
Physics 178/278
Assignment 2

January 23, 2025

Haodong Qin

Graduate students must also do the part labeled as (GS). Please upload your home-
work as a pdf version of the jupyter notebook with code and the running output of the
code. Due Feb 4 at 8 AM.

1. Numerically investigate the storage capacity of the Hopfield network.
(a) 1: Build a N = 400 neuron network. 2: Construct enough stored states ξk to

satisfy P/N = 0.2, i.e., well above the expected capacity limit P/N = 0.14. 3:
Choose each element ξk of the P = 0.2 ∗ 400 = 80 patterns at random(randomly
chosen 1 or −1 as a binomial variable).

(b) Construct the weight matrix Wi,j for storing one pattern ξ1. Test, by recurrent
action, if the Hopfield model with one stored pattern exactly maintains that
pattern as a stable state.

(c) Construct the weight matrix Wi,j for storing two patterns ξ1, and ξ2. Test, by
recurrent action, if the Hopfield model with two stored patterns maintains both
patterns as stable states.

(d) Plot the energy of the above system starting at a random state and changing one
neuronal output at a time so that the path reaches a stable state. Recall that ξk,
−ξk are both stable.

(e) (GS) Plot the energy along a path of your choice from a random state to ξ1 and
then onto ξ2 and back to ξ1 along a different path.

(f) Continue the exercise in (c) of constructing the weight matrix with 3, 4, ...,
all the way up to the 50 stored patterns. Find and plot the average, fractional
error in recall as a function of P/N for P = 1 to P = 50.
The error for each pattern is best calculated as the number of outputs, after
the recurrent action has reacheda steady state, as the different from the final
state S(t → ∞) and the pattern ξik. Thus the average, fraction error is

1

P

P∑
k=1

1

N

N∑
i=1

|Si(t → ∞)− ξki )

2
|



The Hopfield network requires a specific random update rule where only one neuronal
output gets updated at a time:

1 #random update. one neuron at a time

2 # S is the state vector and W is the weight matrix

3 def update_random(S, W):

4 i = np.random.randint(0, len(S)) # Pick a random neuron

5 h_i = np.dot(W[i], S) # Local field

6 S[i] = 1 if h_i >= 0 else -1 # Update state

7 return S

Page 2




