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2 Action Potentials - Hodgkin and Huxley build

on Boltzman, Kirchoff, Nernst and Planck

The experiments of Hill, Katz, Hodgkin, and Huxley laid out the ionic basis of spike
generation. We have already considered some of the fundamental physics that goes
into this:

• Lipid membranes are the means to form cellular compartments. This, by
definition, provides a means to develop and maintain concentration differences.
The voltage drop is confined to the membrane.

• Electrochemistry, via ionic concentration gradients, is the basis for potentials
across a cell membrane. The alternative - the movement of charge that is
confined to a transmembrane protein - is not observed.

• Pumps for Na+ and K+, with Cl− as the dominant counter ion, are the basis
for the concentration gradient. The dominant pump is Na- K-ATPase, aka
the Na+/K+ exchanger. Suffice it to say that the pump is sufficiently slow so
that it, and other pumps, do not compete with the spike generation. On the
other hand, the pump rate is sufficiently high so that the ion concentration
gradients are maintained for reasonable spike rates.

• Conservation of current, via Kirchoff’s Law, as a means to describe cables is
used as the basis for a description of the transmembrane voltages.

• Ion permeabilities that can switch with voltage according to a Boltzman rela-
tion. We considered an extreme version of this relation in week 1.

At the time of the pioneering experiments, the field of electrical circuits and elec-
trochemistry were mature, so there was a theoretical framework in place for the
planning of experiments and interpretations. Yet our presentation will have more
structure built into it than is suggested by the historical record.

2.1 Review of Nernst-Planck I-V Relation

In the presence of a weak electric field the motion of ions is limited by the collisions
so that the velocity, as opposed to acceleration, is proportional to the force. We
have

~vD(x, t) = µ~E(x, t) (2.2)

= −µ∂V (x, t)

∂x
x̂
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where ~vD(x, t) is known as the drift velocity, albeit we take the one-dimensional case
at present, and µ is the mobility. We can now calculate the flux due to the electric
field as

~JD(x, t) = [Ion](x, t) ~vD(x, t) (2.3)

= µ[Ion](x, t) ~E

= −µ[Ion](x, t)
∂ V (x, t)

∂x
x̂.

The total flux includes diffusion down a concentration gradient as well as the
electric force. For simplicity, we drop vector nationa as all movement is along the
x̂-axis. Then

J(x, t) = −D∂[Ion](x, t)

∂x
− µ[Ion](x, t)

∂V (x, t)

∂x
. (2.4)

At equilibrium, J(x, t) = 0. Then∫ V (x)

V (x′)
dV = −D

µ

∫ x

x′

d[Ion](x)

[Ion](x)
(2.5)

and thus

∆V = V (x)− V (x′) = −D
µ
ln

(
[Ion](x)

[Ion](x′)

)
. (2.6)

We previously showed that this equilibrium potential is just given by the Nernst
formula, i.e.,

∆V = VNernst = −kBT
ze

ln

(
[Ion](x)

[Ion](x′)

)
(2.7)

where include the possibility of a polyvalent ion and write ze for the charge. Thus

µ = D
ze

kBT
. (2.8)

We can now put all of the formalism together to get a final equation for the flux in
terms of a single transport coefficient, D, i.e,

J(x, t) = −D
(
∂[Ion](x, t)

∂x
+

ze

kBT
[Ion](x, t)

∂V (x, t)

∂x

)
. (2.9)

We focus on the case of current through a pore of cross sectional area A that
spans a membrane of thickness L. We further assume that the electric field is uniform
(not true, but it allows us to make some uncluttered progress) and that we are in
steady state, so that V (x) = ∆V x

L
. We have an equation for the electrical current,

I, i.e.,

I = −zeJ(x)A (2.10)

= zeDA

(
d[Ion](x)

dx
+

ze

kBT
[Ion](x)

∆V

L

)
.
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This equation is in the form of d[Ion](x)
dx

+ constant × [Ion](x) = another constant,
which we can solve directly to obtain

I = ze
DA

L

zeV

kBT

[ion]in − [ion]oute
− zeV

kBT

1− e−
zeV
kBT

. (2.11)

In the limit that V >> 0 we see that I → (ze)2[ion]in
DA
L

1
kBT

V and in the limit In

the limit that V << 0 we see that I → (ze)2[ion]out
DA
L

1
kBT

V . Thus in the limits of
large and small voltages Ohm’s Law, i.e., I = GV , is obeyed and the conductance is
greater when the current flows from high concentration of ions to low concentrations
of ions. The I − V relation is often expressed in terms of the Nernst potential, i.e.,

I = ze
DA

L
[ion]in

zeV

kBT

1− [ion]out
[ion]in

e
− zeV

kBT

1− e−
eV

kBT

(2.12)

= ze
DA

L
[ion]in

zeV

kBT

1− e−
e(V−VNerst)

kBT

1− e−
zeV
kBT

and is known as the Nernst-Planck relation. The essential feature is that the I − V
curve is nonlinear for voltage changes on the order ofkBT

ze
≈ 25/z mV away from the

reversal potential.

