Revised 13 January 2021 19:20

# 0 Neurophotonics for recording and activation of neurons

## 0.1 Genetically expressed optical-based indicators of intracellular $Ca^{2+}$

These molecules are expressed in vivo in specific cell types and initiate an increase in fluorescence in response to the  $Ca^{2+}$  influx that follows an action potential.

Figure 1: The cyclically permutable GFP turned into a detector of intracellular  $Ca^{2+}$ . From Chen, Wardill, Sun, Pulver, Renninger, Baohan, Schreiter, Kerr, Orger, Jayaraman, Looger, Svoboda and Kim, 2013.



## 0.2 In vivo recording of neuronal structure and function with two-photon laser scanning microscopy

Two-photon laser scanning microscopy, properly done, allows changes in intracellular  $Ca^{2+}$  to be measured in neuronal soma down to spines.

## 0.3 In vivo recording of calcium signaling with two-photon laser scanning microscopy

In vivo  $Ca^{2+}$  signals may be recorded after a single spikes, but still the interpretation in terms of numbers of spikes in imperfect and can be unreliable. Figure 3: Essential components of a state-of-the-art two photon microscope. From. Liu, Li, Marvin and Kleinfeld 2019. Cy5.5-dextran labeled vasculature imaged at 1.25 µm



Figure 4: The distortion of cell images by the point spread function is most severe along the optical axis. From Tsai, Mateo, Field, Schaffer, Anderson and Kleinfeld, 2015.



## 0.4 In vivo recording of activity in the locomoting animal

The use of virtual reality in combination with two-photon microscopy permits behavior and circuit dynamics to be concurrently measured.

## 0.5 Genetically expressed optical-based drivers of spiking

Optical activation of channelrhodopsin expressed in the membrane of neurons can be used to photo-excite, or photo-inhibit, neurons.

## 0.6 All optical schemes for feedback control of spiking

The use of two-photon microscopy and concurrent photoactivation permits behavior and circuit dynamics to be concurrently measured and perturbed.

Figure 5: Intracellular responses in superficial V1 of mouse visual cortex using GCaMP6. From Chen, Wardill, Sun, Pulver, Renninger, Baohan, Schreiter, Kerr, Orger, Jayaraman, Looger, Svoboda and Kim, 2019.



Figure 6: Intracellular responses in hippocampal brain slice with cell culture using Oregon Green BABTA. From Sasaki, Takahashi, Matsuki and Ikegaya, 2008.



Figure 7: Intracellular responses in L5 of mouse somatosensory cortex. From Liu, Li, Marvin and Kleinfeld, 2019.



Figure 8: Intracellular  $Ca^{2+}$  is an unreliable measure of spike count and may fail to detect single spikes in vivo. From Theis, Berens, Froudarakis, Reimer, Roson, Baden, Euler, Tolias and Bethge 2016.



Figure 9: Intracellular  $Ca^{2+}$  in distal dendrites of L5b neurons can dissociate from somatic electrical activity. From Helmchen and Waters 2002.



 $Figure \ 10: \ {\tt In vivo hippocampus preparation.} \ {\tt From Dombeck, Harvey, Tian, Looger and Tank \ 2010.}$ 



Figure 11: In vivo recording in hippocampus. From Dombeck, Harvey, Tian, Looger and Tank 2010.



Figure 12: Natural transmembrane proteins that use light to pump ion of open ion selective pores.



Figure 13: One photon absorption and dynamics of channelrhodopsin. From Klapoetke, Murata, Kim, Pulver, Birdsey-Benson, Cho, Morimoto, Chuong, Carpenter, Tian, Wang, Xie, Yan, Zhang, Chow, Surek, Melkonian, Jayaraman, Constantine-Paton, Wong and Boyden, 2014



Figure 14: Schematic for feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer, Gauld and Hausser 2018.



Figure 15: Test of feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer, Gauld and Hausser 2018.

