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2 Recurrent neuronal networks: Brain states and

discrete attractors

2.1 Recurrent connections and memories

The storage of memories in the brain is an old and central issue in neuroscience. As we
last discussed, it was known since the 1930’s that bistable devices formed from threshold
elements, like a digital flip-flop, could be built using feedback to hold electronic summing
junctions in a particular state after their inputs had decayed away. By the 1970’s, it was
conjectured that networks with many summing junctions, or neurons, might be able to
store a multitude of states if the feedback was extended across all pairs of cells, i.e., order
N2 connections across N neurons. What are the expected motifs for such circuits? By
extension of the idea of flip-flops, we might expect to find regions of the brain with neurons
whose axon collaterals feed back onto other neurons. This anatomical arrangement was
highlighted for the perform cortex of the olfactory system in a ca 1980’s paper by Haberly
(Figure 1) and by other researchers for the CA3 region of hippocampus. It was explored
theoretically starting in the 1970s and culminated with a pivotal and Nobel Prize winning
contribution by John Hopfield in 1982 and an analysis of Hopfield’s model by Dani Amit,
Hanock Gutfriend and Haim Sompolinsky (1985), including an extension to networks
with diluted connectivity by Bernardo Derrida, Elizabeth Gardner and Annette Zippelius
(1987).

Figure 1: Summary of major excitatory connections in piriform cortex. Each cell represents a population. From Haberly
1985.

The hippocampus seemed a particularly valuable region to consider feedback, as it is
known for the occurrence of place cells. In their simplest substantiation, these are neurons
that fire only when the animal reaches a particular location in the local environment.
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Different cells prefer to spike in different locations. Thus the animals builds up a map
of the space, and in principle can use this map to determine a path to move from one
location to another.

So we have an idea - the use of feedback connections to form memories of many
places, or of anything by extrapolation, and we have biological motivation, in terms of
the anatomical evidence, to understand the dynamics of such networks as well as search
for them in real nervous systems.

2.2 What is a state?

We previously considered the output from neuronal networks with only two cells, so the
notion of a state was pretty obvious. In general, the state is simply the arrangement of
ON or active neurons (+1) and OFF or quiescent neurons (-1) under observation. Ideally
this is every neuron in the circuit, which is possible in some preparations, like ”simple”
invertebrate preparations and maybe, someday, all of cortex. In fact, back in 1987 Larry
Cohen and colleagues measured from about 100 neurons in the mollusc Navanax and
showed that the neuronal activity that underlies feeding events appears to cluster into
states (Figure 2).

Figure 2: Navanax feeding. (A) Voltage sensitive dye recording of 115 neurons yields 22 neurons whose activity that
contributes to 8 states. (B) The movement of the siphon during feeding. From London, Zecevic and Cohen, 1987.

The additional ideal of repeating patterns of states emerged about the same time
through the cortical studies of Moshe Abeles and colleagues. They recorded from frontal
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areas of monkey cortex and tended to see repeated patterns of spikes, even though they
recorded from relatively few cells. Judge for yourself (Figure 3)!

Figure 3: Firing times of six neurons in monkey frontal cortex over a total of 93 trials were used to construct an hidden
Markov model. Six states were identified. From Abeles, Bergman, Gati, Meilijson, Seidemann, Tishby and Vaadia 1995.

Zooming up to modern times, the technology of recording spikes from many cells at the
same time has vastly improved to get a much better view of concurrent neuronal activity.
States appear to occur in preparations that contain tens to hundreds of neurons in which
every cell can be observed at effectively the same time. This is shown from recordings by
Manuel Zimmer and colleagues of neurons in the worm c. Elegans (Figure 4).

Figure 4: Calcium imaging from c. Elegan neurons during movement. Kato, Kaplan, Schrodel, Skora, Lindsay, Yemini,
Lockery and Zimmer 2015

Moving to mammals, high density electrodes - Neuropixels - by Timothy Harris per-
mits cylindrical volumes of the mouse brain to be probed, as seen in the data of Mateo
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Carandini and Kenneth Harris and colleagues (Figure 5). We see many repeating or near
repeating patterns among what is really a very sparse sample, i.e, 104 neurons among the
108 neurons in the mouse brain. The same neurons can be active or quiescent across a
multitude of states.

Figure 5: Sorted output from Neuropixels probes in the brain of mouse, From Stringer, Pachitariu, Steinmetz, Reddy,
Carandini and Harris 2019

One special aspect of all of these and related data is that stable firing patterns exist.
In the last two case one could see patterns without special statistical tools - just recording
of the presentation. A second aspect is that the number of states are few, i.e.,less than
the number of cells, denoted N , and far, far less than the number of possible states, i.e.,
2N .

