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Persistent neural activity refers to a sustained change in

action potential discharge that long outlasts a stimulus. It is

found in a diverse set of brain regions and organisms and

several in vitro systems, suggesting that it can be considered a

universal form of circuit dynamics that can be used as a

mechanism for short-term storage and accumulation of

sensory or motor information. Both single cell and network

mechanisms are likely to co-operate in generating persistent

activity in many brain areas.
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Introduction
The importance of persistent activity for proper motor

function is immediately evident from oculomotor fixation

behavior. As shown in Figure 1ai, holding the eyes at an

eccentric angle after a brief saccadic command is accom-

panied by a sustained discharge of pre-motor neurons in

the oculomotor neural integrator, with different fixation

angles produced by different sustained levels. The fact

that this can be produced without visual or proprioceptive

feedback [1] demonstrates that the persistent activity

must be generated by the internal cellular and/or network

dynamics of a neural circuit. This example illustrates a

more general postural motor control problem that must be

solved when, for example, holding your arm extended at

different positions.

In fact, the behavioral importance of persistent neural

activity appears to be even more general. For example,

sustained action potential firing in response to a brief

sensory stimulus is observed in many areas of cerebral
ncedirect.com
cortex during working memory behaviors requiring

short-term retention of a sensory stimulus, such as

delayed match tasks [2]. Qualitatively similar sustained

discharges have also been observed in subcortical brain

areas, such as the basal ganglia [3], thalamus [4], superior

colliculus [5], brainstem [6] and spinal cord [7]. The

qualitative similarities of persistent activity in such a

diversity of brain areas and species suggest the possibility

that it represents a very general and fundamental form of

brain dynamics.

The past few years have been a very active period in

persistent firing research. This review attempts to bring

together references on experimental observations of

persistent neural activity across species and brain areas.

First, we summarize important characteristic features

of different forms of persistent activity and provide a

table of references (see Supplementary table) to exam-

ples of each in different brain areas. Second, we review

experiments aimed at uncovering the mechanisms of

persistent neural activity. Two hypothesized general

mechanisms frame the discussion: recurrent networks

and intrinsic biophysical cellular properties, for exam-

ple plateau potentials. (We define a plateau potential

as a relatively rapid onset and offset long-lasting

change in stable membrane potential dependent on

intrinsic membrane conductances and/or intracellular

messengers.)

Classification and prevalence of persistent
neural activity
It is useful to compare and contrast persistent activity

across the widely different brain areas and preparations in

which it is found (see Supplementary table, previous

reviews [2,3,8–14,15�,16]). Several questions can be asked

in each case.

How long does the persistent activity last?

Firing that is not driven by ongoing external inputs must

be explained by the internal dynamics of the cell or

circuit. Typical durations range from hundreds of milli-

seconds to tens of seconds.

How quickly can firing be turned on and off,

or changed, and is it self-terminating?

These questions are important for teasing apart mechan-

isms. For example, saccadic burst inputs can drive oculo-

motor neural integrator cells to new stable firing levels

within a few hundred milliseconds. Similarly rapid transi-

tions are found in cortical delay activity. Plateau poten-

tials are generally self-terminating, but can also be

switched off by inhibitory inputs.
Current Opinion in Neurobiology 2004, 14:675–684
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Figure 1
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How many firing levels are there?

The example of oculomotor activity during eye fixation in

Figure 1ai also illustrates the concept of multi-stability,

that is, there are multiple levels of sustained firing.

Bistability (Figure 1aii) has been described extensively

in the literature on motoneurons [9,12,17,18] and might

be an appropriate description of delay activity in certain

short-term memory tasks. More commonly, however,

neurons in higher areas show multi-stability (Figure 1aiii)

during persistent activity. Persistent firing of oculomotor

neural integrator cells seems graded; any firing rate over

some range can be stable (Figure 1ci).

Is there an input threshold?

Plateau potentials often have thresholds (Figure 1aii).

Conversely, some of the simplest recurrent network

models show persistent changes in response to arbitrarily

small or brief inputs. When the change in the sustained

rate is proportional to the time integral of the input, the

system acts as a neural temporal integrator, in the sense of

calculus. This description has been applied to several

kinds of persistent activity (oculomotor premotor neu-

rons, head direction cells, sensory based decisions at low

signal to noise ratios, and time estimation) [6,15�,19�].

