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0 Neurophotonics for recording and activation of
neurons

0.1 Genetically expressed optical-based indicators of intra-
cellular Ca**

These molecules are expressed in vivo in specific cell types and initiate an increase
in fluorescence in response to the Ca?* influx that follows an action potential.

Figure 1: The cyclically permutable GFP turned into a detector of intracellular Ca?*. From Chen, Wardill,
Sun, Pulver, Renninger, Baohan, Schreiter, Kerr, Orger, Jayaraman, Looger, Svoboda and Kim, 2013.
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0.2 In vivo recording of neuronal structure and function
with two-photon laser scanning microscopy

Two-photon laser scanning microscopy, properly done, allows changes in intracellular
Ca** to be measured in neuronal soma down to spines.

0.3 In vivo recording of calcium signaling with two-photon
laser scanning microscopy

In vivo C'a®" signals may be recorded after a single spikes, but still the interpretation
in terms of numbers of spikes in imperfect and can be unreliable.



Figure 3: Essential components of a state-of-the-art two photon microscope. From. Liu, Li, Marvin and Kleinfeld
2019.
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Figure 4: The distortion of cell images by the point spread function is most severe along the optical axis. From
Tsai, Mateo, Field, Schaffer, Anderson and Kleinfeld, 2015.
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0.4 In vivo recording of activity in the locomoting animal

The use of virtual reality in combination with two-photon microscopy permits be-
havior and circuit dynamics to be concurrently measured.

0.5 Genetically expressed optical-based drivers of spiking

Optical activation of channelrhodopsin expressed in the membrane of neurons can
be used to photo-excite, or photo-inhibit, neurons.

0.6 All optical schemes for feedback control of spiking

The use of two-photon microscopy and concurrent photoactivation permits behavior
and circuit dynamics to be concurrently measured and perturbed.



Figure 5: Intracellular responses in superficial V1 of mouse visual cortex using GCaMP6. From Chen, Wardill,
Sun, Pulver, Renninger, Baohan, Schreiter, Kerr, Orger, Jayaraman, Looger, Svoboda and Kim, 2019.
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Figure 6: Intracellular responses in hippocampal brain slice with cell culture using Oregon Green BABTA. From
Sasaki, Takahashi, Matsuki and Ikegaya, 2008.
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Figure 7: Intracellular responses in L5 of mouse somatosensory cortex. From Liu, Li, Marvin and Kleinfeld,
2019.
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Figure 8: Intracellular Ca2* is an unreliable measure of spike count and may fail to detect single spikes in vivo.
From Theis, Berens, Froudarakis, Reimer, Roson, Baden, Euler, Tolias and Bethge 2016.
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Figure 9: Intracellular Ca* in distal dendrites of L5b neurons can dissociate from somatic electrical activity.
From Helmchen and Waters 2002.
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Figure 10: In vivo hippocampus preparation. From Dombeck, Harvey, Tian, Looger and Tank 2010.
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From Dombeck, Harvey, Tian, Looger and Tank 2010.

Figure 12: Natural transmembrane proteins that use light to pump ion of open ion selective pores.
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Figure 13: One photon absorption and dynamics of channelrhodopsin. From Klapoetke, Murata, Kim, Pul-
ver, Birdsey-Benson, Cho, Morimoto, Chuong, Carpenter,Tian, Wang, Xie, Yan, Zhang, Chow, Surek, Melkonian,
Jayaraman, Constantine-Paton, Wong and Boyden, 2014
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Figure 14: Schematic for feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer,
Gauld and Hausser 2018.
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Figure 15: Test of feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer, Gauld and
Hausser 2018.
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