous studies using synthetic stimuli: on the one hand,
V4 neurons are shown to be tuned to orientation and spatial
frequency of edges and linear sinusoidal gratings (35), non-
Cartesian gratings (4, 6) and curvature of contours (5, 7); on
the other hand, V4 is found to play a major role in processing
textural information (36–38). In order to further understand
area V4 as a population of neurons, we use DeepTune as a
new tool to investigate proportions of V4 neurons that are
tuned to shapes, to textures, and to other patterns of stimuli.

Based on visual inspections of their consensus DeepTune im-
ages, we manually clustered our 71 neurons into five categories:
two texture categories (blob-like and corner-like patterns), one
for curved contours, one for lines and a final category for
complex patterns. Figure 5-A is the count histogram of these
five categories and Figure 5-B displays DeepTune images for
three example neurons in each category with high correlation
coefficients (> 0.4). This visualization again confirms that
both texture-tuned and contour-tuned neurons are present in
area V4. In fact, among the 71 neurons considered in this
study, about 40% of them are selective to textures and 30%
of them prefer contour shapes. A finer manual categorization
shows that among the ones selective to textures, half are tuned
to blob-like patterns and the other half prefer corner-like pat-
terns. Contour-selective neurons show preferences to either
curvatures or straight lines like some typical V1 neurons but
with larger receptive fields. The number of neurons selective
to curved contours is twice of that selective to straight lines.
We have also included in the last category the neurons tuned

for complex patterns that are hard to describe in language
and do not fall into previous categories. By displaying neuron
tuning in a concrete and naturalistic manner, the DeepTune
images extends the results in previous studies on V4 neuron
selectivities (6, 39).

V4 curvature tuning to a full range of separation angles. It is
suggested by Roe et al. (3) that diverse curvature tuning in
V4 provides an efficient way to encode shapes. However, it is
not yet clear that how different types of curvature tunings are
distributed in the V4 population. Previously, artificial curva-
ture stimuli have been used to probe the different angle tuning
properties in area V4 (5, 7). These stimuli are constructed by
joining two oriented line segments in a sharp corner or curve.
These studies highlight the presence of bimodal orientation
tuning with various separation angles. The preferred separa-
tion angle is defined in (5, 8) as the angle between the two most
preferred oriented line segments passing through the center.
The SRF analysis (8) also confirm bimodal orientation tuning
in V4 by showing the presence of neurons tuned sharp corners.
As for the distribution of different angles, Carson et al. (40)
observed that not all curvatures are equally represented. They
use sparse modeling of object coding to show that the strong
representation of acute curvatures across the neural popula-
tion. In this section, we investigate whether DeepTune images
can concretize previous discoveries and provide visualization
of V4 neurons tuned to different separation angles.

By visually inspecting the consensus DeepTune images of 71
V4 neurons, we first identified the 38 neurons that are tuned
to curved contours, corner-like shapes and lines. Then we
manually clustered these 38 neurons into four categories based
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Fig. 5. Diversity of tuning among 71 V4 neurons. A. Neurons are manually categorized
into five categories based on their DeepTune images. More than 40% of the neurons
are selective to texture, half of which prefer blob-like textures and the other half
prefer corner-like textures. About 30% of the neurons exhibit contour patterns, both
curvature and straight lines. Neurons selective to curvatures are twice as the ones
selective to straight lines. The rest of the neurons have selectivities to visually complex
patterns. B. Examples of consensus DeepTune images for three neurons from each
of the five categories.

on their separation angles of their curves (45◦, 90◦, 135◦, 180◦).
Figure 6-A shows a count histogram of (excitatory) separation
angle of the 71 V4 neurons. We observe that there is a strong
presence of neurons with curvature tuning at less or equal
to 90◦ separation angles (18 out of 71 neurons). Another
15 neurons are selective to blob-like textures that does not
correspond to any particular angle. There are 18 neurons that
are not selective to any clear angle or blob-like patterns.