Is firing stable or time-varying?

The firing rate of an oculomotor neural integrator cell

during eye fixation in the dark is normally relatively con-

stant between one saccade and the next [20,21�,22�].
During working memory tasks, neurons in cortex and

hippocampus show both stable (Figure 1aiii) and time-

varying firing (Figure 1bi; [16,23�–25�]). Delay activity

that decays following a stimulus (sometimes termed retro-

spective coding) and activity that builds up before a

decision, reward, or motor response (prospective coding)
(Figure 1 Legend) Characteristics of different kinds of persistent neural act
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are common (Figure 1bii; [3,4,16]). Persistent firing in the

goldfish oculomotor neural integrator (‘Area 1’, in the

caudal brainstem) can be behaviorally modified to be

unstable (exponentially diverging) or leaky (expo-

nentially decaying to a steady state level or levels,

Figure 1biii; [22�]).

What type of encoding occurs during persistent activity?

The sustained firing of oculomotor neural integrator cells

is linearly related to eye position (Figure 1ci; [20]). A

similar monotonic encoding is observed during delay

activity in somatosensory cortex, representing the fre-

quency of vibration during a vibrotactile delayed match to

sample task (Figures 1aiii, 1cii; [24�]). By contrast, head

direction cells (Figure 1ciii) [15�], memory fields in the

multi-target delayed saccade task [14] and number encod-

ing cells [26] show non-monotonic encoding.

How co-ordinated are the activities of different neurons?

Network mechanisms are expected to produce highly

coordinated and correlated activity across subsets of neu-

rons, whereas single cell mechanisms could produce more

independence in firing.

Does the persistent activity occur without training and

does it show plasticity?

Spontaneous persistent activity in untrained animals is

typically found in lower brain areas [20] and the head

direction system [27], but has also been observed in

cortex [28]. Persistent firing in higher areas generally

changes during behavioral training [25�,29]. Indeed,

time-varying persistent firing in cortex, hippocampus

and thalamus can adjust within a few trials to a new delay

period (Figure 1bii) [4,24�] or altered contingencies. In

the rat head direction cell system (Figure 1ciii) and the
ivity. (a) A number of different stable firing levels. (i) Multi-level

ehaving goldfish. Top (red): horizontal eye position, measured in

rly recorded action potentials. Bottom (green): instantaneous
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back into the non-firing DOWN state by a brief hyperpolarizing

t cell). Pulses greater than a threshold size can flip the cell from one stable

Blackwells Publishing [79]; figure kindly supplied by J Hounsgaard).
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ent colors (adapted with permission from Oxford University Press [24�]).

elected examples of rat subicular and hippocampal cell persistent firing

ls with 30 s delay, marked by red and green lines. Different cells show

nd dips spanning various portions of the delay (adapted with permission

n-primary thalamic neurons (adapted with permission from Nature

d firing that ramps up in anticipation of a reward. When the delay is
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r several hours’ exposure to visual surround moving with velocity

interval). Black: smoothed with gaussian window increasing in
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Graded persistent firing and encoding. (i) Linear encoding: multi-level
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Figure 2
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Intrinsic cellular versus network mechanisms of persistent activity. (a) Lamprey reticulospinal neurons (adapted with permission from [34]). Intracellular

calcium and firing rate show cumulative step-like sustained changes in response to successive skin or nerve stimuli (arrows). (b) Entorhinal cortex

layer 5 pyramidal neurons in vitro. Slice bathed in 10 mM carbachol and neurotransmitter blockers (adapted with permission from [47] [http://

www.nature.com/]). Cell could fire at multiple different stable rates (indicated above firing rate histograms). Brief depolarizing intracellular current
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(ii) Same cell, firing rate histogram and intracellular current, 1 s pulses. (c) Oculomotor neural integrator cells recorded intracellularly in awake

behaving goldfish (adapted with permission from [1]). During single fixations, intracellular current pulses failed to cause persistent changes in firing

outlasting the pulses. Abbreviations: DF/F, relative fluorescence change; Fintra, intracellular firing rate; Vm, membrane potential; Iinj, injected current.
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goldfish oculomotor system [15�,27,30–32], sensory input

seems to be important in maintaining tuning of the

persistent activity. If goldfish are left in the dark, their

eye fixations (and firing rates; G Major, DW Tank,

unpublished) become progressively leakier [21�,22�,33].