2.3 Are real networks highly interconnected?

The connectome, or wiring diagram of the brain, has been brain completed only for
most of the fly brain and just for (small) parts of the brains of other animals. We
consider for the moment the connections among the neural integrator for horizontal eye
position position in the juvenile zebrafish, which has been reconstructed over a large
enough region to draw some conclusions (Figures 6 and 7). Here, about 0.1 of the neurons
make recurrent connections on each other; this should be taken as a lower bound on
connections (Figure 8). In any case all this means is that we need 0.1 ∗ N ≫ logN or
N ≫ 35, which is consistent with about 500 neurons in the integrator.

2.4 The network

We consider the dynamics of a fully connected recurrent neuronal network. We will begin
our analysis guided by this task:

Store a set of P patterns ξ⃗k in such a way that when presented with a new
pattern that has partial overlap with an existing pattern S⃗test, the network re-
sponds by producing whichever one of the stored patterns most closely resem-
bles S⃗test (Figure 9). Close is defined by the Hamming distance, the number
of different ”bits” in the pattern.
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Figure 6: Velocity-to-position neural integrator. Schematic showing the proposed wiring of modO, cells that project to
the periphery, along with the two submodules modOI and modOM, and DO neurons that synapses onto ABDM and ABDI.
From Vishwanathan, Sood, Wu, Ramirez, Yang, Kemnitz, Ih, Turner, Lee, Tartavull, Silversmith, Jordan, David, Bland,
Sterling, Seung, Goldman, Aksay and the Eyewires, 2024

Figure 7: Cut-section view of the reconstructed volume and labeling of a synapse. From Vishwanathan, Sood, Wu,
Ramirez, Yang, Kemnitz, Ih, Turner, Lee, Tartavull, Silversmith, Jordan, David, Bland, Sterling, Seung, Goldman, Aksay
and the Eyewires, 2024

The neurons are labelled by i = 1, 2, ... , N and the individual stable patterns are labeled
by k = 1, 2, ... , P .

We denote the activity of the i − th neuron by Si. The input to neuron i is denoted
by µi and is given by

µi =
N∑

j=1; j ̸=i

WijSj + Iexti (2.1)

where the Wij are analog-valued synaptic weights and Iexti is an external input. The
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Figure 8: Connectivity matrix of center neurons organized into two modules (modA, modO). Neurons in the center
were clustered whereas neurons in the periphery were not. Neurons in the periphery were organized by known cell types,
vSPNs and ABD neurons. Colored dots represent the number of synapses. From Vishwanathan, Sood, Wu, Ramirez, Yang,
Kemnitz, Ih, Turner, Lee, Tartavull, Silversmith, Jordan, David, Bland, Sterling, Seung, Goldman, Aksay and the Eyewires,
2024

Figure 9: Function of the network as a content addressable memory in the recovery of a full memory from partial initial
information. from Hertz, Krogh and Palmer 1991, following Hopfield 1982.

dynamics of the network are (Figure 10):

Si ≡ sgn (µi − θi) (2.2)

Clearly the output SI is driven by the external input when Iexti is sufficiently large.
Going forward, we may take θi = 0 ∀i as befits the case of random patterns on which

neuronal outputs take on the values +1 and −1 with equal probability. In the further
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Figure 10: Basic associative or ”Hopfield” network. From Hertz, Krogh and Palmer 1991, following Hopfield 1982.

absence of external input, we have the minimal description

Si ≡ sgn

 N∑
j ̸=i

WijSj

 . (2.3)

There are at least two ways in which we might carry out the updating specified by the
above equation. We could do it synchronously, updating all units simultaneously at each
time step. Or we could do it asynchronously, updating them one at a time. Both kinds
of models are interesting, but the asynchronous choice is more natural for both brains
and artificial networks. The synchronous choice requires a central clock or pacemaker,
and is potentially sensitive to timing errors, as is the case of sequential updating. In the
asynchronous case, which we adopt henceforth, we can proceed in either of two ways:

• At each time step, select at random a unit i to be updated, and apply the update
rule.

• Let each unit independently choose to update itself according to the update rule,
with some constant probability per unit time.

These choices are equivalent, except for the distribution of update intervals. For the
second case there is vanishing small probability of two units choosing to update at exactly
the same moment.

Rather than study a specific problem such as memorizing a particular set of pictures,
we examine the more generic problem of a random set of patterns drawn from a distri-
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bution. For convenience, we will usually take the patterns to be made up of independent
bits ξi that can each take on the values +1 and -1 with equal probability.

Our procedure for testing whether a proposed form of Wij is acceptable is first to see
whether the patterns to be memorized are themselves stable, and then to check whether
small deviations from these patterns are corrected as the network evolves.

