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6 Stimulus-Invariant Tuning by Neurons

and the ’Ring’ Model of Recurrent

Interactions. Part 1

We now consider a particular model, the so called ”ring” model, as
a demonstration of how recurrent connections and the threshold in
the (piece-wise linear) gain curve can lead to a powerful computa-
tion.

6.1 Rate model

We will write our equations for motion over the full range of 2π ra-
dians, which is suitable to describe heading, as described previously.
A similar set of equations can be written for the case of orientation,
except that this covers π radians. Every neuron is labeled with an
index, ”i”, that refers to the angle of the heading that is most likely
to cause the cell to spike. This is the ”preferred heading” and we
assume that these are uniformly distributed across a sea of neurons,
so that

φi =
2π

N
i ∀i (6.1)

where N is the total number of neurons. The rate equation for a
neuron with preferred heading φi is

τ
dri(t)

dt
+ ri(t) = f

 1

N

N∑
j=1

W (φi, φj) rj(t) + Iext(φi, φ0, t) − θ


(6.2)

where W (φi, φj) is the interaction between cell i and cell j, φ0

is the orientation of a vector to the landmark (for heading) or of
an external edge (for coding in vision), and θ is the threshold for
spiking. The function f [·] is a nonlinear function that saturates at
zero and possibly at a maximum firing rate. One such model is a
logistic function.

Motivated by experimental observations in visual systems (Fig-
ure 1) and heading systems, we take the interactions to be a func-
tion of the difference in orientation preference angles, so that neu-
rons with similar orientation preference have relatively stronger
connections. Thus

W (φi, φj) = W (φi − φj) (6.3)
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and
Iext(φi, φ0, t) = Iext(φi − φ0, t). (6.4)

Figure 1: Connectivity among neurons in mouse V1 cortex is stronger for cells with
overlapping receptive fields. From Cossell, Iacaruso, Muir, Houlton, Sader, Ko, Hofer and
Mrsic-Flogel 2015.

We will write the interaction in terms of a constant term plus
one term that varies as a function of the in-plane heading preference
between two cells. Thus

W (φi − φj) = W0 + W1 cos (φi − φj) (6.5)

where W0 and W1 are constants. We consider only the cosine term
and thus the connections should be symmetric with respect to the
difference in orientation preference (Figure 2). Similarly, the ex-
perimental stimulus can be written in terms of a constant and an
orientation dependent term

I(φi − φ0, t) = Î0(t) + Î1(t) cos (φi − φ0) . (6.6)

The cosine is the leading term for the projection of a moving bar
on a linear array of center-surround detectors. One can add higher
order terms, as a Fourier series in (φi − φ0) to describe more compli-
cated (and realistic) patterns of connectivity, but the basic lessons
will be unchanged.

It will be useful to re-express this in terms of an overall drive
and a modulation, ε(t), of the drive, i.e.,

I(φi − φ0, t) = I0(t) ( 1 + ε(t) [1 + cos (φi − φ0)] ) (6.7)

where, for completeness, Î0(t) = I0(t)[1+ε(t)] and Î1(t) = I0(t)ε(t).
Putting all of this together yields a rate equation as a function of
orientation and time

τ
dr(φ, t)

dt
+ r(φ, t) = f { W0

2π

∫ π

−π
dφ′r(φ′, t) (6.8)
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+
W1

2π

∫ π

−π
dφ′r(φ′, t)cos (φ− φ′)

+ I0(t) [1 + ε(t)]

+ I0(t)ε(t) cos (φ− φ0) − θ }

where 1
2π

∫ π
−π dφ

′ replaces 1
N

∑N
j=1.

Figure 2: Connectivity among neurons from W0 multiplying a constant term and W1

multiplying a cosine term.

6.1.1 Mean field approach

We solve the coupled rate equations by introducing two param-
eters, referred to as ”order parameters”, that will represent the
mean activity of the network and the modulation of the activity
of the network. This will allow us to write a single equation for
the network in terms of the behavior of one neuron in terms of the
mean rate of spiking and the modulation of that rate. These new
parameters must evaluated in a self consistent manner.

Mean rate: We define r0(t) as the average firing rate of neurons
in the network. This order parameter is an average over φ,
i.e.,

r0(t) =
1

2π

∫ π

−π
dφ′r(φ′, t) (6.9)

Thus the W0 term is just r0(t) ,

Modulated rate: We define r1(t) as the average modulation of
the firing rate of neurons in the network. This order param-
eter is a complex number, so we write it as:

r1(t) ≡ |r1(t)|e−iψ(t) (6.10)

=
1

2π

∫ π

−π
dφ′r(φ′, t) e−iφ

′
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This allows us to evaluate the W1 term as

1

2π

∫ π

−π
dφ′r(φ′, t) cos (φ− φ′) = <{ 1

2π

∫ π

−π
dφ′r(φ′, t)ei(φ−φ

′)}

= <{eiφ 1

2π

∫ π

−π
dφ′r(φ′, t)e−iφ

′}

= <{eiφ |r1(t)|e−iψ(t)}
= |r1(t)| <{ei(φ−ψ(t))}
= |r1(t)| cos (φ− ψ(t)) (6.11)

where < means real part.

