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10 Optimal stimuli and receptive fields

We consider the simplest measure of determining the stimulus that is most likely to cause
a neuron to fire. This can be expressed through the spike-triggered average.. We consider
this first for a point stimulus and then for a spatially extended stimulus.

10.1 The optimal input to drive spiking

We previously considered that a step input leads to spiking and that noise can lead to
spiking. But details of the ionic membrane currents should lead to a definitive input as
the best driver of a neuron. While we have not explored such currents so far, the need
to de-inactivate the inactivating component of the sodium channel suggests that a brief
hyperpolarization before a depolarization is optimal. Indeed, using the spike-triggered
agaeraged correlation technique, described next,with a computer model of a Hodgkin
Huxley cell, Blaise Aguera y Arcas and Adrienne Fairhall numerically determined the
optimal current to drive a neuron (Figure 1). The combination of inhibitory and excitatory
components to the input current suggests that this indicates the necessity of coordinating
inhibitory and excitatory inputs in brain circuits. Interestingly, the literature speaks
of ”feed-forward inhibition” and, as we shall see next, the tuning curves for inhibitory
neurons in sensory and motor brain regions typically match those for excitatory neurons.

Figure 1: The optimal linear transfer function, i.e., current waveform, to elicit a spike. From Aguera y Arcas, Fairhall
and Bialek (2003).

Another issue concerns the variability around the time of the spike. Consistent with
an optimal input, Aguera y Arcas and Fairhall observed that the variability in membrane
voltage is quenched at the time of a spike (Figure 2). This implies that the optimal input
will reduce the jitter of spike timing.
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Figure 2: Spike-triggered average of a Hodgkin-Huxley action potential with standard deviations for (top) the input
current I, (middle) the fraction of open K+ and Na+ channels, and (bottom) the membrane voltage V , for the input
current parameters mean Io = 0 and spectral variance S = 6.5 × 10−4nA2s. From Aguera y Arcas, Fairhall and Bialek
(2003).

10.1.1 Transfer function of the spike response

Typically one measures two time series in recording from a neuron in an animal

• V k
app(t) is the applied stimulus or motor output for the k-th trial.

• Sk
meas(t) =

∑
spike times δ(t− tkr) is the measured spike time for the k-th trial.

How well can we reconstruct the stimulus from the spikes” We use the measured informa-
tion to construct a linear filter that allows us to predict the stimulus for an unknown spike
train. In a sense. This idea is old, although it came into use only at the time of WW II,
when there was a big push at the MIT Radar Laboratory to formulate the mathematics
of optimal filtering and prediction. The procedure is as follows:

• We define T (t) as the sought after transfer function.

• We define V k
pred(t) as the predicted stimulus for the k-th trial, based on the measured

spike train, where

V k
pred(t) =

∫ t

−∞
dt′T (t− t′)Sk

meas(t
′) (10.1)

=
∫ t

−∞
dt′T (t− t′)

∑
s

δ(t′ − tkS)

2



=
∑

spike times, S

∫ t

−∞
dt′T (t− t′)δ(t′ − tkS)

=
∑
S

T (t− tkS)

is the predicted output, given by a convolution integral (Figure 3).

Figure 3: Pictorial guide to the convolution of v(t) with u(t).

To determine T (t), we minimize the difference between the actual and the predicted
stimulus, averaged over all trials and time, i.e.,

Error =
∑
k

∫
dt
(
V k
pred(t)− V k

app(t)
)2

(10.2)

=
∑
k

∫
dt
(∫ t

−∞
dt′T (t− t′)Sk

meas(t
′)− V k

app(t)
)2

The error is computed in terms of measured quantities, except for T (t), which we find by
the criteria that we choose T (t) to minimize the error. This is much easier to solve in
the frequency domain, where convolutions turn into products. We consider the Fourier
transformed variables:

V k
app(t) ⇐⇒ Ṽ k

app(f) (10.3)

Sk
meas(t) ⇐⇒ S̃k

meas(f) (10.4)

V k
pred(t) ⇐⇒ Ṽ k

pred(f) (10.5)

T (t) ⇐⇒ T̃ (f) (10.6)

(10.7)
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where

T̃ (f) =
∫ ∞

−∞
dtei2πftT (t) (10.8)

T (t) =
1

2π

∫ ∞

−∞
dfe−i2πftT̃ (f) (10.9)

so that (ignoring causality for the moment) the convolution becomes∫ ∞

−∞
dt′T (t− t′)X(t′) = T̃ (f)X̃(f) (10.10)

and we recall Parseval’s theorem, effectively a conservation of energy, i.e.,∫ ∞

−∞
dt|T (t)|2 =

∫ ∞

−∞
df |T̃ (f)|2 (10.11)

where|T̃ (f)|2 = T̃ (f)T̃ ∗(f). We put the above together to write:

Error =
∑
k

∫
df
∣∣∣Ṽ k

pred(f)− Ṽ k
app(f)

∣∣∣2 (10.12)

=
∫

df
∑
k

(∣∣∣Ṽ k
pred(f)− Ṽ k

app(f)
∣∣∣2)

=
∫

df
∑
k

(∣∣∣T̃ (f)S̃k
meas(f)− Ṽ k

app(f)
∣∣∣2)

=
∫

df
∑
k

(
T̃ (f)S̃k

meas(f)− Ṽ k
app(f)

) (
T̃ ∗(f)S̃k∗

meas(f)− Ṽ k∗
app(f)

)
=

∫
df
∑
k

(
T̃ (f)T̃ ∗(f)|S̃k

meas(f)|2 − T̃ (f)S̃k
meas(f)Ṽ

k∗
app(f)

−Ṽ k
app(f)T̃

∗(f)S̃k∗
meas(f) + |Ṽ k

app(f)|2
)

=
∫

dfT̃ (f)T̃ ∗(f)
∑
k

|S̃k
meas(f)|2 −

∫
dfT̃ (f)

∑
k

S̃k
measṼ

k∗
app(f)

−
∫

dfT̃ ∗(f)
∑
k

Ṽ k
appS̃

k∗
meas(f) +

∫
df
∑
k

|Ṽ k
app(f)|2

The next step is to minimize the error with respect to the transfer function. We
compute the function derivative

∂(Error)

∂T̃ ∗(f)
= 0 (10.13)

so that

0 =
∫

dfT̃ (f)
∑
k

|S̃k
meas(f)|2 −

∫
df
∑
k

Ṽ k
appS̃

k∗
meas(f) (10.14)

=
∫

df

(
T̃ (f)

∑
k

|S̃k
meas(f)|2 −

∑
k

Ṽ k
appS̃

k∗
meas(f)

)
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The expression for T (f) must be valid at each frequency. Thus the frequency representa-
tion of the transfer function is

T̃ (f) =

∑
k Ṽ

k
app(f)S̃

k∗
meas(f)∑

k |S̃k
meas(f)|2

(10.15)

This is the central result.
For the case of measured signal that is a spike train,

T̃ (f) =

∑
k Ṽ

k
app(f)

∑
s e

i2πftkS∑
k

∑
S,S′ ei2πf(t

k
S−tk

S′ )
(10.16)

In the time domain, this is

T (t) =
1

2π

∫
dfe−i2πft

∑
k Ṽ

k
app(f)

∑
s e

i2πftkS∑
k

∑
s,s′ e

i2πf(tkS−tk
S′ )

. (10.17)

Ugly! But this has a simple form when the spike arrival times may be taken to be a
random, e.g., Poisson variable. This occurs if the spike rate is not too high, so that the
refractory period plays no role. In this case the denumerator is just∑

k

∑
S,S′

ei2πf(t
k
S−tk

S′ ) ≈ N (10.18)

where N is the total number of spikes across all trials, and the numerator is just

1

2π

∫
dfe−i2πft

∑
k

Ṽ k
app(f)

∑
S

ei2πft
k
S =

∑
k

∑
S

1

2π

∫
dfe−i2πf(t−tkS)Ṽ k

app(f) (10.19)

=
∑
k

∑
S

V k
app(t− tkS)

Thus T (t) is just the spike triggered average of the stimulus waveform, i.e.,

T (t) ≈ 1

N

∑
k

∑
S

V k
app(t− tkS) (10.20)

and finally we see that all that happens is that the transfer function reports the waveform
of the stimulus that is most likely to cause the neuron to fire.

This procedure has led to an understanding of optimal stimuli for many systems be-
yond a single neuron (Figure 1). As one example, the optimal self-motion signal as a rat
whisks can be based out f recordings from primary vibrissa somatosensory cortex. This
defines a movement receptive field (Figure 4).