To further support the separation angles for V4 neurons
identified by looking at DeepTune images, we perform spectral
receptive field (SRF) analysis (8) on our data and compare
the angles identified by both analyses. In Figure 6-B and
C, for each neuron, we display in one column the consensus
DeepTune image and the SRF plot as in David et al. (8). The
horizontal axes of the SRF show the orientation tuning of
each neuron, with preferred component in red. In the SRF
plot, according to (8), the separation angle corresponds to
the difference between the top two orientation tuning peaks.
We observe that the separation angle from the SRF plot are
consistent with the ones from the DeepTune images. For
example, for the bottom left neuron, both DeepTune and SRF
show two orientation tuning peaks at about 70◦ and 120◦. To
summarize, the diversity of excitatory curved-contour patterns
in fact matches the previous neurophysiological observations
in V4 (5, 34, 40). Furthermore, our DeepTune images offer
a concrete visualization of the bimodal orientation tuning

Fig. 6. Categorization of V4 neurons based on their separation angles. A. Neurons
are manually categorized into six groups. The first four groups contain neurons
tuned to patterns with separation angles of 45◦, 90◦, 135◦, and 180◦. These
patterns are either contours or textures. About 20% out of 71 neurons are tuned
to patterns with separation angles close to 90◦. Another 20% of the neurons are
selective to blob-like textures that do not correspond to any particular angle. The rest
of neurons are not selective to any clear angle or blob-like patterns. B. The consensus
DeepTune images for two example neurons in each of the first four categories. C.
The corresponding spectral receptive field (SRF) (David et al (8)) visualization. The
orientation tuning obtained via SRFs and consensus DeepTune images are consistent.
while SRF predicts a neuron has tuning for a particular angle through Fourier analysis,
the consensus DeepTune images offer concrete and detailed visualization of these
tunings. For example, for the bottom left neuron, both our method and SRF show an
orientation tunings of about 70◦ and 120◦.

properties of many V4 neurons, refining earlier analysis.

Suppressive tuning discovery via inhibitory DeepTune. It is
well known that V4 neurons have surround suppressive mech-
anisms (35, 41, 42) just like many other visual cortical ar-
eas (32, 43). Besides, recent study by Willmore et al. (20)
found evidences for the presence of strong suppressive tuning
to specific features in about half of the neurons in area V2. In
addition, they show that this type of suppressive tuning is not
caused merely by surround suppression and is not present in
area V1. In this section, we investigate whether such strong
suppressive tuning is also present in area V4.

To study the suppressive tuning in the area V4, we fit the
Berkeley Wavelet Transform (BWT) model (20) to our data.
The BWT-based model provides a nonlinear spatio-temporal
receptive field (STRF) for each neuron (more details in SI
Methods). We adopt the excitation index (EI) introduced
in (20) as:

EI = Σh+ − Σh−

Σh+ + Σh−

where h+ and h− are positive and negative weights respectively
assigned to the wavelets in each STRF.
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DRAFTFig. 7. Neurons in the primate cortical area V4 exhibit suppressive tuning. A. His-
togram of BWT excitation index for 71 V4 neurons. 41% of the neurons show strong
suppressive tuning. The median of excitation index for V4 neurons is 0.10. B. The
excitatory and inhibitory DeepTune images for three neurons identified as suppressive
by the BWT model. The neuron excitation index and response of the model to each
DeepTune image is illustrated in the same panel. The neurons with suppressive
tuning have much clearer suppressive DeepTune images than those without. ŷ is
the predicted model response obtained by feeding the DeepTune image through
AlexNet-Layer2 model.

The BWT-based model has an average prediction correla-
tion coefficient 0.33 for the 71 V4 neurons in the holdout test
set. It is about 0.09 lower than the worst among 18 CNN-based
models. While this model does not fully explain the non-linear
property of V4 neurons, its accuracy is comparable to that
of the same BWT model for V2 neurons (average correlation
coefficient of 0.30) (20). Figure 7-A shows the histogram of
excitation index for 71 V4 neurons. 41% of the neurons in V4
show suppressive tuning. The median of the excitation index
for V4 neurons is 0.10. While the portion of neurons with
suppressive tuning is 9% lower compared to that in V2, it is
29% higher than that in cortical area V1 (20).

Figure 7-B presents the excitatory and inhibitory consensus
DeepTune images for three neurons identified as suppressive
neurons according to the BWT model (on the left side of
the histogram). The corresponding excitation indexes are
shown below the neuron names. Recall that the excitatory
DeepTune images are obtained via maximizing the model
response (with appropriate regularization), while the inhibitory
ones are obtained via minimizing the model response (with
appropriate regularization). The neuron excitation index and
response of the model to each DeepTune image are shown
in the same panel. For example, ŷ = 0.54 means that the

model predicted a firing rate of 0.54 spikes per sampling
period (16.7ms). The DeepTune images provide a concrete
visualization of the suppressive tuning in V4: The excitatory
DeepTune images of these neurons are weak and/or blurry,
while the inhibitory DeepTune images show sharper patterns.
In the case of Neuron 43, while the excitatory DeepTune
has blurry patterns, the inhibitory DeepTune exhibits a clear
tuning to ninety-degree corner shapes in the right hand side of
visual field. This means that a ninety-degree corner shape is
likely to drive this neuron firing rates close to zero. Moreover,
looking at the other inhibitory DeepTune images, both of
neurons 27 and 26 have strong suppressive tuning to complex
shapes with mid-range frequency.