2.2 Cable Equation with Active Currents

Let’s develop the framework for the physics and electrochemistry of the action po-
tential. This allows one to form a plan, and thus put the experiments in a context.
We start in the most general manner by adding active currents to the cable equation,
i.e.,

τ
∂V (x, t)

∂t
− λ2∂

2V (x, t)

∂x2
= − rm

2πa
Im(x, t) (2.13)

where τ is the time constant of the passive membrane, λ is the electrotonic length of
the passive membrane, a is the radius of the axon, and rm is the specific resistance of
the membrane, and Im(x, t) includes all membrane currents, i.e., active and passive..
The sign convention is that positive current flows out.

The expression for each of the currents Im(x, t) is given by the Nernst-Planck
relation, which properly accounts for the difference in conductance moving from
region of high charge density to that of low charge density, and vice versa. The
possible transient properties of the current are set by adding a temporal dependence
to D for each of the ions, and the possible switching of the current with voltage is
set by adding a voltage dependence to D for each of the ions, so that DNa+ =
DNa+(V, x, t), etc.

For changes in potential that are on the order of kBT
ze

away from the reversal
potential, the current is typically approximated by a linear relation using the high
concentration. For sodium, this relation is

IIon(x, t) ≈ gIon(V, x, t) [V (x, t)− VNerst] (2.14)
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with

gIon(V, x, t) = zeA

(
D(V, x, t)

t

)
Ion

ze

kBT
[Ion]out. (2.15)

The current through the conductance is then

Iion(V, x, t) = gion(V, x, t)× [V (x, t)− VNernst]. (2.16)

The total current, Im(x, t), incorporates both voltage dependent, i.e., gNa+(V, x, t)
and gK+(V, x, t) and voltage independent, i.e., gCl−(x), terms. In fact, by tradition
all the voltage independent terms are lumped and called gLeak(x). We write

τ
∂V (x, t)

∂t
= λ2

∂2V (x, t)

∂x2
− rmgNa+(V, x, t)

2πa
(V (x, t)− VNa+) (2.17)

− rmgK+(V, x, t)

2πa
(V (x, t)− VK+)− rmgleak(x)

2πa
(V (x, t)− Vleak)

− rm
2πa

Io(x, t).

where Io is externally inject current, including synaptic currents. The above ex-
pression is really quite general since all the voltage dependencies can be stuffed into
the voltage dependent conductances. Further, as we shall see, in many relevant
cases the channels conduct only over a narrow range of physiological voltages, so a
linear approximation is often not too unreasonable. Lastly, if addition ions become
relevant - did I hear Ca2+? - one can simply add the relevant terms to the cable
equation.

2.3 Functional Form of the Conductances

The business end is the form of the conductances gion(V, x, t), although in the labora-
tory one measures the current which is proportional to the product gion(V, t)[(V, x, t)−
VNernst]. The expectation is that the conductance is in the form of a a maximum
conductance, ḡ, times voltage and time dependent terms for the activation and inac-
tivation of channels, denoted by Pactivate(V, x, t) and Pinactivate(V, x, t), respectively.
Recall that all probabilities vary between 0 and 1 Thus

gIon(V, x, t) ≡ ḡIon × Pactivate(V, x, t)× Pinactivate(V, x, t). (2.18)

More generally, there may be multiple voltage sensors so the form can be generalized
to

gIon(V, x, t) ≡ ḡIon × [Pactivate(V, x, t) · · · P ′activate(V, x, t)] (2.19)

× [Pinactivate(V, x, t) · · · P ′inactivate(V, x, t)] .

Inactivation is just a term that tries to close rater than open a channel. In practice,
channels that have been identified to date have identical activating and identical
inactivating terms. For example, we will see that the sodium current is of the form
gNa+(V, x, t) = ḡNa+ × P 3

act(V, t)Pinact(V, x, t) .
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It is time for us to ignore, for now spatial variation. Hodgkin and Huxley did
this by placing a conductor down the center of the axon, a clever and essential idea
at the time. This means we ignore the λ2 term in the cable equation and for each
channel we can write

gIon(V, t) ≡ ḡIon × [Pact(V, t) · · · P ′act(V, t)]× [Pinact(V, t) · · · P ′inact(V, t)] . (2.20)

In general, the activation and inactivation terms are governed by a first order
equation that describes their dynamic. We have

P open
act (V, t) + P closed

act (V, t) = 1 (2.21)

and

dP open
act (V, t)

dt
= kopen(V )P closed

act (V, t)− kclosed(V )P open
act (V, t) (2.22)

