
!"#

µ(t)

$"# %

$"& %

$'# %

$(# %

$(& %

$'& %

!(#

!'#

!(&

!"&

!'&

) % =+
,-"

(
!,#$,# % ++

,-"

(
!,&$,& % , $,&,# = 0, 1 (Binary)

Explore the mean) and Var) as a function
of number of inputs, ;.
• Prob. 2.1 !,# = "

(, !,& = 0
• Prob. 2.2 !,# = "

(, !,& = <"
(

• Prob. 2.3 !,# = "
(, !,& = <"

(

HW2 Prob. 2 Noise and “Balanced” Network

W19 PHYS 178/278 Prob. 2 Noise and 'Balanced' Network

MATLAB code demo, Feb. 6th 2019

You are welcome to use any programming language you are familier with!

Please use "Run Section" when you read and run the code step-by-step.

You need to fill in the missing section for Prob. 2.2 and Prob 2.3.

Contents

Step-by-step demo of Prob 2.1

Summary of STEP 1 to 4

STEP 5 & 6

Prob 2.2 Excitatory & Inhibitory Synaptic Input, with the weight (1/K)

Prob 2.3 Excitatory & Inhibitory Synaptic Input, with weight 1/sqrt(K)

Step-by-step demo of Prob 2.1

STEP 1

Generate K excitatory inputs occurring in one time step (dt) as a one-dimensional binary vector.

Hint: use MATLAB command (rand(K,1) <= m*dt) to generate a K-by-1 column
vector, where m*dt is the spiking probability of one time bin (dt).
You can choose the spiking probability (m) between 0 < m < 1.

Spiking rate = Probability to have a spike per unit of time. You may choose any m between 0 < m < 1.

m = 0.2;

Number of presynatic connection. Let's set K = 20 for testing.

K = 20;

The time for each bin.

dt = 1;

K-by-1 column vector

rand(K, 1) <= m*dt

% which is equivalent to: rand(K, 1) >= (1-m)*dt

ans =

 20×1 logical array

 0
 1
 1
 0
 1
 0
 0
 0
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0

Q: Why does this code mean?

Type the following two lines in the Command Window and see what it returns

v = rand(10, 1)

v <= m*dt

STEP 2

Extend the K excitatory inputs (K-by-1) from one-time step to a sequence over a period of time T >> dt (ex: you may set dt = 1
and T = 10000).

Hint: how many dt bins (n) are there in the time interval T?
Find the number of bins (n) and use (rand(K,n) <= m*dt) to generate a
binary K-by-n matrix. Each column represents K inputs at each time step,
while each row is the input sequence sending from one of the presynaptic
neurons.

% Set the total time T.
% Let's try a small time period fist. You are going to set T = 10000 latter
T = 10;

% Number of bins over time period T.
n = T/dt; % Please define n in terms of T and dt!!!

% K-by-n column vector.
S = rand(K, n) <= m*dt

S =

 20×10 logical array

 0 0 0 1 0 0 0 0 0 0
 0 0 1 0 0 1 1 0 0 0
 0 0 0 1 0 0 0 0 0 0
 0 1 0 1 0 0 0 0 1 0
 0 1 0 0 0 1 0 0 1 0
 0 0 0 1 0 1 0 0 0 0
 0 0 0 0 0 0 1 0 0 0
 0 1 0 0 0 0 0 0 1 0
 0 1 0 0 1 1 1 1 1 0
 0 1 0 0 0 1 0 1 0 0
 1 0 1 0 1 0 0 0 0 0
 0 0 0 0 0 0 1 0 1 0
 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 1 0 1
 0 0 0 0 0 0 1 0 0 0
 0 0 0 1 0 0 1 0 0 0
 0 0 0 0 0 0 0 1 1 0
 0 0 0 1 0 0 1 0 0 0

STEP 3 Compute the total input received at each time step.

From the K-by-n matrix, how would you get a total input received at each time step?

Hint :(1/K)*sum(rand(K,n)<= m*dt,1) and it will be a 1-by-n row vector.

Input is

input = (1/K)*sum(S, 1) % For Prob. 2.1, we set the weight as (1/K).

input =

 Columns 1 through 7

 0.1000 0.2500 0.1500 0.3000 0.1000 0.3000 0.3500

 Columns 8 through 10

 0.2000 0.3000 0.0500

STEP 4

Now you have a input sequence (1-by-n row vector), you will be able to calculate the mean , and the variance .

