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1 Tools of the Trade: Electrical and Optical Record-

ing and Perturbation of Neuronal Activity

1.1 Scale of Thermal Fluctuations

Neurons use voltage levels of order kBT/e and voltage dependent conductance, to shift
between the two levels. We now re-examine this viewpoint in terms of synaptic transmis-
sion and noise immunity on the one hand, and the trade-off between noise and the speed
of a networks response on the other hand.

The fundamental voltage scale is the thermal scale, or

kBT

e
≈ 25 mV. (1.1)

We now consider the smallest scale, that of thermal noise, in driving intrinsic fluctuations
in the membrane voltage. Ion flow across the membrane is defined by a net conductance,
G, across the cell. One way to derive the equation for the thermal noise is to use the
equipartition theorem to equate the fluctuating energy in the membrane to the thermal
energy, i.e.,

1

2
CδV 2 =

1

2
kBT (1.2)

This leads to a fluctuation in the potential (Figure 1) of size

δV =

√
kBT

C
. (1.3)

A different derivation is given in Box 1. This noise has the same spectral power density
at all frequencies. This is different that other sources of noise, like 1/f noise, that has
origins in processes occurring of a variety of energy scales (Figure 2).

The capacitance is measure of geometry and electric susceptibility ϵ. It is given by
C = ϵm (area/thickness), so that for a thin dielectric sphere of thickness L and radius a,
C = ϵm

4πa2

L
. Thus

δV =

√√√√(kBT
e

)(
L

ϵm

)
e

4πa2
(1.4)

=
1

2a

√√√√(kBT
e

)(
e

cm

)
1

π
.

For most all cells, the ratio ϵm
L

is

cm ≡ ϵm
L

(1.5)

≈ 0.9x10−14 F

µm2
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Figure 1: Thermal noise and the Gaussian amplitude distribution.

Figure 2: Thermal noise with a white - or flat - spectrum and flicker or Brownian noise - with a f−1 amplitude or f−2

spectrum.

and
e

cm
= 1.8× 10−2 mV

µm2
(1.6)

so that

δV ≈ 190µV

a (in µm)
. (1.7)

For a cell of radius a = 10µm,
δV ≈ 20µV. (1.8)

Thus:

• The membrane noise level for cell somata is much less, by three orders of magnitude,
then the thermal voltage kBT/e.

• The membrane noise level for is less, by one order of magnitude, than the typical
minimal synaptic input.
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1.2 Measurement fundamentals

1.2.1 Electrical

Lossy devices like electrodes, and the membrane of cells as discussed above, have a noise
associated with the random movement of charge carriers. This can be expressed in a
general way in terms of the fluctuation-dissipation theorem that relates the loss in energy
in a device to the level of fluctuation in the transport of a quantity, such a charge. Thus
for the case of electrical circuits, an initial current through a closed loop that contains
a resistor will rapidly tend toward zero. This occurs because the resistance dissipates
electrical energy, turning it into heat (Joule heating). However, there is a random fluctu-
ating current flow through the resistor that is caused by the thermal fluctuations of the
electrons in the resistor. This is called Johnson noise. It has zero mean and a variance of
δI2J given by

δI2J =
4kBT∆ν

R
. (1.9)

By the way, this for a single-channel patch electrode, this current must be less than the
current in a channel, so R must be big enough!

A complementary view to look at noise is the voltage in an open circuit across the
resistor. Here the variance of the voltage noise is

δV 2
J = 4kBTR∆ν. (1.10)

. For a scenario in which the noise is 10-times less than that of the 20µV intracellular
membrane noise and the bandwidth matches that of the rise time of the action potential,
requiring ∆ν = 10 kHz, we find R ≃ 200 MΩ. This reflects the reality for intracellular
electrodes. A patch electrode can have considerable less resistance, maybe R ≈ 200 kΩ.

The second issue is that the voltage probe should not draw any current, which is to
say that the resistance should be large. This means that the amplifier used with the
electrode must have an input resistance large compared to the electrode resistance, on
the the range of tens of GOhms; this is reasonable with FET-input amplifiers. In general,
the impedance of the probe must be large compared to that of the source - or system
under study - to avoid perturbing the source.

