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1 Introduction to neuronal networks: A
tale of two cells

Our focus is on the dynamics and function of neuronal circuits. Dy-
namics is a common term in physics and describes how the state
variable of a system evolves over time. Think of a hoop that rolls
down an incline plane and just keeps on going, something you prob-
ably first learned about in a high school physics class. At the end
of the day, you write equations for the linear (v) and angular (w)
velocity and, if the hoop rolls without slipping, then v o< w and life
is particularly simple. One NEVER asks ”What is the function of
the hoop?”. But biologists always ask about function. Here the
loop may be part of a cart and the function of the hoop is to allow
the cart to roll. Add a motor and the function of the loop is to
transport the cart. Then one can ask ”What is the function of the
cart?” This line of questioning is never ending.

In neuroscience, the function of the nervous system is to com-
pute something. In general, and somewhat like modern approached
to robotics, there is a control layer and a cognitive layer. A con-
trol layer is close to the sensory input and motor output, like the
preBotzinger circuit that controls breathing. Interestingly, this cir-
cuit was discovered by Jack Feldman, a physicist turned neuro-
scientist that chose the name Botzinger after a bottle of northern
German wine. The preBotzinger circuit is a group of a thousand
neurons that sits at the base of the brain, i.e., near the ventral edge
of the medulla (Figure 1). The computations involves an oscillator
to set a rhythmic output and feedback from blood oxygen and body
movement to modulate the rate of breathing. This is what a lot of
circuits do - they control a motor output.

At the other extreme, is the cognitive function of a brain, This
is the deep and so far dark secret of the brain which sets the course
of future behaviors and, frankly, uses a calculus that we all would
like to understand. For now, we will leave this to the psychologists.
But we can us a tool like bold oxygen level dependent (BOLD) func-
tional magnetic resonant imaging (fMRI), invented by Seji Ogawa,
to see where the brain activity is likely to be localized during dif-
ferent tasks (Figure 2). This is both crude and exciting at the same
time, as we don’t know what leads to abstract thought and problem



Figure 1: Axons from the preBotzinger complex that project to the parahypoglossal
nucleus and the nucleus of the solitary tract regions (top) and ventral respiratory group
complex (bottom). From Tan, Pagliardini, Yang, Janczewski and Feldman 2010.

solving, just that much of the brain appears to be involved in every
task.

Figure 2: BOLD fMRI image of the human brain highlights increased metabolism during
different mental activity. From Fox and Raichle 2007

Let’s start with some elementary circuits, composed of simple
neurons, and work our way forward to large networks. Neurons
send out processes that gather inputs from a few to ten thousand
inputs; these are called dendrites and normally extend over a spatial
distance of 100 pym to 1 mm in mammals (Figure 3). In special
cases like that of somatosensory cells, the distance that they have
to communicate, such as from the tip of the toes to the spinal
cord, is so long that they actively propagate their signal. Neurons
integrate their many inputs from their dendrites within or near their
soma. If the sum of all inputs exceeds a threshold, they produce
an output spike (more on this later) that propagates down a long
process, or processes, called axons. These can be up to meters in
length. While cartoons of neurons draw them as rather stout, real



neurons can span the entire brain with a labyrinth of axons, as
seen in a reconstruction of a secondary sensory cell, whose body, or
soma, is in the trigeminal nucleus but whose axons sprout broadly
to multiple targets (Figure 4).

Figure 3: The classic cartoon of different types of neurons. Source unknown.
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Figure 4: A neuron from the spinal trigeminal nucleus interpolaris and its targets. This
spiking output of this cell codes the valence of a stimulus. Elbaz, Callado-Perez, Demers,
Kleinfeld and Deschenes, 2022.
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1.1 Neurons signal with pulses

Neurons signal with spikes, so called action potentials, as first
shown by Kenneth Cole in 1939. These signals look like deriva-
tives in time of a rising edge (Figure 5). We will get back to the
details of neuronal spiking later when we discuss (and then model)
the ionic basis of the action potential famously described by Alan
Hodgkin and Andrew Huxley. Suffice it to say that neurons are
quiet until the input exceed a threshold level, and then they spike



with a spike rate that is monotonic with the input current. (Figure
6). Internal dynamics within the neuron can change the shape of
the rate-input curve (Figure 7).

