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9 Variability is a fundamental aspect of neural re-

sponses

We previously learned that neurons use two voltage levels and at voltage dependent
conductance to shift between the two levels. We now re-examine this viewpoint in terms
of the impact of synaptic noise, i.e., variability in the postsynaptic currents currents, and
the trade-off between noise and the speed of a networks response to a changes in total
synaptic input.

9.1 Variance versus mean driven spiking

Up to now we have considered driving neuronal by a change in the mean level of the
input. We take a deeper dive into network dynamics and consider how fluctuations in
postsynaptic voltage, rather than just a changes in the mean value, can drive a neuron
to spike. Recall that noise has a zero mean value and for Gaussian noise is completely
specified in terms of its range by the standard deviation or root-mean square value,
denoted σ. Recall also that while signals can add so that the sum leads to a cancellation
of their total value, their variances, denoted σ2 , add so that

σtotal =
√
σ2
1 + σ2

2 + σ2
3 + · · ·. (9.1)

We are concerned with noise on the scale of synaptic postsynaptic potentials, which
sets the scale at 0.2 mV to 2 mV; the later value is similar to the transition from an
inactive Na+ current to a spike. In fact, intracellular measurements reveal an interesting
fact. The postsynaptic potential is rapidly fluctuating with amplitudes of a few millivolts
(Figure 1). This occurs similarly for excitatory as well as inhibitory neurons. The high
level of noise is surprising at first glance as neurons are believe to average over many
inputs and thus one might imagine that the noise averages away; a Central Limit theorem
arguments. But noise prevails, and as expected for a noisy subthreshold potential, the
neuronal response to repeated presents of the same stimulus leads to a variable response
(Figure 2).

9.1.1 Can noise alone can drive spiking?

Before we consider a mechanism for this noise, it is worth asking asking if noise alone can
drive spiking? The answer is yes. When the average input to the neuron is well above
threshold, the spiking is primarily driven by changes in the mean rate. But when the
average input is held close to threshold, or just below threshold, fluctuations will drive
the neuron to spike (Figure 3). In fact, the spike rate of the neurons can be a monotonic
function of the standard deviation of the input (Figure 4).
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Figure 1: The excitatory and inhibitory postsynaptic potentials for a neurons on primary visual cortex of cat. Note the
similarity of the receptive field for excitatory and inhibitory cells. From Ferster 1988

.

Figure 2: Variability in spike rate with repeated presentation of the same visual random dot pattern. Data from monkey.
From Shadlen and Newsome 1998

.

How do we interpret the mean and variance in terms of spike probability? We use the
approximation of neuronal output as a Bernoulli, i.e., V = 1 if the cell spikes and V = 0
if it does not. In the absence of noise the transition for 0 to 1 is sharp at µ = θ. How does
the average probability of spiking smear when the variance is non-zero? The simplest
possibility is to assume a Gaussian amplitude distribution, as we did in the study of the
capacity of the Hopfield model. We take m(t) as the average output across the network,
i.e.,

m(t) ≡ 1

N

N∑
j=1

Vj(t) (9.2)

2



Figure 3: Mean versus noise driven spiking in spinal cord slice. From Petersen and Berg, eLIFE, 2016

.

Figure 4: Mean versus noise driven spiking in brain slice. From Lundstrom, Higgs, Spain and Fairhall, Nature Neuro-
science 2008

.

so that

m(t) ≈ 1√
2πσ

∫ ∞

θ
dx e−

(x−µ)2

2σ2 (9.3)

=
1√
π

∫ µ−θ√
2σ

−∞
dx e−x2

=
1 + erf

[
µ−θ√
2 σ

]
2

.

When σ is small compared to µ− θ, the transition from m(t) = 0 to m(t) = 1 is weakly
smoothed (Figure 5), with

m(t)
−−−−−−−→
σ ≪ µ− θ 1− 1

2
√
π

√
2 σ

µ− θ
e−

(µ−θ)2

2σ2 . (9.4)

When σ is large compared to µ − θ, the transition from m(t) = 0 to m(t) = 1 is
completely smoothed with

m(t)
−−−−−−−→
σ ≫ µ− θ

1

2
. (9.5)
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Figure 5: Gaussian noise threshold model to estimate effect of noise in driving neuronal responses

.
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The interesting issue for us is to have a fixed input and vary the noise. We see, numerically,
that the spike rate increases monotonically with increasing values of σ to a saturation value
of m = 0.5. Most interestingly, there is a roughly linear region of increase for mean rates
between m = 0.05 and m = 0.25.