2.5 Storing one pattern

To motivate our choice for the connection weights, we consider first the simple case
whether there is just one pattern ξi that we want to memorize. The condition for this
pattern to be stable is just

sgn

 N∑
j ̸=i

Wijξj

 = ξi ∀i (2.4)

since the update rule produces no changes. It is easy to verify this if we take

Wij ∝ ξiξj (2.5)

since ξ2j = 1. We take the constant of proportionality to be 1/N , where N is the number
of units in the network, which yields

Wij =
1

N
ξiξj. (2.6)

Furthermore, it is also obvious that even if a number (fewer than half) of the bits of the
starting pattern Si are wrong, i.e., not equal to ξi, they will be overwhelmed in the sum
for the net input

∑N
j ̸=i WijSj by the majority that are correct, so that sgn[

∑N
j ̸=i WijSj] will

still give ξi.
An initial configuration near to ξi will therefore quickly relax to ξi. This means that the

network will correct errors as desired, and we can say that the pattern ξi is an attractor.
Actually, there are two attractors in this simple case; the other one is at −ξi. This is
called a reversed state. All starting configurations with more than half the bits different
from the original pattern will end up in the reversed state, −ξi.

2.6 Storing many patterns

How do we get the system to recall the most similar of many patterns? The simplest
answer is just to make the synaptic weights Wij by an outer product rule for each of the
P patterns, which corresponds to

Wij =
1

N

P∑
k=1

ξki ξ
k
j . (2.7)

The above rule for synaptic weights is called the ”Hebbian rule” because of the similarity
with a hypothesis made by Hebb in 1949 about the way in which synaptic strengths in
the brain change in response to experience: Hebb suggested changes are proportional
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to the correlation between the firing of the pre- and post-synaptic neurons. The Hebb
prescription automatically yields symmetric Wij’s. This is an unreasonable assumption,
although experimentally symmetric synapses occur more than expected by chance (Fig-
ure 11). Nonetheless, it is useful to study the symmetric case because of the extra insight
that the existence of an energy function affords us.

Figure 11: Experimental evidence for symmetric synapses based on pairwise recordings form L5 pyramidal neurons in
mouse brain slice. Only one pair of neurons are connected in these measurements. From Song, Sjostrom, Reigl, Nelson and
Chklovskii, 2005

2.7 Scaling for error-free storage of many patterns

We consider a Hopfield network with the standard Hebb-like learning rule and ask how
many memories we can imbed in a network of N neurons with the constraint that we
will accept at most one bit of error, i.e., one neuron’s output in only one of the memory
states. The input is

µi =
N∑
j ̸=i

WijSj (2.8)

=
1

N

P∑
k=1

N∑
j ̸=i

ξki ξ
k
j Sj.

Let Sj ≡ ξ1j , one of the stored memory states, so that

µi =
1

N

P∑
k=1

N∑
j ̸=i

ξki ξ
k
j ξ

1
j (2.9)

=
1

N

P∑
k=1

ξki

N∑
j ̸=i

ξkj ξ
1
j

9



=
1

N
ξ1i

N∑
j ̸=i

ξ1j ξ
1
j +

1

N

P∑
k ̸=1

ξki

N∑
j ̸=i

ξkj ξ
1
j

=
N − 1

N
ξ1j +

1

N

P∑
k ̸=1

ξki

N∑
j ̸=i

ξkj ξ
1
j

Thus, in the limit of large N , the first term leads to stability while the second term goes
to zero, so that the average input is

< µi > ≃ ξ1i (2.10)

Even when the second term for pattern 1 is not zero, the state ξ⃗1 is stable if the magnitude
of the second term is smaller than 1, i.e., if the second term cannot change the sign of
the output Sl

i. It turns out that the second term is less than 1 in many cases of interest
if P , the number of patterns, is sufficiently small. Then the stored patterns are all stable
– if we start the system from one of these states the system will remain in that state. A
small fraction of bits different from a stored pattern will be corrected in the same way as
in the single-pattern case; they are overwhelmed in

∑N
j ̸=i

∑P
k ̸=l WijSj by the vast majority

of correct bits. A configuration near to ξ1i thus relaxes to ξ1i .
What is the variance, denoted σ2, induced by the storage of many memories, the so-

called quenched disorder, i.e., noise that is frozen into the network because of the storage
of multiple memories? The second term consists of (P − 1) inner products of random
vectors with (N − 1) terms. Each term is +1 or −1, i..e., binomially distributed, so that
the fluctuation to the input is (see Box 1 for details):

σ =
1

N
·
√
P − 1 ·

√
N − 1 (2.11)

≃
√
P

N
.

Noise hurts only if the magnitude of the noise term exceeds σ = 1. Let’s estimate
the worst case bound of the number of stored memories, P. The goal is to determine the
scaling between P and N. Suppose only the output of one neurons of the N neurons in
one of the P memories can be in error. Thus we can have only one error in NP ”bits”,
the total number of bits stored in the network.

