
Physics 178/278 - David Kleinfeld - Winter 2022

Lesson 18
Revised 9 March 2022 22:12

18 Synaptic Weights from Receptive Fields

18.1 General description of receptive fields

We consider a phenomenological description of the stimulus that
causes a neuron to fire. Our description will be general. As a
matter of practice, it is convenient to think in terms of the visual
system (Figure 1) and visual objects (Figure 2), i.e., a pattern of
illumination that evolves over time and space. The receptive field
forms a kernel, of filter, such that the spike rate of the cell is the
temporal convolution of the stimulus with the receptive field and
the spatial overlap of the stimulus with the receptive field. The
way to think of this is that the inputs to cell comprise a set of
photoreceptors, and each receptors has an accompanying synaptic
weight and time dependence. This is a lot of information to specify.
We shall see that in proactive there is typically only one or two time
dependences, each with an accompanying weight matrix.

Figure 1: Overview of visual processing

.

We define the inhomogeneous spike rate as r(t). This is the
rate that goes into a Poisson rate expression where, for example,
the probability of no spikes in the interval [0, t] and one spike in

the interval;(t, t+ dt] is r(t) · exp
(
−

t∫
0
dt′r(t′)

)
. Then

r(t) = f

Io +

∞∫
−∞

d2~x

t∫
−∞

dt′I(~x, t′)R(~x, t− t′)

 (18.1)

1

Figure 2: Focal attention on faces causes the visual gaze to be maintained at key
locations for 100 ms. From Yarbus

.

where f [·] is the nonlinear input-output relation, I(~r, t) is the
stimulus or input, R(~x, t) is the receptive field with ~x the two-
dimensional spatial vector, and Io is the baseline input.

When the stimuli driven part of the input is small compared to
Io, we can expand g [·] in a Taylor series and write

r(t) ' ro + f ′
∞∫
−∞

d2~x

t∫
−∞

dt′I(~x, t′)R(~x, t− t′) (18.2)

where ro = f [Io] and

f ′ =
df

dI

∣∣∣∣∣
I=Io

(18.3)

so that the firing rate is a linear function of the stimulus. This
allows us to focus on the receptive field without worrying about the
nonlinearity f [·]. Reviews by Chichilnisky (2001) and by Aljadeff,
Lansdell, Fairhall and Kleinfeld (2017) addresses the assignment of
both R(~x, t) and f [·] when the stimulus driven part of the input
is not small compared to Io. Aljadeff et al. (2016) also address
high-order statistical descriptions of neuronal data.

The simplest procedure to define a receptive field is to com-
pute the spike triggered average, which corresponds to the cross-
correlation between the stimulus and the time of an action potential
(Figure 3). This defines the space-time receptive field, as the av-
eraging occurs for all lag times. It is illustrated for two classes of
neurons in visual thalamus (Figure 4), magnocellular (fast, lumi-
nance) versus parvocellular (slow, chromatic plus luminance sensi-
tive). Note that the receptive field does not have to be simple nor
understandable in simple terms!

As a technical issue, any measure of activity can be used to
define a receptive field - and that includes calcium signals from
cells in cortex (Figure 5). In fact, this method permits the mapping

2

Figure 3: Receptive field mapping. From Chichilnisky, 2001

.

Figure 4: Spacetime receptive fields for thalamic (LGN) neurons in cat. From Golomb,
Kleinfeld, Reid, Shapley and Shraiman, 1994

.

of receptive fields from very many neurons in cortex in the same
imaging field (Figure 6).

To gain some insight into the general response properties of
neurons, we recall that a matrix can always be expanded in terms
of its eigenvectors by a singular valued decomposition. In terms of
the receptive field, we have

R(~x, t) ≡
rank(R)∑
n=1

λnun(~x)vn(t) (18.4)

where the functions un(~x) form an orthonormal basis set in space
and vn(t) for an orthonormal basis set in time. The eigenvalues for
these basis sets are given by λ2

n and. of course, are ordered so that
λ1 > λ2 > λ3 · ··. When λ1 is the only significant term the receptive

3

Figure 5: Spatial receptive field for a L2/L3 neuron in mouse visual cortex measured
from the neuronal Ca2+ response. The temporal dimension has been collapsed. From Cossell,
Iacaruso, Muir, Houlton, Sader, Ko, Hofer and Mrsic-Flogel, 1994

.

Figure 6: Spacetime receptive fields for multiple L2/L3 neurons. From Cossell, Iacaruso,
Muir, Houlton, Sader, Ko, Hofer and Mrsic-Flogel, 1994

.

field is said to be separable, as the spatial and temporal functions
factor (Figure 7).

