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5 Information and sensory

Our focus has been on the pattern of spiking across neurons. We now ask if there are
global constraints on the spiking. The central issue is if the overall rate is controlled
by some aspect of the stimuli while the detailed pattern is controlled by another aspect.
Thus the pattern of response can be solely dependent on features in the stimulus while
the rate can code overall intensity. Let’s see what the evidence is and consider simple
models that give rise to the evidence.

Elissa Hallem and John Carlson measured the spiking output from 24 different olfac-
tory receptor neurons in the fly in response to 100 different odorants, including natural
and synthetic (Figures 1 and 2). This data was reanalyzed by Charles Stevens. He con-
cludes that ”...the probability distribution of [olfactory] sensory neuron firing rates across
the population of odorant sensory neurons is an exponential for nearly all [pure] odors
and odor mixtures, with the mean rate dependent on the odor concentration.” Thus the
aggregate population activity codes the concentration of an odorant, while the state of
neuronal firing across the population, with different olfactory neuron receptor cells fir-
ing at rates that variety considerably for different odors, codes a particular odor per se
(Figure 3). A similar result is found by reanalyzing Doris Tsao’s data on spike rate in
inferotemporal cortex in monkey for the coding of faces (Figure 4).

A exponential rate P (r) ∝ e−r/ro , is telling. It corresponds to a simple idea from
information theory where the average rate for a population is fixed and one asks for the
distribution of rates, let call it P (r), that satisfies this constraint.

Figure 1: Specificities of broadly tuned olfactory receptor Or8rb across concentrations. The eleven odorants that elicited
the strongest responses at a 10-to-2 dilution were tested at lower concentrations. Colored bars indicate strong responses
(R100 spikes/s). Structures of odorants eliciting strong responses at low concentrations are indicated. Error bars = SEM.
From Hallem and Carlson 2006.

Let us use information theory to get a handle on the probability distribution for spiking
across a network. Let P (n) re the probability of observing a response with spike count n,
where this can be derived with the rate r over a time interval ∆t as n = r∆t. We define
a new quantity, the entropy h[P (n)] as a measure of the surprise.

• We desire an increase in h[P (n)] as P (n) decreases. Thus h[P (n)] ∝ 1/P (n).

1



Figure 2: Odor coding across concentrations (A) Responses of receptors to pure odorants. 5ac = pentyl acetate, 7on =
2-heptanone, 6ol = 1-hexanol, E2-6al = E2-hexenal, 1-8-3ol = 1-octen-3-ol,v2but = ethyl butyrate, d4on = 2,3-butanedione,
2ac = ethyl acetate, ger ac = geranyl acetate, ms = methyl salicylate. (B) Responses to complex mixtures. Responses
of each receptor to the diluent were subtracted from each odorant response. Inhibitory responses are apparent as bars
extending below the x-y plane. From Hallem and Carlson 2006.

• We desire that the measure of h[P (n)] that should be additive for multiple processes.
Thus h[P (n1), P (n2)] = h[P (n1)] + h[P (n2)].

• Together these imply Thus h[P (n)] = − logP (n). We take log and log2 unless
noted.

Let’s take an example of entropy (suggested by Tatyana Sharpee). In ”The Good,
the Bad, and the Ugly”, Tuco Benedicto PacÃfico Juan MarÃa RamÃrez needs to search
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Figure 3: Analysis of nine complex fruit odors at four odor concentrations each. (A) Thirty-six superimposed cumulative
probability distributions of ORN firing rates for nine fruit extracts, each at four concentrations. Twenty-four ORNs were
used to compile each distribution for one odor and one concentration. (B) The mean ORN firing rate (across nine odors
at a single concentration each) as a function of relative concentration (dilution of fruit extract). The least-squares fitted
line has a slope of 0.166. The vertical bars on the data points are the SDs for the nine odors at each odor concentration.
(C) The superimposed cumulative distributions as a function of ORN rate that appear in panel A, replotted after scaling
each distribution to the same mean(100 Hz). (D) The average of the 36 distribution functions from C with an exponential
distribution function with a mean of 100 superimposed. From Stevens 2016.

Figure 4: Constraints on the combinatorial face code. (A) The mean firing rate of active neurons as a function of face
number. The white line represents the grand mean firing rate of 9.7 Hz calculated across the 2,000 individual mean rates.
(B) Cumulative probability distribution of AM neuron rates. The abscissa gives the firing rate for each anterior medial
(AM) neuron, and the ordinate is the cumulative probability. The distribution functions for 2,000 faces are superimposed
(black band), and an exponential distribution with a mean of 9.7 Hz (thin white line) and the average across all 2,000
observed distribution functions (thicker white line) are superimposed. From Stevens 2017.