1− perror ≥ 1− 1

NP
(2.12)

or

perror <
1

NP
. (2.13)

We will work in the limit of N → ∞ and P → ∞ but P/N is nonzero with P ≪ N .
Noting that we want to have terms that are only powers of N or (P/N), we take logarithms
to turn multiplications (division) into additions (subtractions) so that we can keep only
leading terms. Then

log perror < − logN − logP (2.14)

< − logN
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We next evaluate the leading terms in perror by the Central Limit Theorem. The
distribution of the quenched noise becomes Gaussian for large P and N , but constant
P/N (Figure 12). Thus the probability of an error in the recall of all stored states is

perror =
1√
2π σ

[ ∫ −1

−∞
e−x2/2σ2

dx +
∫ ∞

+1
e−x2/2σ2

dx
]

(2.15)

=

√
2√

π σ

∫ ∞

+1
e−x2/2σ2

dx

=
2√
π

∫ ∞

1√
2σ

e−x2

dx

≡ erfc

(
1√
2σ

)

where efrc(x) is the complementary error function. Thus

perror = erfc

√ N

2P

 . (2.16)

Figure 12: The probability in the tail of the Gaussian.

The lower limit on the complementary error function is quite large and thus the integral
is being evaluated only far into the positive tail. This allows us to express the integral
in an approximate, analytical form. We find that equation 7.1.23 in the Handbook of
Mathematical Functions, NIST, 1964) states

erfc(z) =
e−z2

x
√
π

[
1 +

∞∑
n=1

(−1)n
(2n− 1)!!

(2z2)n

]
(2.17)

Thus for N/P ≫ 1 the complementary error function may be approximated by an asymp-
totic closed form, whose leading term is

perror ≃
√
2

π

P

N
e−N/2P . (2.18)

11



We take the logarithm to match with the previous form for the error estimate, and expand
to the to dominant term

log perror ≃ − N

2P
− 1

2
log

N

P
− log

π

2
(2.19)

> − N

2P

or

− N

2P
< log perror (2.20)

We now combine the desired (Equation 2.15) and estimated (Equation 2.20) error
probabilities to get

− N

2P
< log perror < − logN (2.21)

or

P <
1

2

N

logN
. (2.22)

Thus we see that an associate memory based on a recurrent Hopfield network stores a
number of memories that scales more weakly than the number of neurons if one cannot
tolerate any errors upon recall. Keep a mind that a linear network stores only one stable
state, e.g., an integrator state. So things are looking good.

This was a worst case analysis. More typically we want to store states with a fixed,
nonzero albeit small error rate. We will explore this possibility next and see if the scaling
among P and N changes. This analysis makes us of statistical mechanics and starts with
an energy description of the state-state of the Hopfield model (See Box 2 for this topic,
which brings intuition as well as a path for calculations).

The essential ingredients for storing multiple stable output patterns in the same set
of synaptic weights are

• Recursive dynamics.

• A nonlinear input-output relation. A linear input-output will support only a stable
stable pattern independent of N (See Boxes 3 and 4)

• A bound on the number of stored states; we will soon see that this bound can be
relaxed to P ∝ N .

2.8 An energy function for symmetric neural networks

One of the most important contributions of Hopfield was to introduce the idea of an energy
function into neural network theory. For the networks we are considering, in which the
connection strengths are symmetric, i.e., Wij = Wji, an appropriate form of the energy
per neuron, ϵi, is

ϵi = −Si

N∑
j;i ̸=j

WijSj . (2.23)
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and the total energy function E is

E =
N∑
i

ϵi (2.24)

= −
N∑

ij;i ̸=j

WijSiSj .

The i = j terms are of no consequence because S2
i = 1; we chose Wii = 0 and in any case

they just contribute a constant to E. The energy function depends on the configuration
Si of the system, where Si means the set of all the Si’s. Typically this surface is quite
hilly.

The central property of an energy function is that it always decreases, or remains
constant, as the system evolves according to its dynamical rule. Thus the attractors,
which we associate with memorized patterns or so-called retrieval states, are at local
minima of the energy surface (Figure 13A,B). Any change in state will decrease the
energy of this system. The change in Energy for a change in output at neuron ”i” is

∆E = −∆Si

N∑
j;i ̸=j

WijSj . (2.25)

where ∆Si = Si(t+∆t)−Si(t). The energy is constant when the state remains unchanged
and decreases for any change in state, since the signs of ∆Si and the input

∑N
j;i ̸=j WijSj

are the same. Changes in the state of the network continue until a local minimum in E
, or a pit in the landscape, is reached, for which ∆Si = 0 for all values of ”i”. Neuronal
dynamics in real brains is, of course, more complex than a flow through many patterns
until a memory state is reached. Yet Hopfield’s abstraction provides a starting point
to characterize dynamics for any neuronal computation, from memory recall to motor
control.

A final point is that the addition of asymmetric connections will lead to flow that does
not converge to a minimum. Weak asymmetry preserves converge to minima form small
distances, but leads to drift for large distances from minima (Figure 13C).

2.8.1 Hebb minimizes the energy

The idea of the energy function as something to be minimized in the stable states gives
us an alternate way to derive the Hebb prescription. Let us start again with the single-
pattern case. We want the energy to be minimized when the overlap between the network
configuration and the stored pattern ξi is largest. We can expand equation 2.24 as

E = −1

2

N∑
i ̸=j

(
1

N

P∑
k=1

ξki ξ
k
j

)
SiSj (2.26)

= − 1

N

P∑
k=1

(
N∑
i=1

Siξ
k
i

) N∑
j=1

Sjξ
k
j


= − 1

N

P∑
k=1

(
N∑
i=1

Siξ
k
i

)2

.
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which is a minimum for S⃗ = ξ⃗k .This approach to finding appropriate Wij’s, or more
complicated forms, is generally useful. If we can write down an energy function whose
minimum satisfies a problem of interest, then we can multiply it out and identify the
components from the coefficient of SiSj.