Figure 5: cCalculated Hodgkin Huxley neuronal action potential in response to a pulse
g
(black) and in response to a constant input (red). Source unknown.
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Figure 6: Estimation of the firing rate of a neuron and the complete input-output curve.
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Neurons not only produce pulses as outputs, but they prefer to
respond to derivatives as well as inputs. The most effective input to
a neuron is a drop in current followed by a larger increase (Figure 8),
something described only 70 years after the first action potentials
were observed.

1.2 Communication is unidirectional

Neurons signal through structures called synapses, which convert
the voltage of an action potential in the presynaptic neuron into a
current depolarizing or hyperpolarizing current in the postsynaptic
neuron (Figure 9). They do this in a circuitous path, with the
pulses in voltage causing an ion, Ca?*, to flow into the presynaptic
terminal, which causes vesicles with transmitter molecules to fuse
with the membrane and release their molecules across a narrow
cleft. These molecules bind to protein channels in the postsynaptic



Figure 7: Calculated spike rate for a motoneuron in the facial nucleus in response to
different input currents and adaptation currents. Golomb, Moore, Fassihi, Takatoh, Prevosto,
Wang and Kleinfeld, 2022
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cells that transiently open and allow ions to rush through. Thus
a voltage on the presynaptic side of the synapse is converted to a
current on the postsynaptic side. The signaling is solely one-way,
from pre-synaptic to post-synaptic neurons. This is much like the
functional operation of a field effect transistor (Figure 10) although
the physics is completely different. We will not discuss this further
for now - the key issue is that this complicated process ensures that
signaling is unidirectional.

1.3 Threshold units with two rates can be used
to build circuits

For some of the simplest neurons, input-output curve has a sharp
jump followed by a weak slope. We will brutalize this curve and
think in terms of digital quantities for the neuronal output (Figure
11), so that the output is now ”spiking” or ”quiescent”, much like
the ”70” and ”1” signals in digital logic. These threshold units can be
used to build circuits. In fact, despite the complicated dynamics
of biological neurons and the myriad of models to capture these
properties, we can get pretty far toward understanding neuronal
computation with just threshold units.

The simplest neuronal circuit has two neurons with output pat-
terns labeled S , l.e.,

output of neuron 2

§_ ( output of neuron 1 >
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Figure 8: The optimal input to driving a Hodgkin Huxley neuron to spike. Aguera y
Arcas, Fairhall and Bialek 2003
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Fi igure 9: Cartoon of synaptic functlon Source unknown.
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If we consider the neurons as threshold elements, there are four
possible output patterns, i.e.,

s=() e () e () o (1)

1.4 Physical and biological flip-flops

It was known since the 1930’s that bistable devices formed from
threshold elements, like a digital flip-flop (Figure 12), could be built
using feedback to hold electronic summing junctions in a particular
state after their inputs had decayed away. Let’s see how to use
two neurons to build a circuit that restricts the output to only two
states, called stable states, denoted

a=(5)mal5)



Figure 10: The drain-to-source current versus the gat voltage for a field effect transistor.
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Figure 11: Model of a neuronal input-output in terms of a threshold function. Source
unknown.
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We are motivated by electronics, where inhibitory feedback between

two gates is used to make a circuit with a bistable output that is
called a flip-flop.

Figure 12: The Set-Reset flip flop, with further gates to turn it into a toggle or D flip
flop. Black circles denote inhibition. Source unknown.
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1.4.1 Threshold units can be used to build model circuits

Let us now translate this into a neuronal circuit. The input of each
neuron comes from two sources, external inputs denoted I and
inputs from other neurons through connections, i.e., synapses, with



analog-valued synaptic weight W;; . The total input to neuron i is:

N
input to neuroni = Y WyS; + I (1.1)
=1 j#

where N is the number of neurons. Each neuron samples its input
at random times. It changes the value of its output or leaves it
fixed according to a threshold rule with thresholds 6;;.

N
SZ' «— —1if Z Wiij +IieXt < 91 (12)

=1 j#i

N
S; «—  +1if Z Wiij +IieXt > 6

J=1; j#

If we take the case of two neurons, with Wiy = W5 = —1 and for
simplicity If*" = I§™ = 0 and a threshold near zero, then we see
that 51 and 52 are stable outputs. This circuit can be drawn in
”Neural Network” style as nested feedback loops (Figure 13); this
already suggests the extension of the feedback viewpoint to loops
with very many cells.