1.2.2 Optical

Measurements of light, such as that emitted from a fluorescent source, are fundamentally
limited by the Poisson arrival statistics of photons. Achieving this limit requires that
all systematic noise sources, such as an excitation light, are minimized. Shot noise is
expressed as a current δI, i.e.,

δI =
√
2eI∆ν (1.11)

where e is the electronic charge and I is the total current. Typically, the signal that is
measured corresponds to a change in the intensity of light, of a change in I denoted ∆I.
Then the signal-to-noise ratio (SNR) is

SNR =
∆I

δI
(1.12)
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=
∆I

I

√
I

2e∆ν
.

As a practical matter, optical detectors are current sources. They ideally drive a load
with zero impedance so that a voltage difference in not developed across the device. This
is readily achieved using an op-amp configured as a current-to-voltage circuit. The input
impedance is the feedback resistance, R, divided by the open-loop-gain, which is easily
106. Thus a nanoAmp of current is converted to 1 milliVolt using R = 1 MOhm with an
input resistance of only 1 Ohm. A second amplifier can provide additional gain.

Equation 1.13 is an important formula. It states that the SNR varies as the fraction
change of the indicator - say a popular calcium indicator like GCaMP - times the square-
root of the intensity of the light. We can turn this into numbers of photons, n,

SNR =
∆n

n

√
n (1.13)

which clearly states that smaller signals require more photons or more measurements to
achieve a reliable estimate.

As a second practical matter, optical imaging is limited by the absorption of light by
water to a region of about 250 nm to 1.7 µm (Figure 3). Further, the absorption of light
by both oxyhemoglobin and deoxyhemoglobin suggests the use of light that is longer than
630 nm in imaging with vascularized animals, both for the excitation and the emission
wavelengths (Figure 4).

Figure 3: The absorprption spectrum of water from the far ultraviolet to microwaves

1.2.3 Information and SNR

We saw (Eq 1.13) that the signal-to-noise increases as we make more and more measure-
ments. So when do we stop? A principled way to think about this is in terms of the
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Figure 4: The absorprption spectrum of heme in water from violet light to the near infrared, with annotations for
windows used in two-photon imaging ca 2020

transfer of information about the system from repeated measurements. Here the noise
may also include terms from the biological system and various technological sources in
addition to fundamentals such as shot noise. Nonetheless, for specific models of the noise,
we can calculate the information gained about a system from continued measurements.
For quantification in terms of mutual information, denoted IM , and noise assumed to fol-
low Gaussian statistics, which is reasonable for large numbers of measurements, we note
the classic result (Box 2)

IM =
1

2
log

[
1 + (SNR)2

]
(1.14)

where the square occurs because are need to convert to power, e.g., (voltage)2. This states
that the mutual informal rises linearly when the SNR is small, i.e., IM ≃ SNR/2 (recall
ln(1+x) ≈ x for x << 1), and then rises only slowly for when the SNR becomes large, i.e,
IM ≃ log(SNR). So, if experimental time is limited and many sites need to be observed,
one should only measure until the SNR reaches say 10-ish, then move on!

1.3 Modern twists on electrodes

Classical intracellular recording makes use of glass cylindrical electrodes that provide an
intracellular connection to a cell. The modern twist is intracellular recording from a
cortical or hippocampal neurons in a mouse that is running on a maze (Figure 5). This
shows, for example, that neurons can have so much excitatory drive at the center of their
receptive field that the cell is essentially shunted (Figure 6); this phenomena would be
missed by extracellular electrodes.

Classical extracellular recording makes use of metal electrodes that record the flow of
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current outside of a cell and provide a means to infer spikes in a neighboring cell. The
modern twist is extracellular recording from hundreds of sites at once (Figure 7). The site
density is high enough to match waveforms across upwards of ten electrodes and time,
which makes spike sorting a template matching problem in space-time (Figure 8).