In general the receptive field is not separable, as first discussed
by the work of McClean and Palmer (1989) (Figure 8) and analyzed
in some detail by Golomb, Kleinfeld, Reid, Shapley and Shraiman
(1994)(Figure 9; this is an analysis of the data in Figure 4). Then

r(t) ' ro + f ′
rank(R)∑
n=1

λn

∞∫
−∞

d2~xun(~x)

t∫
−∞

dt′I(~x, t′)vn(t− t′). (18.5)

Now suppose that the stimulus is separable, as is often the case in
primary sensory areas. For example, in vision our eyes shift from
position to position about five times a second. In this case we may
write

I(~x, t) ≡ X(~x)T (t). (18.6)

4

Figure 7: Separable visual receptive field. From Chichilnisky, 2001

.

so that

r(t) ' ro + f ′
rank(R)∑
n=1

λn

∞∫
−∞

d2~xX(~x)un(~x)

t∫
−∞

dt′T (t′)vn(t− t′).

(18.7)
The spatial part of the stimulus that each mode ”sees” is given by
the overlap integral of the spatial pattern of the stimulus with the
spatial pattern of each mode, i.e.,

Un =

∞∫
−∞

d2~x X(~x) un(~x). (18.8)

where the Un are scalars. In this case the un(~x) act as the weights
and the Un are the output of say a dendritic branch as opposed to
the entire cell.

The time dependence of the stimulus is convoluted with each of
the associated temporal modes to form the temporal evolution for
that mode, i.e.,

Vn(t) =

t∫
−∞

dt′ T (t′) vn(t− t′). (18.9)

where the Vn(t) are functions. We thus find

r(t) = ro + f ′
rank(R)∑
n=1

λn Un Vn(t). (18.10)

so that each temporal waveform is weighted by the expansion co-
efficient for the receptive field and the spatial overlap of the mode
with the stimulus. The point is that the temporal response of the
neuron, given by r(t), depends on the spatial pattern of the input
as well as the temporal evolution of the stimulus. This is what
some call a ”temporal code”, i.e., the coding of different stimuli,

5

Figure 8: Spacetime receptive fields. From McClean and Palmer, 1989

.

Figure 9: SVD modes of receptive fields from thalamus. From Golomb, Kleinfeld, Reid,
Shapley and Shraiman, 1994

.

even quasi-static stimuli, by different temporal patterns of spike
rates. The inhomogeneous rate r(t) may evolve in time as fast as
the response of the sensory cells, such at retinal ganglion cells for
the case of vision.

A final point is that the summation over modes rarely contains
more than a few terms, not the full rank of the matrix R. The spatial
coefficient Un has a signal-to-noise ratio that varies in proportion to
λn for the n− th mode. Thus the above series is cut off after two or
three terms as the signal dives below the noise. The SVD expansion
can be used as a data compression scheme in the description of the
receptive field. For magnocellular cells,

r(t) ≈ ro + [f ′λ1U1] V1(t) + [f ′λ2U2] V2(t). (18.11)

Another interpretation is that each mode corresponds to the input
to a different dendrite of a spatially extended neuron (Figure 10).

6

Figure 10: Near independent integration of inputs along different dendritic branches.
From Palmer, Shai, Reeve, Anderson, Paulsen and Larkum, 2014

.

18.2 Singular value decomposition
In the expansion

R(~x, t) ≡
rank(R)∑

n=1

λnun(~x)vn(t) (18.12)

the functions satisfy the orthonormality constraints

∞∫
−∞

d2~x un(~x)um(~x) = δnm (18.13)

and
∞∫

−∞

dt′ vn(t′)vm(t′) = δnm. (18.14)

We now consider the contraction of the receptive field matrices to form a symmetric
correlation matrix, i.e.,

C(t, t′) ≡

∞∫
−∞

d2~xR(~x, t)R(~x, t′) (18.15)

=

rank(R)∑
n=1

rank(R)∑
m=1

λnλm

∞∫
−∞

d2~x un(~x)um(~x) vn(t)vm(t′)

=

rank(R)∑
n=1

rank(R)∑
m=1

λnλm δnm vn(t)vm(t′)

=

rank(R)∑
n=1

λ2n vn(t)vn(t′).

7

Then vn(t) solves the eigenvalue equation

∞∫
−∞

dt′C(t, t′)vn(t′) =

rank(R)∑
m=1

λ2mvm(t)

∞∫
−∞

dt′vn(t′)vm(t′) (18.16)

= λ2n vn(t)

and the un(~x) are found from

∞∫
−∞

dt′R(~x, t′)vn(t′) =

rank(R)∑
m=1

um(~x)

∞∫
−∞

dt′ vm(t′)vn(t′) (18.17)

= un(~x).