Figure 13: A and B are the energy landscape for a model with symmetric W. C corresponds to an asymmetric W, for
which the stem can drift or have limit cycles. From Hertz, Krogh and Palmer 1991.

2.9 The phase diagram of the Hopfield model

This section was abstracted from Hertz, Krogh and Palmer (1991) A statistical mechanical
analysis by Amit, Gottfried and Sompolinsky (1985) shows that there is a crucial value
of P/N where memory states no longer exist. A numerical evaluation gives

αC ≡ P

N
|critical ≈ 0.138 . (2.27)

The jump in the number of memory states is considerable: from near-perfect recall to
zero (Figure 14). This tells us that with no internal fast, or thermal, noise the system
jumps discontinuously from a very good working memory with only a few bits in error for
P/N < αC to a ”useless” memory system for P/N > αC .

Figure 14: The error rate upon retrieval for variance, T = 0. From Hertz, Krogh and Palmer 1991, following Amit,
Gutfreund and Sompolinsky 1985.

The phase diagram for the Hopfield model delineates different regimes of behavior in
the P/N (variance) versus fast (thermal) noise, T, plane (Figure 15). There is a roughly
triangular region where the network functions as a memory device (Figure 15A,B). In
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region ”A” the stored memory states form the absolute minima in the system. Their
presence can be defined by the non-zero value of the order parameters

mµ ≡ ⟨⟨ 1
N

N∑
i=1

ξµi ⟨Si⟩⟩⟩ (2.28)

where the averaging is over all configuration and tome (or noise). In region B the stored
the memory states are still minima, but not absolute minima as ”spin glass states” with
zero overlap with the memory states are now the absolute minima.

For a range of P/N there are also mixture states that are correlated with an odd
number of the patterns as discussed earlier (see Box 2). These always have higher free
energy than the desired states. Each type of mixture state is stable in the triangular
region defined by ”A” and ”B”, but with smaller intercepts on both axes. The most
stable mixture states, the triplets we discussed above, live within region ”A” extend to
0.46 on the fast noise (T) axis and 0.03 on the P/N axis.

As we cross into region ”C” the memory states are no longer attractors. There are
only ”spin glass states” and mµ = 0 ∀ µ. However, the network may be stuck network in
a state, particularly as this phase encompasses T = 0. Thus an order parameter, q, that
distinguished between a quenched or frozen system and one that perpetually drifts may
not be zero, i.e.,

q ≡ ⟨⟨ 1
N

N∑
i=1

⟨Si⟩2⟩⟩ (2.29)

In region D the network is completely ergodic, i.e., output of the network continuously
fluctuates with ⟨Si⟩ = 0 and thus q = 0.

Figure 15: The phase diagram of the Hopfield model. From Hertz, Krogh and Palmer 1991, following Amit, Gutfreund
and Sompolinsky 1985.

2.10 Can we relate stable states to a task?

The previous Neuropixels data by Carandini and Harris suggests the presence of states
(Figure 5), as did other data sets, but the states were not clearly linked to specific sensory
or motor tasks. Can we tie states to a task that is is ongoing, such as a memory task, where
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the external cues were removed? This is captured by the delay-to-match task of Joaquin
Fuster; we show a more recent incarnation by Yasushi Miyashita. Here the monkey is
asked to remember a picture and then, after a delay without visual input, compare a new
picture with the old picture (Figure 16). The monkey signals if the two are part of a
matched set.

Figure 16: Delayed match after sample task in monkey recording from IT cortex. From Sakai and Miyashita 1991

The spike rate of different neurons in inferiotemporal cortex are measured while the
monkey is performing this task. Critically, some neurons go up in their firing rate while
others go done in rate. An interested observation is that activity continues throughout the
period of the delay, for which there is no stimulus. This can occur for 20 seconds or more,
i.e., one to two order of magnitudes longer than the integration time of neurons. We take
this as evidence for sustained activity based on neuronal interactions as the recordings are
in regions that appear heavily interconnected. Further, with one exceptional case found
so far, individual neurons do not show multistability.

These experiments also addressed an issue of coding. The visual patterns must be
represented as a state, i.e., a pattern of activation across the neurons. Are these patterns
statistically independent of each other, i.e., are their cross-correlations of order 1/

√
N?