10.2 General description of receptive fields

We generalize the phenomenological description of the stimulus that causes a neuron to
fire to space as well as time. As a matter of practice, it is convenient to think in terms of
the visual system (Figure 5) and visual objects (Figure 6), i.e., a pattern of illumination
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Figure 4: The spiking response in vibrissa S1 cortex for whisking without touch for a rat and the calculated optimal
filter. From Fee, Mitra and Kleinfeld (1996)

that evolves over time and space. The receptive field forms a kernel, of filter, such that
the spike rate of the cell is the temporal convolution of the stimulus with the receptive
field and the spatial overlap of the stimulus with the receptive field. The way to think
of this is that the inputs to cell comprise a set of photoreceptors, and each receptors has
an accompanying synaptic weight and time dependence. This is a lot of information to
specify. We shall see that in proactive there is typically only one or two time dependences,
each with an accompanying weight matrix.

Figure 5: Overview of visual processing

.

We define the inhomogeneous spike rate as r(t). This is the rate that goes into a
Poisson rate expression where, for example, the probability of no spikes in the interval

6



Figure 6: Focal attention on faces causes the visual gaze to be maintained at key locations for 100 ms. From Yarbus

.

[0, t] and one spike in the interval;(t, t+ dt] is r(t) · exp
(
−

t∫
0
dt′r(t′)

)
. Then

r(t) = f

Io + ∞∫
−∞

d2x⃗

t∫
−∞

dt′I(x⃗, t′)R(x⃗, t− t′)

 (10.21)

where f [·] is the nonlinear input-output relation, I(r⃗, t) is the stimulus or input, R(x⃗, t) is
the receptive field with x⃗ the two-dimensional spatial vector, and Io is the baseline input.

When the stimuli driven part of the input is small compared to Io, we can expand g [·]
in a Taylor series and write

r(t) ≃ ro + f ′
∞∫

−∞

d2x⃗

t∫
−∞

dt′I(x⃗, t′)R(x⃗, t− t′) (10.22)

where ro = f [Io] and

f ′ =
df

dI

∣∣∣∣∣
I=Io

(10.23)

so that the firing rate is a linear function of the stimulus. This allows us to focus on
the receptive field without worrying about the nonlinearity f [·]. Reviews by Chichilnisky
(2001) and by Aljadeff, Lansdell, Fairhall and Kleinfeld (2017) addresses the assignment
of both R(x⃗, t) and f [·] when the stimulus driven part of the input is not small compared
to Io. Aljadeff et al. (2016) also address high-order statistical descriptions of neuronal
data.

The simplest procedure to define a receptive field is to compute the spike triggered
average, which corresponds to the cross-correlation between the stimulus and the time
of an action potential (Figure 7). This defines the space-time receptive field, as the
averaging occurs for all lag times. It is illustrated for two classes of neurons in visual tha-
lamus (Figure 8), magnocellular (fast, luminance) versus parvocellular (slow, chromatic
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plus luminance sensitive). Note that the receptive field does not have to be simple nor
understandable in simple terms!

Figure 7: Receptive field mapping. From Chichilnisky, 2001

.

As a technical issue, any measure of activity can be used to define a receptive field
- and that includes calcium signals from cells in cortex (Figure 9). In fact, this method
permits the mapping of receptive fields from very many neurons in cortex in the same
imaging field (Figure 10).

To gain some insight into the general response properties of neurons, we recall that a
matrix can always be expanded in terms of its eigenvectors by a singular valued decom-
position (Box 1). In terms of the receptive field, we have

R(x⃗, t) ≡
rank(R)∑
n=1

λnun(x⃗)vn(t) (10.24)

where the functions un(x⃗) form an orthonormal basis set in space and vn(t) for an or-
thonormal basis set in time. The eigenvalues for these basis sets are given by λ2

n and. of
course, are ordered so that λ1 > λ2 > λ3 · ··. When λ1 is the only significant term the
receptive field is said to be separable, as the spatial and temporal functions factor (Figure
11).

10.3 Singular value decomposition

In the expansion

R(x⃗, t) ≡
rank(R)∑
n=1

λnun(x⃗)vn(t) (10.25)
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Figure 8: Spacetime receptive fields for thalamic (LGN) neurons in cat. From Golomb, Kleinfeld, Reid, Shapley and
Shraiman, 1994

.

the functions satisfy the orthonormality constraints

∞∫
−∞

d2x⃗ un(x⃗)um(x⃗) = δnm (10.26)

and
∞∫

−∞

dt′ vn(t
′)vm(t′) = δnm. (10.27)

We now consider the contraction of the receptive field matrices to form a symmetric corre-
lation matrix, i.e.,

C(t, t′) ≡
∞∫

−∞

d2x⃗R(x⃗, t)R(x⃗, t′) (10.28)

=

rank(R)∑
n=1

rank(R)∑
m=1

λnλm

∞∫
−∞

d2x⃗ un(x⃗)um(x⃗) vn(t)vm(t′)

=

rank(R)∑
n=1

rank(R)∑
m=1

λnλm δnm vn(t)vm(t′)

=

rank(R)∑
n=1

λ2
n vn(t)vn(t

′).
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Figure 9: Spatial receptive field for a L2/L3 neuron in mouse visual cortex measured from the neuronal Ca2+ response.
The temporal dimension has been collapsed. From Cossell, Iacaruso, Muir, Houlton, Sader, Ko, Hofer and Mrsic-Flogel,
1994

.