9.2 Variability for a single cell

One might expect that the subthreshold potential would be noisy, if there were relatively
few synaptic inputs. This is consistent with the notion of a few strong inputs that one
sees in cortical slice experiments. Another possibility is that the subthreshold potential is
so noisy because large excitatory inputs are offset by large inhibitory inputs, so that their
mean value just about cancels but the variances, of course, add (Figure 6). The notion
of large offsetting currents comes from the intracellular recording experiments initially
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in anesthetized animals (Figure 1) and more recently in awake animals (Figure 7). In
general, excitatory and inhibitory inputs are found to be both large and have the same
sensory receptive fields or ”tuning curves”, so that their inputs act to balance each other,
although this balance is not necessarily exact (Figure 8).

Figure 6: Balanced excitatory and inhibitory currents can lead to noisy input currents; calculated consequences of tight
versus loose balance of excitatory and inhibitory currents. From Denuve and Machens 2016.

Figure 7: Balanced currents are observed in vivo in terms of concurrent measurements of excitation in one cell and
inhibition in another cell that are locked to the gamma rhythm. From Atallah and Scanziani 2009.

What is gained from this organization of offsetting currents? A transient increase
in excitatory input, as may occur with a large burst of excitatory input, will rapidly
depolarize the cell. So networks with balanced excitatory and inhibitory inputs, which
mean large conductances, are believed to trade noise from the balance for the speed gained
from a large total leak conductance. We shall see!

5



Figure 8: Balanced currents are proportional but do not necessarily exactly balance each other. Data from anesthetized
mouse cortex. From Haider, Duque, Hasenstaub and McCormick 2006.

9.2.1 Weak synaptic inputs

Let’s start with a warm up on the scale of noise in the input. We use a rate model. First,
some definitions, The input to cell i from cell j is Wij with j = 1, 2, ... , N , while the
output of the neuron is take as taken as Vi with i = 1, 2, ... , N where V = 1

2
(S + 1) is a

Bernoulli variable with V = 1 if the cell spikes and V = 0 if it does not.
A Bernoulli probability distribution of the random variable V can be thought of as

a model for the set of possible outcomes of any single measurement whose outcomes is
Boolean-valued. The Bernoulli distribution is a special case of the binomial distribution
where a single trial is conducted, i.e., N = 1 for such a binomial distribution. The input
to the i− th neuron, denoted as in the past by µi(t), is:

µi(t) ≡
N∑
j=1

WijVj(t). (9.6)

The standard thermodynamic scaling, so that total synaptic currents are bounded as the
size of the system increases, is that each input has a strength of order 1/N . For simplicity,
let’s take all of the inputs to be equal, so

Wij →
Wo

N
(9.7)

where Wo is of order 1 in magnitude. Let’s define the probability that a cell is spiking as
m, so that V = 1 with probability m and V = 0 with probability 1 −m. Then the sum
over all N inputs is of order 1, with

µi(t) = Wo m(t) ∀ i (9.8)

where m(t) is the order parameter given by the average across the network, i..e.,

m(t) ≡ 1

N

N∑
j=1

Vj(t) (9.9)
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and, for constant connection strengths, the input to all neurons is equal so the population
average is

µ(t) = Wo m(t). (9.10)

The time average is

⟨µ⟩ ≡ 1

T

∫ T/2

−T/2
dt µ(t) (9.11)

≡ Wo
1

T

∫ T/2

−T/2
dt m(t)

= Wo m

and variance across time (see equation 9.13 in Box 1) is

σ2 =
〈
(µi(t)− ⟨µ⟩)2

〉
(9.12)

=
〈
µ2
〉
− ⟨µ⟩2

=
〈
µ2
〉

− W 2
o m2

=
W 2

o

N
(m−m2) + W 2

o m2 −W 2
o m2

=
W 2

o

N
m(1−m).

Box 1. Calculation of the connected variance
We evaluate the first term under the assumption that the correlations in the neuronal

outputs are zero, i.e.,

〈
µ2
〉

=

〈
Wo

N

N∑
j=1

Vj(t)
Wo

N

N∑
k=1

Vk(t)

〉
(9.13)

=

〈
W 2

o

N2

N∑
j=1

N∑
k=1

Vj(t)Vk(t)

〉

= W 2
o

〈
1

N2

N∑
j=1

V 2
j (t) +

1

N2

N∑
j=1

N∑
k ̸=j

Vj(t)Vk(t)

〉

=
W 2

o

N

〈
1

N

N∑
j=1

Vj(t)

〉
+W 2

o

(
N2 −N

N2

)〈 1

N

N∑
j=1

Vj(t)

2〉

=
W 2

o

N
⟨m(t)⟩+W 2

o

(
1− 1

N

)〈
m2(t)

〉
=

W 2
o

N
(m−m2) + W 2

om
2

We see that for large networks the mean level drives the spiking and the variability
goes to zero as 1/N , or equivalently the standard deviation goes to zero as 1/

√
N (Figure

7



9). As expected for a binomial variable, the variance is also zero when all neurons are
active, i.e., m = 1, or quiescent, i.e., m = 0.