1.4 Holistic measures of spiking and behavior

The modern twist of extracellular recording from hundreds of sites at once (Figure 7) has
been employed with freely moving animals and recording of animal motion in a naturalistic
spatial environment. This involved coordinated measures of motion (accelerometers),
images from multiple cameras, and optical photometry with electrode recording. Further,
this is accomplished in a manner that allows high-bandwidth data movement without
impending the movement of the animal through torque in the tether (Figure 9). Feedback
from spike behavior to electrical and optical perturbation signals is accomplished in ¡ 0.5
s (Figure 10).

1.5 Genetically expressed optical-based indicators of intracellu-
lar Ca2+.

In a program started by the late Roger Tsien, these molecules (Figure 1.12) are expressed
in vivo in specific cell types and initiate an increase in fluorescence in response to the
Ca2+ influx that follows an action potential (Figure 12). The latest version from Looger
in GCaMP8 (Figure 13),

1.6 In vivo recording of neuronal structure and function with
two-photon laser scanning microscopy

Denk’s technique of two-photon laser scanning microscopy, properly pushed to the limit
with corrections for the wavefront distortion through tissue (Figure 14), allows changes
in intracellular Ca2+ to be measured in neuronal soma down to spines in nearly all layers
of cortex (Figure 15). Note that the region of observation, the point spread function, is
elongated in ”z” (Figure 16).

1.7 In vivo recording of calcium signaling with two-photon laser
scanning microscopy

In vivo Ca2+ signals may be recorded after a single spike, and from many sites (Figure
17). Still the interpretation in terms of numbers of spikes is imperfect and thus curation
is suggested in quantitative interpretation of signals (Figures 1.12, 19, and 20).

1.8 The technological front of two-photon laser scanning mi-
croscopy

In vivo Ca2+ signals may be recorded deep in the brain using adaptive optics to correct
for the wavefront of light as it scatters going deeper into the brain (Figure ??). Another
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push is the use of miniature, recently 2-1/2 g, head mounted two-photon microscopes
(Figure 21). Together with a prism, these were used to measure for Grid cells in the
medial entorhinal cortex (Figure 22).

1.9 In vivo recording of neuronal structure and function with
light sheet scanning microscopy

A linear method of optical sectioning, properly pushed to the limit with corrections for
the wavefront distortion through tissue (Figures 23 and 24), allows structure of changes
in intracellular Ca2+ to be measured in tissue (Figure 25). Sectioning occurs through per-
pendicular excitation and recording beams, so that lateral resolution sets the z-resolution.
This technique can be fast and efficient, albeit the illumination is sometimes used through
thick tissue and distorted by index changes

1.10 In vivo recording of activity in the locomoting animal

The use of virtual reality in combination with two-photon microscopy permits behavior
and circuit dynamics to be concurrently measured (Figures 26 and 27). Simplified set-ups
work very well ((Figures 28).

1.11 Genetically expressed optical-based drivers of spiking

Optical activation of certain microbial opsin expressed in the membrane of neurons (Figure
29), most famously channelrhodopsin (Figure 30), can be used to photo-excite, or photo-
inhibit, neurons.

1.12 All optical schemes for feedback control of spiking

The use of two-photon imaging and concurrent two-photon photoactivation, plus virtual
reality, permits behavior and circuit dynamics to be concurrently measured and perturbed
solely with light and light-activated molecules (Figures 31, 32, 33, 34, and 35).

Box 1. Self-consistency. Note that a resistor also has a nonzero capacitance
between the leads, denoted C. The parallel combination of R and C will lead to a low
pass filter with time constant RC. Thus the bandwidth will be limited to a maximum of
∆ν ≈ 1/RC. A more precise estimate can be found by equating the decrement in power for
a RC low-pass filter with ∆ν, i.e.,

∆ν =
1

2π

∫ ∞

0
dω

1

1 + (ω/RC)2
=

1

4RC
. (1.15)

Thus the variance of the voltage noise can also be expressed as

δV 2
J = 4kBTR

1

4RC
=

kBT

C
(1.16)

which is the equipartition result we started with above.
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Box 2. Mutual Information and Signal-to-Noise We start with the definition
of conditional probability. Let P (r|s) be fined as the probability of a response r given
a stimulus s. Then the associated Shannon information, denoted H, or equivalently the
entropy of the response, is