N = 1025 grave sites in Sad Hill Cemetery for buried treasure (Figure 5).

• Match at first site. Thus P (n) = 1/1024 to find treasure and h[P (n)] = − log(1/1024) =
log(1024) = 10 bits.

• Miss at first site. Thus P (n) = 1023/1024 to not find treasure and h[P (n)] =
log(1024/1023) = 0.0014 bits.
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Figure 5: Tuco running through Sad Hill Cemetery looking for the grave of ”Arch Stanton”. From Sergio Leone 1966.

• Miss at second site. Thus P (n) = 1022/1023 to not find treasure and h[P (n)] =
log(1023/1022) = 0.0014 bits.

• Match at third site. Thus P (n) = 1/1022 to find treasure and h[P (n)] = log(2022) =
9.9972 bits. Note that log(1024/1023) + log(1023/1022) + log(2022) = log(1024) =
10 bits.

• In fact, the total entropy is always 10 bits. Let n be the number of empty sites.
Then

log
N

N − 1
+ log

N − 1

N − 2
+ · · · + log

N − n

N − n− 1
+ log

N − n

N − n− 1
= logN

Let’s take a second example the Shannon entropy, denoted H, which is the sum over
the entropy and is a useful measure of a task.

H =
∫

dnP (n) h[P (n)] (5.5)

=
∫

dnP (n) log(1/P (n))

= −
∫
dnP (n) logP (n)

Where the integral can be replaced
∑

n for a discrete distribution. For a binary process,
where the response in one of two counts (or ON versus OFF), we have P (n) = p or (1−p),
so

H = −p log p− (1− p) log(1− p) (5.6)

This simple but interesting case can also be derived by considering how to arrange n
objects in N sites, with one object per site (Box 1).

4



What is the value of p to maximize the entropy? We compute

0 =
∂H

∂p
(5.7)

= log

(
p

1− p

)

for which p = 1/2.
Let’s try something more interesting and maximize the entropy subject to a constraint

on a function f(n) using Lagrangian multipliers µ and λ.

F = −
∫

dnP (n) logP (n) − µ
∫
dn P (n) − λ

∫
dnP (n)f(n) (5.8)

with ∫
dnP (n) = 1 (5.9)

and ∫
dnP (n)f(n) = no (5.10)

where no constrains We then differentiate

0 =
∂F

∂P
(5.11)

= −1− logP − µ− λf(n)

so
P = e1+µe−λf(n)). (5.12)

From Equation 5.9

e−(1+µ) =
∫

dn e−λf(n)) (5.13)

so

P (n) =
e−λf(n)∫
dn e−λf(n)

(5.14)

Then (See Box 2 for general; approach)

∫
dnP (n) f(n) =

∫
dnf(n) e−λf(n)∫
dn e−λf(n)

(5.15)

=

∫
dn−∂e−λf(n)

∂λ∫
dn e−λf(n)

=

−∂
∫

dn e−λf(n)

∂λ∫
dn e−λf(n)

Thus

⟨f(n)⟩ =
−∂
∫

dne−λf(n)

∂λ∫
dn e−λf(n)

(5.16)
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and for ⟨f(n)⟩ = no we can explicitly do the integrals over the integrals from 0 to ∞ and

no =

−∂ 1
λ

∂λ
1
λ

(5.17)

=
1

λ

and

P (n) =
e−n/no

no

. (5.18)

We have retrieved an exponential distribution for the rate in terms of ro = no/∆t.

Box 1 - Entropy from Choose
The number of ways to arrange n objects in N sites, with one object per site, is

C(N,n) =

(
n
N

)
=

N !

(N − n)!n!

We consider the limit N → ∞ and n → ∞ but the ratio n/N is taken as the probability
of occupancy, p. Stirling’s formula for N ! holds in the limit of large value N as logN ! ≈
N logN −N . The entropy is given by

H =
−1

N
log

(
N !

(N − n)!n!

)
(5.19)

=
−1

N
(logN !− log n!− log(N − n)!)

=
−1

N
(N logN −N − n log n+ n− (N − n) log(N − n) + (N − n))

= −p log p− (1− p) log(1− p)

Box 2 - General approach to constraints with LaGrangian multipliers
We let

∂ log f(x)

∂x
=

1

log f(x)

∂f(x)

∂x
(5.20)

so

−
∂ log

[∫
dn e−λf(n)

]
∂λ

=
−1∫

dn e−λf(n)

∂
∫
dn e−λf(n)

∂λ
(5.21)

=

∫
dn f(n) e−λf(n)∫

dn e−λf(n)

=

∫
dn P (n) f(n)

≃ < f(n) > .
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