The mean field rate equation is thus

τ
dr(φ, t)

dt
+ r(φ, t) = f{ W0r0(t) + W1|r1(t)| cos (φ− ψ(t)) (6.12)

+ I0(t) (1 + ε(t)) + I0(t)ε(t) cos (φ− φ0)) − θ}.

Now we have three simpler requations to solve.

6.2 Equilibrium

The goal is to understand how the network dynamics can amplify a
signal so that a weak input can drive a full cortical response. Can
this goal can be achieved under static conditions?

The rate equation becomes

r(φ) = f{W0r0+W1|r1|cos (φ− ψ))+I0 (1 + ε)+I0 ε cos(φ−φ0)−θ}.
(6.13)

So long as the gain function ”f [·]” is monotonic, the output will be
maximized by maximizing the operant. We make the assumption
that ψ is chosen to maximize the firing rate, i.e.,

dr(φ)

dψ
|φ=φ0 = W1|r1|sin (φ− ψ) (6.14)

= 0

This gives ψ = φ0 and the steady state rate equation becomes

r(φ) = f{[W0r0 + I0(1 + ε)− θ] + [W1|r1|+ I0 ε] cos(φ− φ0)}
(6.15)

where we have clustered the input into constant pieces and pieces
that are modulated by orientation.
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6.2.1 Superthreshold (linear) limit

Lets see what happens when the inputs are sufficiently large so that
the neuron operates solely above threshold. We thus take f [x] =
x. Then

r(φ) = [W0r0 + I0(1 + ε)− θ] + [W1|r1|+ I0ε] cos(φ−φ0). (6.16)

The functional dependence of r(φ) must follow the drive and thus
vary as φ− φ0. We can expend r(φ) as a Fourier series with coeffi-
cients that are identical to the order parameters, i.e.,

r̃(φ) = r0 + r+1e
iφ + r−1e

−iφ (6.17)

where

r0 ≡
1

2π

∫ π

−π
dφ′r(φ′), (6.18)

r+1 =
1

2π

∫ π

−π
dφ′r(φ′, t) e−iφ

′
(6.19)

≡ |r+1|e−iψ(t).

and

r−1 =
1

2π

∫ π

−π
dφ′r(φ′, t) eiφ

′
(6.20)

≡ |r+1|eiψ(t).

Then

r̃(φ) = r0 + |r+1|
(
e−i(ψ(t)−φ) + ei(ψ(t)−φ)

)
(6.21)

= r0 + 2|r+1|cos(φ − ψ)

= r0 + 2|r+1|cos(φ − φ0).

where we recall that ψ is chosen as ψ = φ0 to maximize the firing
rate.

We now equate terms for the average and for the harmonic, i.e.,

r0 = W0r0 + I0(1 + ε)− θ (6.22)

or

r0 =
I0(1 + ε)− θ

1−W0

(6.23)

and

r1 =
W1r1 + I0ε

2
. (6.24)

or

r1 =
I0ε

2−W1

. (6.25)
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We see that, even for the linear case, there is the potential for gain
in the modulation term when W1 → 2. We put all of the above
together to write

r̃(φ) = I0

[
1 + ε

1−W0

+
2ε

2−W1

cos(φ − φ0)
]

(6.26)

where we took θ = 0 in the last step solely for clarity.
How does this response help in altering the output of the net-

work? To make a bit more progress, we write the selectivity of the
input for modulated activity as

Selectivity of input ≡ Î1

Î0

(6.27)

=
ε

1 + ε

and note that we can write the selectivity of the output as

Selectivity of output ≡ |r1|
r0

=
I0 ε

2−W1

1−W0

I0(1 + ε)
(6.28)

=
1−W0

2−W1

× Selectivity of input.

This is as far as linearity gets you. There is gain, and potentially
very large gain, but no invariance! We will encounter this kind of
relation again when we discuss the linear circuit for the control of
eye position.

In the linear case, the input determines the output. Thus the
choice ε = 0 will lead to r1 = 0 and no modulation of the neuronal
activity, despite the angular dependence of the interactions. In the
next lecture we will see how to introduce an angular dependence
to the activity, a bump along φ, by allowing for nonlinearity in the
gain functions and the W1 > 2.
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