H(r, s) = −
∫

dr P (r|s) logP (r|s) (1.17)

The question is if this is larger than a random response. This leads to the definition of the
noise entropy, denoted Hnoise, as an average entropy over all stimuli. Thus

Hnoise(r, s) =

∫
ds P (s)H(r, s) (1.18)

= −
∫ ∫

ds dr P (s)P (r|s) logP (r|s)

The difference between the entropy of the response, denoted Hs(r) where

H(r) = −
∫

dr P (r) logP (r) (1.19)

and Hnoise(r, s) is the a measure of what can be gleamed about the stimulus from the
response. This is known as the mutual information, denoted Im, where

IM = H(r)−Hnoise(r, s) (1.20)

= −
∫

dr P (r) logP (r) +

∫ ∫
ds dr P (s)P (r|s) logP (r|s)

To simply this, we know that we can express P (r) and a sum the conditional probability
P (r|s) summed over all stimuli, or

P (r) = −
∫

dr P (r|s)P (s) (1.21)

Then

IM = −
∫ ∫

dr ds P (r|s)P (s) logP (r) +

∫ ∫
ds dr P (s)P (r|s) logP (r|s) (1.22)

=

∫ ∫
ds dr P (r|s)P (s) log

P (r|s)
P (r)

We can go one more step and express this in terms of the joint probability P (r, s), i.e. the
probability of r and s, where

P (r, s) = P (r|s)P (s) (1.23)

or

P (r, s) = P (s|r)P (r).

For completeness, note that we have just written Bayes’ Theorem, or

P (s|r) = P (s)
P (r|s)
P (r)

(1.24)
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where P (s|r) is denoted the posterior probability, P (r) is denoted the prior probability,
P (r|s) is denoted the likelihood and P (r) is denoted the marginal probability.

We now write

IM =

∫ ∫
ds dr P (r, s) log

P (r, s)

P (r) P (s)
(1.25)

which is zero if the stimulus and the response are uncorrelated, i.e., if P (r, s) = P (r) P (s).
Note the alternate expressions (useful below)

IM =

∫ ∫
ds dr P (r, s) log

P (r|s)
P (r)

(1.26)

or

IM =

∫ ∫
ds dr P (r, s) log

P (s|r)
P (r)

.

Let’s calculate the mutual information when the stimulus and response both can be
modeled as Gaussian random variables.

• Linear response gives
r = Gs+ η (1.27)

where G is the gain of the transduce and η is the additive noise of the transducer,
with variance σ2. This is the output noise of the system; the noise referred to the
input is σ2/G2.

• Let the stimulus s have an average of < s >= 0 and a variance < s2 >. Here < s2 >.
is the signal, i.e., the mean-square of changes in the input about the mean.

• Let the response r, or output of the transducer, have an average of < r >= 0 and a
variance < r2 >. The probability distribution for the response is

•
P (r) =

1√
2π < r2 >

e−r2/2<r2> (1.28)

Using the notation

⟨f(r)⟩ ≡
∫

dr P (r)f(r) (1.29)

The entropy H(r) of this distribution is

H(r) = −⟨logP (r)⟩ (1.30)

= − 1

ln 2

〈1
2
ln
(
2π < r2 >

)
+

r2

2 < r2 >

〉
= − 1

ln 2

[
1

2
ln
(
2π < r2 >

)
+

< r2 >

2 < r2 >

]

= − 1

2 ln 2

[
ln
(
2π < r2 >

)
+ 1

]
where we used log2 x = (1/ ln 2) lnx.