Yasushi Miyashita addressed this by looking at the likelihood of a neuron firing in response
to different visual patterns. Interestingly, he found that the patterns of neuronal firing
are related to the order of presentation of the visual images during training. Images next
in sequence tend to have correlated firing patterns; the autocorrelation for five neurons
decays to 1/e after three patterns (Figure 17),

The experimental correlation length of 3 to 4. In a theoretical work by Dani Amit,
Nicolas Brunel and Misha Tsodyks (1994) that followed this experimental work, a corre-
lation length of 3 to 4 was found adding a correlation term to the Hebbian learning rule,
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Figure 17: Overlap of firing of two neurons for the fixed sequence for patterns used for training. The correlation across
patterns is shown for 5 different cells. From Miyashita 1988

i.e.,

Wij =
1

N

P∑
k=1

ξki ξ
k
j +

a

N

P∑
k=1

ξki ξ
k+1
j . (2.30)

where a < 1; a = 0.5 was used in the published simulations. Let’s just say that this is all
very suggestive given the simplicity of the model.

2.11 Can we manipulate a stable state?

Recorded neuronal activity is not necessarily from brain regions that are part of the
pathway that drives a task. While stimulation of one or a cluster of neighboring neurons
has been shown to bias behavior in regions that map sensory stimuli to the cortical mantle,
or map motor output, one can ask if manipulating a randomly represented state can lead
to a change in behavior. Such an experiment was performed by Michael Hausser and
colleagues, albeit attempted by others. They made us of two properties of hippocampus,
a structure at the apex of internal loops in the brain (Figure 18). First, the circuitry in
areas CA3 has heavy recurrence (Figure 19). Second, the neurons in this region respond
to a specific location in space after they have run around to form a map of the regions
(Figure 20), suggestive of the formation of an attractor. In fact, attractors models of the
hippocampus are always in fashion.

Hausser recorded from neurons in hippocampus that responded to locations all along
a virtual linear track (Figure 21). They selected on one location to focus their interest
and stacked the deck by asking the mouse to lick at this location on the track, designated
the reward location. Thus a readily observable behavior was linked to a place.

Hausser demonstrated that cells were excited at all phases along the virtual track
(Figure 22). And that he could target cells for stimulation. Thus he could potentially
initiate convergence to a state, more than less. During a test trial, Hausser stimulated
a fraction (≈ 10) of the cells that responded at the place on the virtual track that the
animal drank the reward, but during an earlier part of the run. He found that, indeed,
stimulation led to licking (Figure 23). It was as though the animal thought it was at the
reward location, although it was elsewhere.

All this is consistent with, but not a strong demonstration of, attractor networks.
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Figure 18: Schematic of brain-wide circuitry centered on hippocampus.

Figure 19: Schematic of brain circuitry centered on hippocampal area CA3.

Yet we are still in need of experiment that probes the representation in the brain as it
discriminated among a multitude of attractors.

2.12 Noise and spontaneous excitatory states model epilepsy

By analogy with ferromagnetic systems, rate equations of the form used for the Hopfield
model should go into an epileptic state of continuous firing, but not necessarily with every
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Figure 20: Intracellular recording from CA1 in the behaving, free-ranging mouse. From Lee, Manns, Sakmann and
Brecht, 2006

Figure 21: Set up of the virtual record and stimulation task. From Robinson, Descamps, Russell, Buchholz, Bicknell,
Antonov, Lau, Nutbrown, Schmidt-Hieber and Hausser, 2020.

cell firing (Figure 25). Epilepsy typically followed a loss or reduction in inhibition, so that
a particularly simple model is a network with only excitatory connections. This exercise
also allows us to bring up the issue of fast (thernal) noise that is uncorrelated from neuron
to neuron and provides another example of scaling.

We consider N binary neurons, with N ≫ 1, each of which is connected to all other
neighboring neurons. For simplicity, we assume that the synaptic weights Wij are the
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Figure 22: Imaging shows neurons that respond to all locations along the track. From Robinson, Descamps, Russell,
Buchholz, Bicknell, Antonov, Lau, Nutbrown, Schmidt-Hieber and Hausser, 2020.

Figure 23: Stimulating about ten neurons normally active at the reward zone leads to enhanced licking at the time of
stimulation. PC = place cell. From Robinson, Descamps, Russell, Buchholz, Bicknell, Antonov, Lau, Nutbrown, Schmidt-
Hieber and Hausser, 2020.

same for each connections, i.e., Wij = W0. Then there is no spatial structure in the
network and the total input to a given cell has two contributions. One term from the
neighboring cells and one from an external input, which we also take to be the same for
all cells and denote Iext. Then the input is

µi = W0

N∑
j=1

Sj + Iext. (2.31)

The energy per neuron, denoted ϵi, is then defined as

ϵi = −Si µi (2.32)

= −Si W0

N∑
j=1

Sj − Si I
ext

The insight for solving this system is the mean-field approach used by Weiss for ferro-
magnetism. We replace the sum of all neurons by the mean value of Si, denoted < S >,
where

< S > =
1

N

N∑
j=1

Sj. (2.33)
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so that
ϵi = −Si (W0N < S > + Iext). (2.34)

We can now use the expression for the value of the energy in term of the average spike
rate, < S >, to solve self consistently for < S >. We know that the average rate is given
by a Boltzman factor over all of the Si. Thus

< S > =
∑

Si=±1

Si e
−ϵi/kBT/

∑
Si=±1

e−ϵi/kBT (2.35)

=
∑

Si=±1

Si e
Si(W0N<S>+Iext)/kBT/

∑
Si=±1

eSi(W0N<S>+Iext)/kBT

=
e−(W0N<S>+Iext)/kBT − e(W0N<S>+Iext)/kBT

e−(W0N<S>+Iext)/kBT + e(W0N<S>+Iext)/kBT

= tanh

(
W0N < S > +Iext

kBT

)
.