18.3 Perceptrons

We interpret the receptive field as a feedforward network (Figure
11). These may be considered as the ”front end” of nervous system,
such as retinal ganglia cells that feed into neurons in the thalamus
for the case of vision.

Figure 11: Classic perceptron.

.

We write the calculated output of the Perceptron, denoted Ŝ,
as

Ŝ = f

 N∑
j=1

Wjxj − θ

 = f
[
~W · ~x− θ

]
(18.18)

where the x’s are the inputs in the form of an N-dimensional vector
~x, ”θ” is a threshold level, f [·] is a sigmoidal input-output function,
and the Wj’s are the weights to each of the inputs. We follow
the scaling used throughout the feed forward network literature of
choosing of W ∝ O

(
1
N

)
, so that the sum is O (1). One model for

8

f is
f [x] = tanh−βx (18.19)

where β is the gain.
Consider the case of an AND gate with two inputs and one true

output, y. We restrict ourselves to N = 2 inputs solely as a means
to be able to draw pictures; a model for integration of inputs by a
neuron may consist of N ≈ 10, 000 inputs!

x1 x2 S
−1 −1 −1
1 −1 −1
−1 1 −1
1 1 1

(18.20)

If we look at the input and require that it is positive for W1x1 +
W2x2 − θ > 0 and negative for W1x1 +W2x2 − θ < 0, we will have

−W1 −W2 < θ (18.21)

W1 −W2 < θ

W2 −W2 < θ

W1 +W2 > θ

There are an infinite number of set of values of W1, W2, and θ that
will work. One that gives the largest margin (Figure 12), i.e., is
least susceptibility to variations in the input, is the choice

W1 = 1 (18.22)

W2 = 1

θ = 1

.

Figure 12: Separation line with greatest margin.

.

This defines a line that divides the ”1” output from the ”-1” out-
put. The ”OR” function is similarly defined, except that θ = 1/2.

9

So far so good. But we observe that ”XOR” cannot be described by
this formalism, as there are now two regions with a positive output,
not one. So we cannot split the space of inputs with a single line.

x1 x2 V
−1 −1 −1
1 −1 1
−1 1 1
1 1 −1

(18.23)

The ”XOR” can be solved by introducing an additional dimension
so that we can split the space in 3-dimensions by a plane.

18.4 Perceptron learning - Binary gain function

For a binary input-output function, we write a Hebb-like construc-
tion rule for the values of ~W starting from ~W = (0,0) and using
the known pairs of inputs and outputs. We write

~W ← ~W + S~x. (18.24)

when Ŝ 6= S and is unchanged for Ŝ = S.

18.4.1 Convergence of perceptron learning

We now consider a proof that the Perceptron can aways learn a rule
when there is a plane that divides the input space. Consider ”n”
sets of Boolean functions with

Input(n) ≡ ~x(n) = {x1(n), x2(n), · · · , xN(n)} (18.25)

and
True output(n) ≡ S(n) = ±1. (18.26)

Training consists of learning the ~W s from the different sets of ~x(n)
and S(n), denoted {S(k), ~x(k)}. We calculate the predicted output

above from each ~x using the old values of ~W s and compare it with
the true of S(n). Specifically

Calculated output ≡ S̃(n) = f [~W (n) · ~x(n)]. (18.27)

The update rule to the ~W s is in terms of the True output and the
Calculated output, i.e.,

~W (m+ 1) = ~W (m) +
1

2

[
S(n)− S̃(n)

]
~x(n) (18.28)

= ~W (m) +
1

2

[
S(n)− f [~W (n) · ~x(n)]

]
~x(n)

10

where we use the notation ~W (m) for the set of weights after m
iterations of learning. Clearly we have used m ≥ n. Correct cate-
gorization will lead to

S̃(n) = S(n) and; implies ~W (m+ 1) = ~W (m) (18.29)

while incorrect categorization leads to a change in weights

S̃(n) 6= S(n) implies ~W (m+1) = {
~W (m) + ~x(n) if ~W (n) · ~x(n) < 0
~W (m)− ~x(n) if ~W (n) · ~x(n) > 0.

(18.30)
One way to look at learning is that the examples can be divided

into two training sets (Figure 13):

Set of class 1 examples {S(k), ~x(k)} with S(k) = +1 ∀ k(18.31)

Set of class 2 examples {S(k), ~x(k)} with S(k) = −1 ∀ k.

Figure 13: Categorization by Perceptron.

.

An important point about the use of Perceptrons is the existence of
a learning rule that can be proved to converge. The idea in the proof
is to show that with consideration of more and more examples, i.e.,
with increasing n, the corrections to the ~W (n) grow faster than the
number of errors.