Hint: You may need some built-in MATLAB functions. Try to look them up.
--

Mean

input_mean = mean(input)

input_mean =

 0.2100

it's equivalent to

sum(input)/length(input)

ans =

 0.2100

Variance

input_var = var(input)

input_var =

 0.0110

it's equivalent to

sum((input-input_mean).^2)/(length(input)-1)

ans =

 0.0110

Visualizing the input as a function of time, .

You don't need to include this plot in your HW2.

figure(1)
plot(input); hold on
plot([1, T], input_mean*ones(2))
xlabel('Time', 'FontSize', 15)
legend({'\mu(t)', 'Mean < \mu >'},'FontSize',15)
hold off

Summary of STEP 1 to 4

A postsynaptic neuron receives purely excitatory inputs from K presynaptic neurons over a period of time T. The goal is to
compute the mean and variance of total input (sum over K) across time.

clear all
close all

% Spiking rate = Probability to have a spike per unit of time.
% Choose any m between 0 < m < 1 !!!
m = 0.2;

% Number of presynatic connection. Now, we set a larger K = 200.
K = 200;

% The time for each bin.
dt = 1;

% Set the total time T = 10000.
T = 10000;

% K-by-n matrix. (K inputs, n time steps)
n = T/dt;
input = (1/K)*sum(rand(K, n) <= m*dt, 1);

% Mean
input_mean = mean(input) % Q: Is the mean close to the m value you set?

% Variance
input_var = var(input)

input_mean =

 0.1998

input_var =

 7.9511e-04

STEP 5 & 6

Write a for-loop that calculate the mean , and variance with different connections = 200, 400, 600, 800, 1000, 1500,
2000, 3500, 5000. For each , you may try to run multiple trials and take the average.

Plot vs , and vs . Compare each curve with its own zero (horizontal line y = 0, label it on the plot would be helpful),
and briefly describe the trend for each.

Prob 2.1 Excitatory Synaptic Input, with the weight (1/K)

clear
% Spiking rate = Probability to have a spike per unit of time!!!
m = 0.2;

% Number of presynatic connection
K_list = [200, 400, 600, 800, 1000, 1500, 2000, 3500, 5000];

% Set the total time T = 10000.
T = 10000;
dt = 1;
t = 0+dt:dt:T;
n = T/dt;

% Preallocation a vector to store the values.

input_Mean = zeros(size(K_list));
input_Var = zeros(size(K_list));

% For-loop
ind = 0;

for K = K_list

 input = (1/K)*sum(rand(K, n) <= m*dt, 1);
 % Please modified the code as needed!!!

 ind = ind + 1;
 input_Mean(ind) = mean(input);
 input_Var(ind) = var(input);

end

figure(2)

% Plot <input> vs K
subplot(2,1,1)
plot(K_list, input_Mean); hold on
ylabel('<\mu> ', 'FontSize', 15)
xlabel('K ', 'FontSize', 15)
axis([min(K_list) max(K_list) 0.99*min(input_Mean) 1.01*max(input_Mean)])
title(' <\mu> vs K', 'FontSize', 18)

% Plot Var(input) vs K
subplot(2,1,2)
plot(K_list, input_Var); hold on
ylabel('Var(\mu) ', 'FontSize', 15)
xlabel('K ', 'FontSize', 15)
title('Var(\mu) vs K', 'FontSize', 18)

Note that vs has a power-law relationship

We can fit the data with Log(input_Var) = a1*Log(K_list) + a2

% Plot Var(input) vs K in log-log scale
figure(3)
loglog(K_list, input_Var, 'k.-')
ylabel('Var(\mu) ', 'FontSize', 15)
xlabel('K ', 'FontSize', 15)
title('LogLog-plot for Var(\mu) vs K', 'FontSize', 18)

fun = @(a,x) a(1)*x + a(2);
p = lsqcurvefit(fun,[-0.8, 0], log10(K_list),log10(input_Var));
disp(['The slope is ', num2str(p(1))])

txt = ['The fitted slope is ', num2str(p(1))];
text(mean(K_list)/2, mean(input_Var), txt, 'FontSize', 15)

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the optimality tolerance.

The slope is -0.99592

Prob 2.2 Excitatory & Inhibitory Synaptic Input, with the weight (1/K)

Fill in by yourself!!!

Prob 2.3 Excitatory & Inhibitory Synaptic Input, with weight 1/sqrt(K)

Fill in by yourself!!!

As you may notice, the variance is a constant regardless of K. How does the value of variance come? Check Eq. (1.11) in Week
3 notes.

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab/