The properties of the solution clearly depend on the ratio W0N/(kBT ), which pits the
connection strength W0 against the noise level per cell kBT/N (Figure 24). We also see
how the input-output function tanh{x} naturally arises.

• For W0N/(kBT ) < 1 , the high noise limit, there is only the solution < S >= 0 in
the absence of an external input h0.

• For W0N/(kBT ) > 1, the low noise limit, there are three solutions in the absence of
an external input h0. One has < S > = 0 but is unstable. The other two solutions
have < S > ̸= 0 and must be found graphically or numerically.

• For sufficiently large |Iext| the network is pushed to a state with< S >= sgn(Iext/kBT )
independent of the interactions.

Figure 24: The graphical solution to the activity < S >.

We see that there is a critical noise level for the onset of an active state and that this
level depends on the strength of the connections and the number of cells. We also see
that an active state can occur spontaneously for W0N/(kBT ) > 1 or kBT < W0N . This
is a metaphor for epilepsy, in which recurrent excitatory connections maintain a spiking
output (although a lack of inhibition appears to be required as a seed).
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Figure 25: The onset of epilepsy recorded in the human brain with indwelling surface electrodes. From Engel 1993

Box 1. A laboriously derivation of the variance

σ2 =
1

N

N∑
i=i

 1

N

P∑
k ̸=1

ξki

N∑
j ̸=i

ξkj ξ
1
j

 1

N

P∑
k′ ̸=1

ξk
′

i

N∑
j′ ̸=i

ξk
′

j′ ξ
1
j′

 (2.36)

=
1

N3

P∑
k ̸=1

P∑
k′ ̸=1

(
N∑
i=i

ξki ξ
k′
i

)
N∑
j ̸=i

ξkj ξ
1
j

N∑
j′ ̸=i

ξk
′

j′ ξ
1
j′

−−−−−→
N → ∞ 1

N3

P∑
k ̸=1

P∑
k′ ̸=1

N δ(k − k′)
N∑
j ̸=i

ξkj ξ
1
j

N∑
j′ ̸=i

ξk
′

j′ ξ
1
j′

−−−−−→
N → ∞ 1

N2

P∑
k ̸=1

N∑
j ̸=i

ξkj ξ
1
j

N∑
j′ ̸=i

ξkj′ξ
1
j′

−−−−−→
N → ∞ 1

N2

N∑
j ̸=i

ξ1j

N∑
j′ ̸=i

ξ1j′

 P∑
k ̸=1

ξkj ξ
k
j′


−−−−−−−−−−−−→
N → ∞; P → ∞ 1

N2

N∑
j ̸=i

ξ1j

N∑
j′ ̸=i

ξ1j′ (P − 1) δ(j − j′)

−−−−−−−−−−−−→
N → ∞; P → ∞ P − 1

N2

N∑
j ̸=i

(
ξ1j

)2
−−−−−−−−−−−−→
N → ∞; P → ∞ (P − 1)(N − 1)

N2

−−−−−−−−−−−−→
N → ∞; P → ∞ P

N

Box 2. The issue of spurious attractors This section was abstracted from Hertz,
Krogh and Palmer (1991). We have shown that the Hebb prescription gives us, for small
enough P , a dynamical system that has attractors, i.e., local minima of the energy function,
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i.e., for the desired states ξ⃗k. But we have not shown that these are the only attractors.
And indeed there are others, as discovered by Amit, Gottfried and Sompolinsky (1985).

• The reversed states −ξ⃗k are minima and have the same energy as the original patterns.
The dynamics and the energy function both have a perfect symmetry, Si ↔ – Si ∀ i.
This is not too troublesome for the retrieved patterns; we could agree to reverse all
the remaining bits when a particular “sign bit” is –1 for example.

• There are stable mixture states ξ⃗mix, which are not equal to any single pattern, but
instead correspond to linear combinations of an odd number of patterns. The simplest
of these are symmetric combinations of three stored patterns with components:

ξmix
i = sgn(±ξ1i ± ξ2i ± ξ3i ) . (2.37)

All 23 = 8 sign combinations are possible, but we consider for definiteness the case
where all the signs are chosen as +’s, i.e., ξmix

i = sgn(ξ1i + ξ2i + ξ3i ). The other cases
are similar. Observe that on average ξmix

i has the same sign at ξ1i three times out
of four; only if ξ2i and ξ3i both have the opposite sign is the overall sign be reversed.
So ξmix

i is Hamming distance N/4 from ξ1i , and of course from ξ2i and ξ3i too; the
mixture states lie at points equidistant from their components. This also implies that∑

i ξ
1
i ξ

mix
i = 3N/4 - N/4 = N/2 on average, as opposed to

∑
i ξ

1
i ξ

1
i = N , so the depth

of the energy minimum is reduced by a factor of 4.