Discussion

Prior work has demonstrated the power of deep CNNs in
building accurate predictive models of neural responses in
V4 (10, 11). In this work, we have similarly demonstrated that
pre-trained CNNs give state-of-the-art results in modeling V4
neuron responses to natural images. We additionally have
presented the DeepTune framework for eliciting stable visual-
izations and interpretations of these models. The generated
visualizations are stable over modeling choices and randomness
in the model training procedure.

Flexible visualization of optimal stimuli. The idea of computa-
tionally optimizing input stimulus to discover neuron tuning
properties dates back to Carlson et al. (40). The evolution-
ary sampling method was used to optimize for the stimulus
that causes the highest number of spikes. This work greatly
expanded the search space of tuning patterns compared to pre-
vious methods that were based on handcrafted stimuli (4, 7).
However, the evolutionary sampling method in (40) is con-
strained on limited concatenated Bezier splines. It can gen-
erate spline-based contours easily, but has difficulty for gen-
erating fine-scale texture stimuli. Our DeepTune images are
generated from a regularized optimization directly over the
input pixel values, and hence have an even larger search space
that allows for more complex and naturalistic tuning patterns.

The resulting DeepTune population analysis demonstrates
that V4 neurons are tuned to a huge variety of shapes as well
as textures in different orientations. It also reveals that the
tuning properties of many V4 neurons cannot be explained
by simple edge and corner patterns. We see in Figure 7, for
example, that even the stable part of the DeepTune images
is difficult to describe in such simple terms. This suggests
that tuning in area V4 is much more complex than that of
V1 and than what can be described by handcrafted grating
stimuli. Studies based on synthetic stimuli (4, 6, 7) may lack
the expressive power to represent shapes of many V4 neuron
receptive fields. Predictive modeling approaches as SRF (8)
may not be sufficient to capture the complex tuning properties
either. It provides only summary statistics such as spatial
frequency and orientation about the receptive fields.

Distinctions in curvature selection revealed by DeepTune. Ex-
amining the DeepTune images of Neuron 3 and 4 in Figure 4,
we see that both neurons are tuned to curvatures with similar
edge orientations (two edge directions with a separation angle
of ninety degrees). However, they have very distinct shape
tuning properties apart from the orientation tuning summary
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statistics. Neuron 3 prefers a curvature-contour pattern with
a ninety-degree angle and long edges. Neuron 4 prefers a
corner-like repeated texture. This agrees with the study by
Nandy et al. (34). It is suggested that the curvature selection
of V4 neurons could arise for two reasons: systematic varia-
tion in fine-scale orientation tuning across spatial locations
(like Neuron 3), and local tuning heterogeneity (like Neuron
4). Note that this type of refined result would be difficult to
obtain via methods based on global Fourier analysis such as
spectral receptive field (SRF) (8, 26). The 2D Fourier trans-
form is spatial translation-invariant, meaning it is difficult to
distinguish between Neuron 3 and Neuron 4 via SRF analysis.

DeepTune for future neurophysiology experiments. The Deep-
Tune images for each V4 neuron are concrete and naturalistic.
They are visually very similar to many input image stimuli.
In other words, the DeepTune images are ready to be fed back
to neurons as stimuli for confirmation or refutation of their
characterizations of tuning properties in a closed experimental
loop. Consequently, DeepTune images hold the promise to
speed up the efficiency of data collection in V4 and other brain
areas.

Materials and Methods

Electrophysiology. Extracellular recordings were made from well
isolated neurons in parafoveal areas V4 (71 neural sites) of three
awake, behaving male rhesus macaques (Macaca mulatta). Surgi-
cal procedures were conducted under appropriate anesthesia using
standard sterile techniques (44). Areas V4 were located by exterior
cranial landmarks and/or direct visualization of the lunate sulcus,
and location was confirmed by comparing receptive field properties
and response latencies to those reported previously (45, 46). All
procedures were done in accordance with National Institutes of
Health guidelines. See SI Data Collection for additional details.

Software Packages. The regularized linear regression analysis is per-
formed using the SPAMS package (47). The neural network feature
extraction and the DeepTune framework are implemented using the
Caffe package (48). The pre-trained neural network architectures
are from the Model Zoo of the Caffe package. See SI Methods for
additional details.
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