Lets now consider the conditional probability of the response given the stimulus, i.e.,

P (r|s) = 1√
2πσ2

e−(r−Gs)2/2σ2
(1.31)
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where Gs is the mean response. Using the previous notation

⟨f(r)⟩ ≡
∫

dr P (r, s)f(r) (1.32)

and the alternate form for IM (Eq 1.27), we have

IM =
〈
log

P (r|s)
P (r)

〉
(1.33)

=
1

ln 2

[
−−1

2
ln
(
2πσ2

)
+

1

2
ln
(
2π < r2 >

)
− < (r −Gs)2 >

2σ2
+

< r2 >

2 < r2 >

]

= − 1

2 ln 2

(
ln

< r2 >

σ2
− < σ2 >

σ2
+

< r2 >

< r2 >

)

= − 1

2 ln 2
ln

G2 < s2 > + σ2

σ2

(1.34)

where we used < r2 >= G2 < s2 > +σ2, since < s η >= 0 and < η2 >≡ σ2. Then

IM =
1

2
log

(
1 +

< s2 >

σ2/G2

)
(1.35)

Recall that σ2/G2 is the noise power referred the input, so this is in the form of the general
relation IM = (1/2) log [1 + (SNR)2] (Eqn. 1.14), where the signal-to-noise ratio is the
quotient of the standard deviation of the signal to the standard deviation of the noise at the
input.
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Figure 5: Head-mount for jerk-free insertion of an electrode into a pyramidal cell. From Lee, Manns, Sakmann and
Brecht, 2006

Figure 6: Recording from neurons in CA1 of hippocampus as the mouse passes through its place field; bursts of spikes
occurred at regions marked by red dots. From Epsztein, Brecht and Lee, 2011
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Figure 7: Recording from cortex with Neuropixels. From Jun, Steinmetz, Siegle, Denman, Bauza, Barbarits, Lee,
Anastassiou, Andrei, Aydon, Barbic, Blanche, Bonin, Couto, Dutta, Gratiy, Gutnisky, Hausser, Karsh, Ledochowitsch,
Lopez, Mitelut, Musa, Okun, Pachitariu, Putzeys, Rich, Rossant, Sun, Svoboda, Carandini, Harris, Koch, O’Keefe and
Harris, 2017

Figure 8: Spike detection and feature extraction with kilosort and neuropixels probes. a, Short segment of preprocessed
data over 70 channels and 1,000 time points (data from elsewhere16). Insets show an expanded section with multiple
overlapping spikes. b, Example simple templates centered at a single position on the probe (repeated at 1,536 positions
for a probe), and example learned templates centered at different positions on the probe. c. Reconstruction of the data in
panel ”a” based on the templates in panel ”b” and spike times. d, Residual after subtracting the reconstruction from the
data. From Pachitariu, Sridhar, Pennington, Stringer, 2023
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Figure 9: A unified open-source platform for unencumbered freely moving recordings. The top shows a simplified block
diagram, illustrated via the tetrode headstage; multiple devices all communicate with the host PC over a single micro-
coax cable via a serialization protocol. The bottom left shows the integrated nine-axis absolute orientation sensor and 3D
tracking measure animal rotation, which drives the motorized commutator without the need to measure tether torque. The
bottom center illustrates how mice were freely exploring a 3D arena made from Styrofoam pieces of varying heights. The
bottom right showed the worst-case closed-loop latency, from neural voltage reading, to host PC, and back to the headstage.
From Newman, Zhang, Cuevas-Lopez, Miller, Honda, van der Goes, Leighton, Carvalho, Lopes, Lakunina, Siegle, Harnett,
Wilson, Voigts, 2025
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Figure 10: Stable long-term recordings during naturalistic locomotion. The top shows the position of one 3D-tracking
sensor on the headstage during a seven hour long session in which the mouse was free to explore the 3D arena. Red trace
and excerpt show an instance of the mouse spontaneously jumping from a lower to a higher tile. The bottom shows the 3D
position, heading and smoothed firing rate of entire recording. From Newman, Zhang, Cuevas-Lopez, Miller, Honda, van
der Goes, Leighton, Carvalho, Lopes, Lakunina, Siegle, Harnett, Wilson, Voigts, 2025
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Figure 11: The cyclically permutable GFP turned into a detector of intracellular Ca2+. From Chen, Wardill, Sun,
Pulver, Renninger, Baohan, Schreiter, Kerr, Orger, Jayaraman, Looger, Svoboda and Kim, 2013.