To check the stability, pick out the three special states with k = 1, 2, and 3, still with
all + signs, to find:

µmix
i =

1

N

N∑
j=1

∑
k=1

ξki ξ
k
j ξ

mix
j (2.38)

=
1

2
ξ1i +

1

2
ξ2i +

1

2
ξ3i + cross terms .

Thus the stability condition is satisfied for the mixture state. Similarly 5, 7, ... pat-
terns may be combined. The system does not choose an even number of patterns
because they can add up to zero for some neurons, whereas the neurons must have
nonzero inputs to have defined outputs of ±1.

• For large P there are spurious local minima that are not correlated with any finite
number of the original patters ξ⃗k.

Box 3. Capacity of a linear network
How many states can be stored in a recurrent network with linear interactions? We

make use of a parallel, clocked updating scheme in which we explicitly note the time steps,
i.e.,

ri(t) =
N∑
j=1

Wijrj(t− 1). (2.39)
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In vector notation, this is
r⃗(t) = W r⃗(t− 1). (2.40)

We now iterate, the synchronous equivalent of recurrence, starting from time t = 0:

r⃗(1) = W r⃗(0) (2.41)

r⃗(2) = W r⃗(1)

r⃗(3) = W r⃗(2)

·
·

r⃗(n) = W r⃗(n− 1).

This becomes
r⃗(n) = Wn r⃗(0). (2.42)

Noting the unitary transform (Box 4)

W = UΛUT (2.43)

the iterative expression for r⃗(n) becomes,

r⃗(n) =
(
UΛUT

)n
r⃗(0) (2.44)

= UΛUTUΛUT · · ·UΛUT r⃗(0)

= UΛnUT r⃗(0).

But the diagonal matrix Λn, when rank ordered so that λ1 is the dominant eigenvalue,
becomes

Λn =



λn
1 0 0 · · ·
0 λn

2 0
0 0 λn

3

·
·
·


= λn

1



1 0 0 · · ·
0
(
λ2
λ1

)n
0

0 0
(
λ3
λ1

)n
·
·
·


−−−−→n → ∞ λn

1



1 0 0 · · ·
0 0 0
0 0 0
·
·
·


.

Thus the system converges to a numerical factor times the dominant eigenvector of W, i.e.,

r⃗(n) −−−−→n → ∞ λn
1



· · ·
· · ·
· · ·
µ⃗1 µ⃗2 · · · µ⃗N

· · ·
· · ·
· · ·





1 0 0 0 · · ·
0 0 0 0
0 0 0 0
·
·
·
·





· · · µ⃗1 · · ·
· · · µ⃗2 · · ·
· · · µ⃗3 · · ·

·
·
·

· · · µ⃗N · · ·


r⃗(0)

which becomes
r⃗(n) −−−−→n → ∞ λn

1 [µ⃗1 · r⃗(0)] µ⃗1 (2.45)

and thus only a single state is supported in an iterative network comprised of linear neurons.
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Box 4. Review of Unitary Transforms
Recall that a matrix W satisfies an eigenvalue equation

W µ⃗k = λkµ⃗k (2.46)

where k labels labels the eigenvalue with k = 1, ..., N and includes the case of potential
degenerate eigenvectors. The eigenvalues are real numbers when W is a symmetric matrix
whose elements are real. The spectral theorem states that a symmetric matrix whose ele-
ments are real can be diagonalized by a matrix transformation by a unity transformation
that rotates W and preserves the eigenvalues, i.e.,

W = UΛUT (2.47)

where U is a unitary matrix defined through UUT = I and det(U) = 1. Each column in U
is one of the eigenvectors µ⃗k, i.e.,

U =



· · ·
· · ·
· · ·
µ⃗1 µ⃗2 · · · µ⃗N

· · ·
· · ·
· · ·


and UT =



· · · µ⃗1 · · ·
· · · µ⃗2 · · ·
· · · µ⃗3 · · ·

·
·
·

· · · µ⃗N · · ·


and the rotated eigenvectors, UTµ⃗, are of the form

UTµ⃗1 =



1
0
0
·
·
·


UTµ⃗2 =



0
1
0
·
·
·


· ··

since W µ⃗k = λkµ⃗k implies Λ UTµ⃗k = λkU
Tµ⃗k, the UTµ⃗k are the eigenvectors of the

diagonalized (rotated) system. The diagonal matrix Λ contains the eigenvalues along the
diagonal, such that

Λ =



λ1 0 0 · · ·
0 λ2 0
0 0 λ3

·
·
·



25