Then vn(t) solves the eigenvalue equation

∞∫
−∞

dt′C(t, t′)vn(t
′) =

rank(R)∑
m=1

λ2
mvm(t)

∞∫
−∞

dt′vn(t
′)vm(t′) (10.29)

= λ2
n vn(t)

and the un(x⃗) are found from

∞∫
−∞

dt′R(x⃗, t′)vn(t
′) =

rank(R)∑
m=1

um(x⃗)

∞∫
−∞

dt′ vm(t′)vn(t
′) (10.30)

= un(x⃗).

In general the receptive field is not separable, as first discussed by the work of McClean
and Palmer (1989) (Figure 12) and analyzed in some detail by Golomb, Kleinfeld, Reid,
Shapley and Shraiman (1994)(Figure 13; this is an analysis of the data in Figure 8). Then

r(t) ≃ ro + f ′
rank(R)∑
n=1

λn

∞∫
−∞

d2x⃗un(x⃗)

t∫
−∞

dt′I(x⃗, t′)vn(t− t′). (10.31)

Now suppose that the stimulus is separable, as is often the case in primary sensory areas.
For example, in vision our eyes shift from position to position about five times a second.
In this case we may write

I(x⃗, t) ≡ X(x⃗)T (t). (10.32)

so that

r(t) ≃ ro + f ′
rank(R)∑
n=1

λn

∞∫
−∞

d2x⃗X(x⃗)un(x⃗)

t∫
−∞

dt′T (t′)vn(t− t′). (10.33)
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Figure 10: Spacetime receptive fields for multiple L2/L3 neurons. From Cossell, Iacaruso, Muir, Houlton, Sader, Ko,
Hofer and Mrsic-Flogel, 1994

.

The spatial part of the stimulus that each mode ”sees” is given by the overlap integral of
the spatial pattern of the stimulus with the spatial pattern of each mode, i.e.,

Un =

∞∫
−∞

d2x⃗ X(x⃗) un(x⃗). (10.34)

where the Un are scalars. In this case the un(x⃗) act as the weights and the Un are the
output of say a dendritic branch as opposed to the entire cell.

The time dependence of the stimulus is convoluted with each of the associated temporal
modes to form the temporal evolution for that mode, i.e.,

Vn(t) =

t∫
−∞

dt′ T (t′) vn(t− t′). (10.35)

where the Vn(t) are functions. We thus find

r(t) = ro + f ′
rank(R)∑
n=1

λn Un Vn(t). (10.36)

so that each temporal waveform is weighted by the expansion coefficient for the receptive
field and the spatial overlap of the mode with the stimulus. The point is that the temporal
response of the neuron, given by r(t), depends on the spatial pattern of the input as well
as the temporal evolution of the stimulus. This is what some call a ”temporal code”, i.e.,
the coding of different stimuli, even quasi-static stimuli, by different temporal patterns of

11



Figure 11: Separable visual receptive field. From Chichilnisky, 2001

.

Figure 12: Spacetime receptive fields. From McClean and Palmer, 1989

.

spike rates. The inhomogeneous rate r(t) may evolve in time as fast as the response of
the sensory cells, such at retinal ganglion cells for the case of vision.

A final point is that the summation over modes rarely contains more than a few terms,
not the full rank of the matrix R. The spatial coefficient Un has a signal-to-noise ratio
that varies in proportion to λn for the n− th mode. Thus the above series is cut off after
two or three terms as the signal dives below the noise. The SVD expansion can be used
as a data compression scheme in the description of the receptive field. For magnocellular
cells,

r(t) ≈ ro + [f ′λ1U1] V1(t) + [f ′λ2U2] V2(t). (10.37)

Another interpretation is that each mode corresponds to the input to a different dendrite
of a spatially extended neuron (Figure 14).
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Figure 13: SVD modes of receptive fields from thalamus. From Golomb, Kleinfeld, Reid, Shapley and Shraiman, 1994

.

Figure 14: Near independent integration of inputs along different dendritic branches. From Palmer, Shai, Reeve,
Anderson, Paulsen and Larkum, 2014

.
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