Persistent firing can gradually be driven unstable or leaky

by rotating the visual surround with velocity proportional

to + or � eye position, which mimics the retinal slip from a

leaky or unstable integrator, respectively (Figure 1biii;

[21�,22�]).

Cellular versus network mechanisms of
persistent activity
Dominance of intrinsic cellular mechanisms?

There is increasing evidence that intrinsic cellular

mechanisms [12,17] are both widespread and can produce

multi-stability. In many cases, persistent firing is driven

by an underlying plateau potential [9]. A soma-dendritic

tree can have more than one possible stable spatial

pattern of membrane potential at any given time. The

number of stable voltage patterns, their spatial structure

and the soma voltage can change with time because of

channel and intracellular signaling dynamics, and can also

be altered by neuromodulators or other inputs.

Multi-level persistent firing in lamprey reticulospinal

system

In the lamprey, tapping the snout sufficiently hard causes

an escape response initiated by a sustained train of action

potentials in a set of brainstem reticulospinal neurons.

As shown in Figure 2a, a fictive form of this behavior has

been reproduced in vitro in the semi-intact lamprey.

Successive afferent stimuli cause cumulative increases

in persistent firing and intracellular calcium in reticulosp-

inal neurons, through N-methyl-D-aspartate receptor

(NMDAR)-dependent calcium entry then activation of

a calcium-activated non-specific cation (CAN) current-

driven plateau potential [34,35].

Bistable and multi-level persistent firing in spinal cord

and cranial nerve nuclei

Deep dorsal horn neurons in vitro, in anaesthetized ani-

mals, or in animals with cut spinal cords [36] show a form

of multi-level persistent activity known as ‘wind-up’

[17,37]. In response to successive brief nociceptive affer-

ent stimuli or intracellular current pulses, the firing rate

steps up to progressively higher levels that can persist for

many seconds [38]. The persistent firing is driven by an

L-type calcium channel plateau potential (prolonged by a

CAN conductance in rodents). Wind-up might result from

voltage or calcium-dependent facilitation of these chan-

nels, although multiple interacting dendritic plateaus are

another possibility. The plateau potential is also subject

to neuromodulation [39].

Motoneurons exhibit bistability in vitro [9] in the pre-

sence of serotonergic or noradrenergic agonists [12], and
www.sciencedirect.com
in decerebrate animals [40]. Underlying the bistability

is a plateau potential, mediated largely by low thres-

hold soma–dendritic L-type Ca(v)1.3 channels [41�].
Persistent sodium currents might also contribute in

mammals [40,42]. Wind-up of firing in response to suc-

cessive brief stimuli also occurs [12,43], possibly through

calcium and calmodulin-dependent facilitation of L-type

calcium channels [44]. The plateau potentials are further

up-modulated by metabotropic glutamate receptors

(mGluRs) and muscarinic cholinergic agonists, and are

down-modulated by g-amino butyric acid-B receptor

(GABABR) activation [12,45].

Spinal cord plateau potentials have not been conclusively

demonstrated in normal awake behaving animals,

although persistent delay period firing has been found

in spinal interneurons [7]. Several studies show sudden

persistent changes in motor unit firing after transient

stimuli, and discrepancies between on and off thresholds

[9,13,46] consistent with motoneuron plateaus, but cir-

cuit-based mechanisms have not been ruled out.

Multi-level persistent firing in cortical slices with

cholinergic activation

Muscarinic modulation is important for working memory.

Following muscarinic activation, layer 5 pyramidal cells in

entorhinal cortical slices become capable of graded per-

sistent firing, even with fast neurotransmission blocked

(Figure 2b; [47�]). Transitions from one stable firing level

to another can be affected by current pulses or synaptic

stimulation. Stimuli below a certain threshold size or

duration do not change tonic firing. Brief (�300 ms)

depolarizing pulses lead to persistent increases, but to

achieve persistent decreases longer hyperpolarizations

(�5 s) are required. Up to around 12 levels have been

documented per cell (Figure 2b), but an arbitrary number

of stable rates seems possible (A Alonso, pers comm). The

depolarizing drive comes largely from a CAN current.