Figure 13: A two-neurons feedback circuit drawn in ”Neural Network” style. Hertz,
Krogh and Palmer 1991, following Hopfield 1982.
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1.4.2 Setting the threshold

We want a cell to respond to its inputs, which means that the
Z;V W;;S; terms must drive the neuron back and forth across the
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the threshold. In a sense, the inputs, their synaptic weights, and
the value of the threshold are interconnected. To see this, we first
denote the input to the cell, y;, as,

N
,Ui = Z WUS]' + [iext (13)

J=1; i

The best guess for the best value of 6 is found from the average
mid-point of the input to the cell. We thus average the input over
time, denoted < --- >. Then

0 = <p> (1.4)

N

= > Wy <S>+<I">
i

= <>

where we assumed equal activity for all neurons, so < .S >= 0.5 x
(=14 1) = 0. Thus, for our choice of representation S; + 1 and
no eternal input, the optimal threshold is § = 0.

1.4.3 Neurons that act as threshold units can be used to
build real circuits

We saw that biological neurons have input-output relations that
appear as threshold phenomena. Can we use these to make model
networks, in the dish, that illustrate this basic functions. This
was accomplished back in ca 1990 using neurons dissected from the
invertebrate Aplysia (Figure 14). Let check out the issues. First,
we see that the neurons fire nearly as threshold units, albeit each
cell has its own value of the threshold, #. We also see that the
neurons make inhibitory connections so that sign[IWis] = sign[Ws]
= -1. Then

,u1—91 = —|W12‘SQ—IgElt—91 (15)
M2—92 = —|W21\51—18x2t—92

When combined together, we see that the circuit functions as
a flip-flop with reciprocal inhibitory connections. A pulse into the
"off” cell will drive it "on” and inhibit the neighboring cell, driving
it 7off” (Figure 15). The network is now stable in the new state.
A key issue in considering only cells as "on” or ”off”, is that the
synaptic integrations must be slow enough to average other indi-
vidual spikes; this holds for the more general case of considering
rates. In the case of the neuronal flip-flop as the spike rates are one
to a few Hertz while in integration time is about 10 seconds.



Figure 14: A two-neuron circuit with reciprocal inhibition in vitro, and the F-I curves
and synaptic response curves of the two cells. From Kleinfeld, Raccuia-Behling and Chiel

1990.
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Figure 15: A two-neuron circuit in vitro with reciprocal synapses that shows bistability.
From Kleinfeld, Raccuia-Behling and Chiel 1990.
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The in vitro circuit allowed us to explore how the output can be
pinned by large inputs, i.e., the effect of I°** terms relative to the
threshold 6 (Figure 16). The data also illustrate that the magnitude
of the synaptic input |W; 25;| must be large enough to change the
sign of I{** — 61, and vice versa.

1.4.4 Bistable circuits are a common motif

Bistable circuits show up in many places in vivo. They occur at a
"low level” as part of oscillators that drive swimming in the nudi-
branchs Tritonia (Figure 17) and Clione (Figure 18). Although the
output oscillates with a slow period, the output is bistable within

a period.

Similar circuits also drive whisking in the rodent (Figure 19).
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Figure 16: Analysis of the stability diagram of a two-neuron circuit in vitro. From
Kleinfeld, Raccuia-Behling and Chiel 1990.
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While the whisking circuit is comprised of many neurons, the cells
cluster into one of two groups and, using the method of averaging
that we will learn later in the course, can be reduced to a circuit
of two ”effective” neurons. Bistable circuits show up in an abstract
form in ”high level” circuits that lead to ”perceptual switching” in
mammalian vision and cognition (Figure 20)..
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Figure 17: Escape swimming and the circuit and neuronal drive for escape swimming in
Tritonia. Mixed sources including experiments of Willows and Getting.
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Figure 18: The circuit believed to drive escape swimming in Clione. Mixed sources that

include Saterlee.
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Figure 19: Whisking in the rodent is driven by both breathing, in a feedforward manner,
and by an independent whisking oscillator. A detailed model of the oscillator with hundreds of
neurons is reducible to one with reciprocal inhibition between two neurons for an autonomous
whisking oscillator. Golomb, Moore, Fassihi, Takatoh, Prevosto, Wang and Kleinfeld, 2022.
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Figure 20: Classic examples of perceptual rivalry
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