= − [kopen(V ) + kclosed(V )]P open
act (V, t) + kopen(V ) (2.23)

= − [kopen(V ) + kclosed(V )]× [P open
act (V, t)− P open

act (V,∞)]

where P open
act (V,∞) is the steady value of the activation. Thus

dPact(V, t)

dt
= −kobs (Pact(V, t)− Pact(V,∞)) . (2.24)

where kobs(V ) = kopen(V ) + kclosed(V ). There are two inherently voltage dependent
terms, the steady state value and the observed time constant. We consider the
steady-state behavior and kinetics of a two-state system as a means to understand
and parameterize the basic physics of these terms . The idea is that a thermal
average or a population of two-state systems is a reasonable portrayal of ionic cur-
rents. In fact, the decomposition of macroscopic currents in terms of channels is a
justification for this view.

For sake of argument, lets say that the activation sensor works by having a dipole
interact with the transmembrane potential. Dipole is of the form ~p = q~d and the
dipole experiences a torque from the electric field in the membrane that results in
an energy

Energy = −~p · ~E = qd cosθ
∂V

∂x
≈
(
q
dcosθ

L

)
V (2.25)

≡ z′e V

where θ is the angle between the dipole and the normal to the membrane, and we
have lumped all factors into the charge z′e.

The steady state extent of activation to inactivation is given by the usual Boltz-
man relation

P open
act (V,∞)

P closed
act (V,∞)

= e
z′e(V−Vbias)

kBT (2.26)

where Vbias is the internal potential drop across the activation sensor. Thus

P open
act (V,∞) =

1

1 + e
− z′e(V−Vbias)

kBT

(2.27)
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and

P closed
act (V,∞) =

e
z′e(V−Vbias)

kBT

1 + e
− z′e(V−Vbias)

kBT

(2.28)

P open
act (V,∞) is in the form of the logisitic function.

We now come to the issue of the observed rate constant or the channel. In
general, from a classical view point, the rate is determined by the time it takes for
the dipole sensors to rearrange themselves in the activated versus inactivated state.
The rate-constants kopen(V ) and kclosed(V ), in the absence of an applied electric field,
i.e., V = 0, are of the form

kopen(0) = νe
−∆Go
kBT (2.29)

where ν is an attempt frequency to jump over the barrier and ∆Go is a barrier
height. Then

kclosed(0) = νe
−∆Go−z′eVbias

kBT (2.30)

= kopen(0)e
−z′eVbias

kBT

where ν is a molecular attempt frequency and clearly kinact(0) < kact(0) With
the addition of an electric field, the activation barrier is modified. The simplest
assumption is that the energy of the closed state is raise as much as that of the open
state is lowered. Thus

kopen(V ) = kopen(0)e
−z′eV
2kBT (2.31)

and

kclosed(V ) = kopen(0)e
−z′eVbias

kBT e
z′eV
2kBT . (2.32)

Thus

kobs(V ) = kopen(V ) + kclosed(V ) (2.33)

= kopen(0)

(
e
−z′eV
2kBT + e

−z′eVbias
kBT e

z′eV
2kBT

)

= kopen(0)e
−z′eVbias

2kBT

(
e
−z′e(V−Vbias)

2kBT + e
z′e(V−Vbias)

2kBT

)

= k′open(0) cosh

(
z′e(V − Vbias)

2kBT

)
.

This functional form has the shape of a bowl with a minimum at V = Vbias. Thus
the larger the magnitude of the voltage change, the faster the rate of the shorter the
opening time.

The bottom line is that the above forms for P open
act (V,∞) and kobs(0) provide a

formulation of the ionic basis for the action potentials. This framework includes the
observation that the peak of the time constants and the midpoint of the activation
functions occur at the same potential. As we shall see this is usually - but not always
- obeyed.
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2.4 The Consequence of Multiple Voltage Sensors

Real channels often have multiple voltage seniors as noted earlier. Ideally, these give
rise to active currents that are proportion to P open

act (V, t) to a power. What is the
consequence of this?

The first question concerns the steady state value [P open
act (V,∞)]N . We wish to

find the value of V where the slope, d[P open
act (V,∞)]N/dV is greatest, which means

calculating V for which d2[Pact(V,∞)]N/dV 2=0 and pluging this value back into the
equation for the slope.

First, a preliminary.

dP open
act (V,∞)

dV
=

d

 1

1+e
−

z′e(V−Vbias)
kBT


dV

(2.34)

=
z′e

kBT

e
− z′e

kBT(
1 + e

− z′e(V−Vbias)

kBT

)2

=
z′e

kBT
P open
act (V,∞) (1− P open

act (V,∞)) .