Firing is far more regular than that seen during working

memory [48�,49], although noisy synaptic inputs would

add jitter in vivo. It is unclear whether the CAN current

switches off fast enough to explain abrupt decreases in

firing often seen in vivo.

CAN current-driven persistent firing in single cells might

be widespread in the brain. For example, muscarinic

activation enables subicular [50] and hippocampal CA1

pyramidal cells to generate plateau potentials (bistabil-

ity), based largely on CAN or cyclic nucleotide gated

cation channels [51,52] but also involving calcium chan-

nels in CA1. Muscarinic modulation of oculomotor neural

integrator circuitry has also recently been studied [53].

NMDA-dependent dendritic plateau potentials

In somatosensory cortex [54,55], prefrontal cortex [56�]
and CA1 [57,58], the thin dendrites of pyramidal cells,

which receive the majority of their synaptic inputs, are
Current Opinion in Neurobiology 2004, 14:675–684
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capable of exhibiting voltage- and glutamate-dependent

broad spikes or plateau potentials local to an individual

branch in response to sufficient NMDA-receptor stimula-

tion. It is tempting to speculate that these events might

have a role in persistent neural activation in vivo. The

waveforms of the longer plateaus also look remarkably

similar to those seen in lamprey spinal cord during

NMDA-activated tetrodotoxin (TTX)-resistant rhythmic

bistable activity, important in fictive locomotion [59]. In

CA1 terminal apical dendrites [58] and lamprey, calcium-

activated potassium channels are involved in switching

off the plateau potential. NMDA conductance-based

plateau-potentials are actually hybrid network/cellular

mechanisms of persistent activity, because in vivo, recent

patterns of network activation dynamically set the spatial

distribution of openable (glutamate-bound) voltage-

dependent NMDA channels over the dendritic tree of

a particular neuron. Because deactivation of NMDA

channels is much slower than voltage gating, dendrites

might show voltage multi-stability similar to that of

intrinsic-conductance plateau potentials.

Problems with explanations based on
dominant intrinsic mechanisms
Lack of persistent changes in firing in oculomotor

integrator cells following intracellular current pulses

If goldfish Area 1 cells have an intrinsic plateau potential

conductance near the cell body, it should be possible to

switch it on and off by intracellular current injections.

When this experiment was done in vivo [1], current pulses

failed to cause persistent changes in firing (Figure 2c),

suggesting network mechanisms dominate this system.

However, distal dendritic or NMDA plateau potentials

have not been ruled out. Other intrinsic mechanisms such

as calcium wavefronts might not depend strongly on peri-

somatic voltage [60].

Heterogeneous time courses and plasticity of

persistent firing

Intrinsic cellular mechanisms might have some difficulty

reproducing some of the more complex features of per-

sistent activity in higher areas, in which different neurons

often exhibit very different time profiles of persistent

firing. Several studies show a continuum of cells spanning

stable, ramping, decaying and non-monotonic temporal

profiles with one or more humps or dips (Figure 1b,

Supplementary table; [23�,24�,25�,61]). In addition, time

courses can vary from trial to trial depending on the

stimulus and reward, and also at random [62]. This level

of diversity, stimulus–response specificity and variability

of time courses, together with their adaptability [4,24�]
and plasticity [29], has not been demonstrated with

purely intrinsic cellular mechanisms.

Visual feedback can be used to detune goldfish Area 1

persistent firing towards instability or leak (Figure 1biii)

or to tune it back towards stability. Although this could be
Current Opinion in Neurobiology 2004, 14:675–684
consistent with cellular mechanisms, it fits naturally with

recurrent feedback network models, which require a fine

tuning mechanism for robustness [21�,22�].

Dominance of recurrent synaptic feedback?

