
Winter 2019 PHYS 178/278, Homework 2
Due 11:59 PM on February 10th

Please submit your assignment as one “LastName, FirstName_PID_HW2.pdf” file via email (whsu@physics.ucsd.edu).
Welcome to use any software or programming language you are familiar for doing the simulation.

1 Two Dimensional Neuron1

In this problem we will study the dynamics of a neuron described by a membrane potential variable V and a recovery
variable W . The dynamics of the neuron are in general:

d

dt

(
V
W

)
=

(
V̇

Ẇ

)
=

(
F1 (V,W )
F2 (V,W )

)
. (1)

Assume that for all values of V and W :

∂F1 (V,W )

∂W
< 0,

∂F2 (V,W )

∂W
< 0,

∂F2 (V,W )

∂V
> 0.

An equilibrium point (V0,W0) is the point where V̇ = F1 (V0,W0) = 0 and Ẇ = F2 (V0,W0) = 0.

1.1 Suppose that at the equilibrium point ∂F1

∂V < 0. Show that the equilibrium is stable.

Nullclines are the lines where either V̇ or Ẇ are 0. If the nullclines intersect, that is an equilibrium point. We will
call the F1 = 0 line the “V nullcline” (because V̇ = 0 on that line) and the F2 = 0 line the “W nullcline”.

A specific model
We will work with Fitzhugh-Nagumo model of the form:

F1 (V,W ) = f (V )−W + I, where f (V ) = V − 1

3
V 3 (2)

F2 (V,W ) = φ (V − bW ) (3)

1.2 Plot the nullclines of the model (solve for W (V ) such that F1 or F2 are 0, see Fig. 1 for the the sketch)
with the parameters I = 3, b = 1/2. Note that the V nullcline has three “branches” and the W nullcline is monotonic.

1.3 Find parameters such that the equilibrium is in the middle branch of the V nullcline. Compute ∂F1

∂V at the
equilibrium and show that it is positive. Given your answer to 1.1, what does that say about the equilibrium point?

1.4 Now find two sets of parameters and plot the nullclines for each of them:

(a) One such that the equilibrium is in the middle branch of the V nullcline and the slope of the V
nullcline is smaller than the slope of the W nullcline at the equilibrium point.

(b) Another such that the equilibrium is in the middle branch of the V nullcline and the slope of the V
nullcline is greater than the slope of the W nullcline at the equilibrium point.

1Problem courtesy of Bard Ermentrout. A good resource that can help with some background is chapter 3 of Bard’s book: Mathe-
matical Foundations of Neuroscience. The eBook is available for free through http://roger.ucsd.edu/
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Figure 1: Sketch of V and W nullclines.

Use linear stability analysis to show that in the first case the equilibrium is a node and that in the
second case it is a saddle. Can you use the nullcline plots to explain this graphically?

1.5 Run the dynamics. Plot examples of spike trains and discuss the different regimes you identified
above.

2 Noise and “Balanced” Network
Assume that a neuron in a neural network receives both K excitatory and K inhibitory inputs from the presynaptic
neurons, each of which spikes (Sj = 1) with probability m and silences (Sj = 0) with probability 1−m. The total
input sending to the postsynaptic neuron is

µ =

K∑
j=1

WE
j SE

j +

K∑
J=1

W I
j S

I
j ,

where the weights, WE
j (K) and W I

j (K), depend on the number of connections K. We would like to explore
the relation between the mean 〈µ〉, the variance Var (µ) of total inputs and the number of presynaptic
connections (K) with numerical simulations, given two scenarios:
(1) A postsynaptic neuron receives purely excitatory inputs from K presynaptic neurons (WE

j 6= 0, W I
j = 0);

(2) A postsynaptic neuron receives both K excitatory and K inhibitory inputs (WE,I
j 6= 0).

2.1 Consider the case of purely K excitatory inputs (WE
j = 1

K , W I
j = 0),

µ =

K∑
j=1

WE
j SE

j =
1

K

K∑
j=1

SE
j .

To calculate the mean 〈µ〉 and the variance Var(µ) of the total input µ, firstly we need to generate K excitatory
inputs for one time step, and extend it to a sequence (i.e., multiple time steps) over the time duration T . Then,
we can calculate the average 〈µ〉 and the variance Var(µ) from this input sequence. Here are the steps for you to
follow:
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STEP 1: Generate K excitatory inputs occurring in one time step (dt) as an one-dimensional binary vector

SE =



SE
1

SE
2
...
...

SE
K

 =



0
1
0
0
...
1


Hint : use MATLAB command (rand(K, 1) <= m ∗ dt) to generate a K-by-1 column vector, where m ∗ dt is the
spiking probability of one time bin (dt). You can choose the spiking probability (m) between 0 < m ≤ 1.

STEP 2: Extend the K excitatory inputs (K-by-1) from one-time step to a sequence over a period of time T � dt
(ex: you may set dt = 1 and T = 10000). Hint : how many dt bins (n) are there in the time interval T? Find the
number of bins (n) and use (rand(K, n) <= m ∗ dt) to generate a K-by-n binary matrix. Each column represents
K inputs at each time step, while each row is the input sequence sending from one of the presynaptic neurons.

SE {t} =

1st

2nd

...
Kth


| | | |

SE (0) SE (dt) SE (2dt) · · · SE (T )

| | | |


K by n

Time stpes from 0 to T

STEP 3: From the K-by-n matrix, how would you get a total input µ received at each time step?
Hint : (1/K) ∗ sum(rand(K, n) <= m ∗ dt, 1) returns the sum of each column, i.e., an 1-by-n row vector.

STEP 4: Now you have input sequence µ (1-by-n row vector), you will be able to calculate the mean 〈µ〉 and
the variance Var (µ). Hint : Try to look up some built-in MATLAB functions for computing mean and variance.

STEP 5: Write a for-loop that calculate the mean 〈µ〉 and variance Var(µ) with different connections K = 200,
400, 600, 800, 1000, 1500, 2000, 3500, and 5000. For each K, you may want to run multiple trials and take the
average.

STEP 6: Plot 〈µ〉 vs K, and Var(µ) vs K. Compare each curve with zero (horizontal line y = 0, label it on the
plot would be helpful), and briefly describe the trend for each.

2.2 K excitatory and K inhibitory inputs (WE
j = −W I

j = 1
K ),

µ =
1

K

 K∑
j=1

SE
j −

K∑
j=1

SI
j

 .

Extend the simulation steps in 2.1, plot 〈µ〉 vs K and Var(µ) vs K for a case that a neuron receives both K
excitatory and K inhibitory inputs. Compare each curve with its own zero (horizontal line y = 0), and briefly
describe the trend for each.

2.3 K excitatory and K inhibitory inputs, with the weights WE
j = −W I

j = 1√
K

,

µ =
1√
K

 K∑
j=1

SE
j −

K∑
j=1

SI
j

 .

Extend the simulation steps in 2.1, plot 〈µ〉 vs K and Var(µ) vs K for a case that a neuron receives both K
excitatory and K inhibitory inputs. Compare each curve with its own zero (horizontal line y = 0), briefly describe
the trend for each, and compare them with the results you got from 2.1 and 2.2.
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