Then the derivative of [P open
act (V,∞)]N is

d[P open
act (V,∞)]N

dV
= N [P open

act (V,∞)]N−1
dP open

act (V,∞)

dV
(2.35)

= N
z′e

kBT
[Pact(V,∞)]N [1− P open

act (V,∞)]

and the second derivative of PN
act(V,∞) is

d2PN
act(V,∞)

dV 2
= N

(
z′e

kBT

)2

[P open
act (V,∞)]N [1− P open

act (V,∞)] [N − (N + 1)P open
act (V,∞)]

(2.36)
which has a zero at the finite voltage of

V = Vbias +
kBT

z′e
logN. (2.37)

Thus there is a shift in the inflection point of the opening probability as a weak
function of N .

The slope at the inflection becomes

d[P open
act (V,∞)]N

dV
=
(

N

1 +N

)N+1 z′e

kBT
(2.38)

which increases from
d[P open

act (V,∞)]N

dV
|N=1 =

1

4

z′e

kBT
(2.39)
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to the 4/e = 1.47-times larger asymptotic value of

d[P open
act (V,∞)]N

dV
|N→∞ =

1

e

z′e

kBT
. (2.40)

Essentially, the transition from closed to open takes place over the range kBT/z′e
4

to
kBT/z′e

e
, or 6 mV to 9 mV for z′ = 1.The slope becomes steeper as the dipole moment

increase, i.e., the slope is linear in the increase in z′. As z′ → ∞, the activation
curve P open

act (V,∞) tends to a step function.
Another effect of multiple voltage sensors is on the time dependence of channel

opening, whose onset is delayed and steeper for large values of N . To get a sense
of this, consider the approach to steady-state for [P open

act (V, t)]N ; at short times the
leading term is of order (kobst)

N , which increase slower than kobst.

2.5 Experimental Self-Consistency of the Hodgkin-Huxley
Model

From a formal point of view, the transmembrane voltage, V (x, t) and the activation
parameters for each current, P open

act (V, t), form the state variables for the the system.
For the Hodgkin-Huxley model there are four state variables total, while for models
of thalamic relay neurons the number of state variables is (presently) 13.

The actual decomposition of currents is done by blocking the membrane conduc-
tances to all but one channel and using a voltage clamp to measure Im versus V .
The block is done by pharmacological means or by ion substitution. Currently, the
measurements are best done by measuring ”tail” currents to avoid the contributions
of leakage currents. In any case, one arrives at measured currents for each ion that
can be used to parameterize P open

act (V, x,∞) and τobs(V, x) for that ion.
The Hodgkin-Huxley equations are functions of 4 variables.

• V (x, t) ← the transmembrane potential

• m(V, t) ← the activation function (Pact(V, t)) for Na+ current

• h(V, t) ← the inactivation function (a separate function, P ′inact(V, t) = 1 −
P ′act(V, t)) for Na+ current

• n(V, t) ← the activation function (P ′′act(V, t)) for K+ current

The exact fitting parameters are in standard texts and we will not show them. The
functional dependencies on V that we expect are clearly seen.

The dynamic equations are

τ
∂V (x, t)

∂t
= λ2

∂2V (x, t)

∂x2
− rmgNa+

2πa
m3(V )h(V ) (V − VNa+) (2.41)

− rmgKa+

2πa
n4(V ) (V − VK+)− rmgleak

2πa
(V − Vl) +

rm
2πa

Io.
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which has 10 independent biophysical parameters, i.e., a, τ , λ, rm, gNa+ , gK+ ,
gleak, VNa+ , VK+ , and Vleak as well as 3 (or more in principle) fitting parameters as
exponents on the activation and inactivation functions.

dh(V, t)

dt
=
h∞(V )− h(V, t)

τh(V )
(2.42)

dm(V, t)

dt
=
m∞(V )−m(V, t)

τm(V )
(2.43)

dn(V, t)

dt
=
n∞(V )− n(V, t)

τn(V )
(2.44)

where n∞(V ) ≡ n(V, t→∞) and the parameterization for each rate expression has
three fitting parameters, i.e., z′, Vb, τobs(0), for a total of 9 parameters.

These circuit equations, derived from current clamp data, were used to predict
the shape of the action potential (in both the space clamped and non-space clamped
case) and later the speed of propagation. The results showed self consistency about
the ionic currents and the voltage changes and the propagation speed.

To recap, the action potential results from an instability in the conductance
(negative conductance), such that the direction of the membrane current transiently
reverses (growth) in response to a perturbative current. Eventually, the conductance
saturates and recovers to a linear response. In both cases, the cell is leaky and the
effective time-constant is transiently very short, so that the width of the action
potential is small, less than one millisecond. Further, the current flow is localized
so that the voltage disturbance propagates as a wave.
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