Recurrent synaptic feedback has long been a popular

hypothesized mechanism of persistent activity, especially

in the forebrain and oculomotor system. Observed ensem-

ble patterns of persistent activity can be reproduced

relatively easily as stable attractors in recurrent network

models [11,16]. In addition, strong feed-forward and

feedback connections exist within and between cortical

areas, and there are abundant reciprocal corticothalamic

connections, and corticostriato–thalamocortical and corti-

copontocerebellar–thalamocortical loops, all of which

could serve as the anatomical substrate of recurrent

feedback.

Despite its appeal, there is little concrete evidence that

recurrent synaptic feedback dominates persistent activity

in intact functioning nervous systems. This might reflect

the enormous difficulty of simultaneously recording and

precisely manipulating the intracellular voltage, calcium

and other key signals within large numbers of neurons and

dendrites in vivo in awake, behaving animals. Most of the

relevant data are indirect or from in vitro systems.

A prediction of recurrent network models is that an

increase in persistent firing is associated with an increase

in excitatory synaptic currents. Indeed, in about a third of

intracellularly recorded goldfish Area 1 cells, the rate of

post synaptic potentials (PSPs) or the background noise

increased clearly during more depolarized plateau-like

steps in membrane potential that were shown to produce

increased firing rates with network activation [1]. How-

ever, this could be explained equally well by feed-forward

or recurrent architectures. In any case, the increase in

PSPs might not be the dominant mechanism generating

the membrane depolarizations.

A similar kind of experiment has been performed on a

slice model of cortical persistent activity. In ‘natural’ ionic

conditions (�1.2 mM Ca2+), neurons in cortical slices

show spontaneous and evoked transitions between UP

and DOWN states lasting several seconds, similar to those

seen in vivo during anesthesia and slow-wave sleep [63]. It

has been argued [49,63,64,65�,66�] that these states might

share mechanisms with in vivo persistent activity. Intra-

cellular recording clearly demonstrates that the UP state

is associated with time-varying sustained barrages of

nearly balanced excitatory and inhibitory conductances

that produce a net depolarization, increased noise and

increased firing [64,66�]. The average duration of states is

not affected by de- or hyperpolarization by 10–30 mV.

States in nearby cells are largely synchronized. a-Amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

or NMDA receptor blockers abolish the UP states
www.sciencedirect.com
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[63,65�]. These findings suggest that UP and DOWN

states are produced by recurrent network mechanisms,

although a contribution from plateau potentials has not

been excluded. The variability of spike firing in the UP

state matches that observed during working memory

persistent activity [48�].

Cross-correlograms

Simultaneously recorded goldfish Area 1 cells [67] as well

as persistently firing cells in cerebral cortex [68,69] show

spike-time cross-correlogram peaks, often at zero lag,

consistent with common input, including recurrent feed-

back. Area 1 cells on opposite sides of the brain tend to

have negative dips in their correlograms, consistent with

mutual inhibition via their crossing axon collaterals [20].

Area 1 cells on the same side have positive correlogram

peaks that are greatly reduced at high rates [67]. In both

cortex and Area 1, correlograms suggest but do not prove

cells are connected. They do demonstrate, however, that

spikes are at least partially driven by synaptic input

during persistent activity.

Co-ordinated firing

The direction preferences of simultaneously recorded

head direction cells tend to shift by similar amounts when

visual or other external cues are changed or removed

[15�,70] — the cells appear coupled (Figure 1ciii). Simi-

larly, in the oculomotor system, neurons on the same side

of the brain generally show step increases and decreases

that are largely (but not perfectly) correlated [71]. Simul-

taneously recorded Area 1 cells with leaky fixations in

goldfish often show co-ordinated firing rate drift (E Aksay,

G Major, DW Tank, unpublished), as predicted by recur-

rent network models.

Problems with explanations based on dominant

synaptic feedback

There are several other intriguing experimental observa-

tions from both the cerebral cortex and the oculomotor

neural integrator that suggest that recurrent synaptic

feedback is not the whole story in these systems.

When NMDA blockers are infused or iontophoresed into

cortex, it appears that persistent firing rates are depressed

(or raised), but the dramatic change in time course pre-

dicted by simple recurrent feedback models is not seen

(G Williams, unpublished [preliminary observations])

[72]. Dopaminergic and serotonergic agents can also

change firing rates while having comparatively little

effect on time courses [73,74]. Perhaps this reflects

balanced effects on excitation and inhibition, but it is

also suggestive of some kind of intrinsic robustness

mechanism.