18.4.2 Growth of corrections to the ~W (n) as a function of
iteration

Suppose we make m errors, which leads to m updates, among our
set of n input-output pairs. That is, ~W (m) · ~x(m) < 0 ∀m for
the set of class 1 examples, yet S(m) = +1. Let us estimate how

the corrections to the ~W (m)s grow as a function of the number of
learning steps, e.g., as m, m2, m3, etc. The update rule is

~W (m+ 1) = ~W (m) + ~x(m) (18.32)

= ~W (m− 1) + ~x(m− 1) + ~x(m)

= ~W (m− 2) + ~x(m− 2) + ~x(m− 1) + ~x(m)

= · · ·

= ~W (0) +
m∑
k=0

~x(k).

11

In the above, all of the m corrections made use of the first m entries
of the set of class 1 examples. With no loss of generality, we take
the initial value of the weight vector as ~W (0) = 0, so that

~W (m+ 1) =
m∑
k=0

~x(k). (18.33)

Now consider a solution to the Perceptron, denoted ~W1, that is
based on the set of class 1 examples; by definition there is no index
to this set of weights. Further, this satisfies ~W1 · ~x(m) > 0 ∀m for

any set of ~x. We use the overlap of ~W1 as a means to form bounds
on the corrections with increasing iterations of learning. We have

~W1 · ~W (m+ 1) =
m∑
k=1

~W1 · ~x(k) (18.34)

≥ m×minimum
{
~W1 · ~x(k)

}
where ~x(k) ∈ set 1 examples. Then

‖ ~W1 · ~W (m+ 1)‖ ≥ m×min
{
~W1 · ~x(k)

}
. (18.35)

But by the Cauchy-Schwartz inequality,

‖ ~W1‖‖ ~W (m+ 1)‖ ≥ ‖ ~W1 · ~W (m+ 1)‖ (18.36)

so
‖ ~W1‖‖ ~W (m+ 1)‖ ≥ m×min

{
~W1 · ~x(k)

}
(18.37)

or

‖ ~W (m+ 1)‖ ≥ m×
min

{
~W1 · ~x(k)

}
‖ ~W1‖

(18.38)

and we find that the correction to the weight vector ~W after m
steps of learning scales as m.

18.4.3 Growth of errors in the ~W (n) as a function of learn-
ing

We now estimate how the error to the weight vector ~W (m) grows
as a function as the number of learning steps. The error can grow
as each learning step can add noise as well as corrects for errors in
the output ŷ(m). The key for convergence is that the error grows
more slowly than the correction, i.e., as most as m2−ε. We start
with the change in the weight vector as as function of the update
step. After m updates, we have

~W (m+ 1) = ~W (m) + ~x(m). (18.39)

12

But

‖ ~W (m+ 1)‖2 = ‖ ~W (m) + ~x(m))‖2 (18.40)

= ‖ ~W (m)‖2 + ‖~x(m)‖2 + 2 ~W (m) · ~x(m)

≤ ‖ ~W (m)‖2 + ‖~x(m)‖2

so
‖ ~W (m+ 1)‖2 − ‖ ~W (m)‖2 ≤ ‖~x(m)‖2. (18.41)

Now we can iterate:

‖ ~W (m+ 1)‖2 − ‖ ~W (m)‖2 ≤ ‖~x(m)‖2 (18.42)

‖ ~W (m)‖2 − ‖ ~W (m− 1)‖2 ≤ ‖~x(m− 1)‖2

· · ·
‖ ~W (1)‖2 − ‖ ~W (0)‖2 ≤ ‖~x(0)‖2.

We sum the right and left sides separately, and again take ~W (0) =
0, to get

‖ ~W (m+ 1)‖2 ≤
m∑
k=0

‖~x(k)‖2 (18.43)

≤ (m+ 1)×maximum
{
‖~x(k)‖2

}
.

Thus we find that the errors to the weight vector ~W after m cor-
rections scale as

√
m+ 1 ≈

√
m, i.e.,

‖ ~W (m+ 1)‖ ≤
√
m×max {‖~x(k)‖2}. (18.44)

or √
m×max {‖~x(k)‖2} ≥ ‖ ~W (m+ 1)‖. (18.45)

18.4.4 Proof of convergence

We now have two independent constraints on ‖ ~W (m+ 1)‖:

√
m×max {‖~x(k)‖2} ≥ ‖ ~W (m+ 1)‖ ≥ m×

min
{
~W1 · ~x(k)

}
‖ ~W1‖

(18.46)
and thus

m ≥ max {‖~x(k)‖2}(
min

{
~W1 · ~x(k)

})2 ‖ ~W1‖2. (18.47)

13