Figure 12: Absorption and fluorescent spectrum.
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Figure 13: Intracellular Ca2+ recorded from mouse V1 with GCaMP8s. From Zhang, Rozsa, Liang, Bushey,Wei, Zheng,
Reep, Broussard, Tsang, Tsegaye, Narayan, Obara, Lim, Patel, Zhang, Ahrens, Turner, Wang, , Korff, Schreiter, Svoboda,
Hasseman, Kolb, Looger, 2023

Figure 14: Essential components of a state-of-the-art two photon microscope. From Liu, Li, Marvin and Kleinfeld 2019.
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Figure 15: In vivo recording with adaptive optics from L5b in cortex of awake mice. From Liu, Li, Marvin and Kleinfeld
2019.

Figure 16: The distortion of cell images by the point spread function is most severe along the optical axis. From Tsai,
Mateo, Field, Schaffer, Anderson and Kleinfeld, 2015.
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Figure 17: Intracellular responses in superficial V1 of mouse visual cortex using GCaMP6. From Chen, Wardill, Sun,
Pulver, Renninger, Baohan, Schreiter, Kerr, Orger, Jayaraman, Looger, Svoboda and Kim, 2019.

Figure 18: Intracellular responses in hippocampal brain slice with cell culture using Oregon Green BABTA. From
Sasaki, Takahashi, Matsuki and Ikegaya, 2008.
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Figure 19: Intracellular Ca2+ can be an unreliable measure of spike count and may fail to detect single spikes in vivo.
From Theis, Berens, Froudarakis, Reimer, Roson, Baden, Euler, Tolias and Bethge 2016.
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Figure 20: Intracellular Ca2+ in distal dendrites of L5b neurons can dissociate from somatic electrical activity. From
Helmchen and Waters 2002.

Figure 21: In vivo head-mounted 2P-scope. From Zong, Obenhaus, SkytÃ¸en, Eneqvist, de Jong, Vale, Jorge, Moser
and Moser, 2022
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Figure 22: In vivo recording of grid cells im MEC with a head-mounted 2P-scope. From Zong, Obenhaus, SkytÃ¸en,
Eneqvist, de Jong, Vale, Jorge, Moser and Moser, 2022
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Figure 23: Fundamentals of light-sheet microscopy. 1. From Greger, Swoger and Stelzera, 2007
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Figure 24: Fundamentals of light-sheet microscopy. 2. From Greger, Swoger and Stelzera, 2007
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Figure 25: Application of light-sheet microscopy to recording calcium signals from zebra fish. From Ahrens, Orger,
Robson, Li and Keller, Meth 2013
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Figure 26: In vivo hippocampus preparation. From Dombeck, Harvey, Tian, Looger and Tank 2010.

Figure 27: In vivo recording in hippocampus. From Dombeck, Harvey, Tian, Looger and Tank 2010.
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Figure 28: In vivo hippocampus preparation recorded in a minimal virtual set-up with 1P voltage imaging. From Yael
Cohen, as used in Cohen et al 2019.

Figure 29: Natural transmembrane proteins that use light to pump ion of open ion selective pores.
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Figure 30: One photon absorption and dynamics of channelrhodopsin. From Klapoetke, Murata, Kim, Pulver,
Birdsey-Benson, Cho, Morimoto, Chuong, Carpenter,Tian, Wang, Xie, Yan, Zhang, Chow, Surek, Melkonian, Jayara-
man, Constantine-Paton, Wong and Boyden, 2014

Figure 31: Two-photon action spectra for activating neurons with red-shifted channelrhodopsin C1V1 and action
spectrum for recording Ca2+ transients with GCaMP3.
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Figure 32: Narrow range of excitation for two-photon activation with red-shifted channelrhodopsin ReaChR. From
Chaigneau, Conzitti, Gajowa, Soler-Llavina, Tanese, Brureau, Papagiakoumou, Zeng and Emiliani, 2016

Figure 33: Schematic for feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer, Gauld and
Hausser 2018.

28



Figure 34: Test of feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer, Gauld and Hausser
2018.

Figure 35: Test of feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer, Gauld and Hausser
2018.
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