Simple recurrent network models predict that the firing

rates of oculomotor integrator neurons should always be

linearly related to one another. However, the firing rate–
www.sciencedirect.com
firing rate relation of two simultaneously recorded gold-

fish Area 1 cells often shifts systematically during the

course of the spontaneous scanning saccadic cycle [71].

Many cells exhibit non-monotonic persistent firing that

changes in the ‘wrong’ direction during part of the cycle

[22�]. Following training to fixation instability or leak

(Figure 1biii), there is also considerable unexplained

diversity of firing rate drift patterns [22�]. These observa-

tions could be signs of dendritic plateaus [75], although

there are also network explanations.

The need for hybrid mechanisms?

Aside from timing and co-ordination, the persistence of

firing in lower areas such as spinal cord and the reticu-

lospinal system seems to be explicable largely in terms

of intrinsic cellular mechanisms. Nevertheless, with the

possible exception of lamprey reticulospinal cells, sup-

porting network mechanisms have not been excluded,

and the occurrence of plateau potentials in behaving

animals has not been unequivocally demonstrated.

Although it is hard to make rigorous arguments given the

limits of our knowledge and experimental techniques, it

seems reasonable to suggest that in the oculomotor sys-

tem and many higher brain areas, network mechanisms of

persistent activity might co-operate with intrinsic cellular

mechanisms. The argument is threefold. First, purely

network and purely cellular mechanisms both have diffi-

culty accounting for all the observed phenomena. Second,

the machinery for both kinds of mechanism has been

demonstrated in abundance in many areas of cortex. And

third, pure recurrent feedback networks have a robust-

ness problem, being exquisitely sensitive to the exact

amount of net positive feedback — too much leading to

run-away excitation, too little to rapid decay of activity.

Intrinsic cellular mechanisms of persistent activity pro-

vide a natural way to increase robustness [75].

Future directions
What would be definitive tests for recurrent network

mechanisms? One approach is to remove precisely one

cell or a subset of the network and to examine the effect

on the remaining neurons. Many network models predict

that even a small reduction in overall positive feedback

will lead to a profound loss of persistence. These experi-

ments have already been done at a crude level. In

primates, localized cortical cooling changes the level of

persistent firing of particular neurons, but generally the

time course is fairly robust ([2,76], but see [77]). Similar

inactivation experiments at a finer spatial scale should

now be performed in cortex. In goldfish, local inactivation

of part of Area 1 causes some deterioration of persistence

times in the remaining neurons, but, again, there is

surprising robustness [78]. A second approach is to exam-

ine whether precise stimulation of a defined subset of the

network affects firing in the remaining neurons, as pre-

dicted by recurrent network models.
Current Opinion in Neurobiology 2004, 14:675–684



682 Motor systems
How about definitive tests for intrinsic cellular mechan-

isms? Different firing levels could correspond to different

combinations of bistable dendrites in UP states or there

might be an activated zone in each dendrite, the ‘wave-

front’ of which moves as the firing rate changes [60].

These models could be tested by imaging dendrites

in vivo during persistent activity. Other intrinsic mech-

anisms should be tested pharmacologically, preferably

using selective blockers that can be applied intracellularly

(such as D-890 against L-type calcium channels), to

prevent network side-effects.

Conclusions
The diversity of CNS areas demonstrating persistent

activity is immense (see Supplementary table), suggest-

ing its importance and the possibility that a small set of

common mechanisms will be found. The biophysical

machinery for intrinsic cellular mechanisms has been

found in many of these same areas, and might help to

explain the robustness of persistent firing. Nevertheless,

there are serious challenges to intrinsic cellular persistent

activity being the dominant mechanism in higher brain

areas. The observed co-variation, complex time dynamics

and plasticity of persistent neural activity together with in
vitro findings point towards network mechanisms being

important. Experiments testing the relative contributions

of network and cellular mechanisms in higher areas in

awake behaving animals are at a very early stage.
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