Lastly, for a Poisson process, we get the slightly different answer of σ2 = (W 2
o /N)m

where m = rate × time interval.

Figure 9: Averaging over synapses decreases the RMS noise

.

9.2.2 Strong synaptic inputs

How can we have a network with high noise? Let’s recall the issue of networks with a
small fraction of strong connections. The challenge is to recast the input so that the
variance does not diminish to zero as a function of the number of input neurons. This is
where the idea of balanced inhibition and excitation comes into play.

1. We need the input to be the sums of two terms, one excitatory and one inhibitory.

2. We need the total current from these two term to cancel, i.e., be equal and opposite
in sign, to first order. The time dependent variation in the firing rate of a neuron
will reflect variations in the balance of the inputs.

3. We need a small fraction of active inputs, defined as K, where 1 ≪ K ≪ N .

4. With a small number of inputs, the total variance, which is the sum of variances of
the excitatory and inhibitory terms, can be high.

The input to the i-th neuron is now the sum of outputs from excitatory cells, i.e., the
V E
i (t), and inhibitory cells, i.e., the V I

i (t). Thus

µi(t) = µE(t) + µI(t) (9.14)

=
K∑
j=1

WE
ij V

E
j (t) +

K∑
j=1

W I
ijV

I
j

Let WE
ij be an excitatory input and W I

ij be an inhibitory input, simplified as above
(equation 9.9) but now scaled to be large, where large is defined as order 1√

K
rather
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than order 1
K
. Thus

WE
ij → WE

o√
K

and W I
ij → −W I

o√
K

(9.15)

where we implicitly fix the sign of the inhibition. The mean input under the assumed
scaling is

µi(t) = WE
o

1√
K

K∑
j=1

V E
j (t) − W I

o

1√
K

K∑
j=1

V I
j (t) (9.16)

=
√
K

WE
o

1

K

K∑
j=1

V E
j (t) − W I

o

1

K

K∑
j=1

V I
j (t)


=

√
K
[
WE

o mE(t) − W I
om

I(t)
]

where the order parameters for excitation and inhibition are defined by are defined by

mE(t) ≡ 1

K

K∑
j=1

V E
j (t) and mI(t) ≡ 1

K

K∑
j=1

V I
j (t) (9.17)

and we have assumed without loss of generality that the same number of excitatory and
inhibitory inputs.The input is large if the excitatory and inhibitory terms do not cancel
balance to within a factor of 1/

√
K. The variance, following the derivation for the single

input case, is

σ2 =
1

K

K∑
i=1

〈(
µE
i (t)− < µE >

)2〉
+

1

K

K∑
i=1

〈(
µI
i (t)− < µI >

)2〉
(9.18)

=
(
√
KWE

o )2

K
mE(1−mE) +

(
√
KW I

o )
2

K
mI(1−mI)

= (WE
o )2 mE(1−mE) + (W I

o )
2 mI(1−mI).

The important point is that there is no decrement in the variance as K → ∞. Further,
the variance remains nonzero for the special case of WE

o mE = W I
om

I , where the network
is in ”perfect” balance.

9.2.3 Experimental evidence for
√
k scaling

It is fair to ask if there is evidence to support this scaling, which would depend on a
homeostatic mechanism for maintenance. The data comes from networks in cell culture
of different size. The data supports scaling of the synaptic inputs, i.e., the post synaptic
potentials, as 1/K0.6 (Figure 10). This is close to the predicted value of 1/

√
K for strong

inputs, as opposed to 1/K for weak input. Not bad!

9.3 Circuit model

So far we have only address noise and scaling at the level of noise in individual cells.
Now we analyze a network of neurons with balanced inputs (Figure 11). We consider
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Figure 10: In vitro synaptic scaling preserves excitatory-inhibitory balance. From Barres and Reyes, 2016.

Figure 11: Feedback circuit model with two populations of neurons

.

the consequences of the choice of connections in a network on the ability to maintain the
balanced state.

Consider a network of a population of interconnected excitatory (E) and inhibitory
(I) cells.The full equations are

τE
dV E

i (t)

dt
+ V E

i (t) =
[
µE
i (t)− θEi

]
+

(9.19)

and

τI
dV I

i (t)

dt
+ V I

i (t) =
[
µI
i (t)− θIi

]
+
, (9.20)
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where [· · ·]+ is the Heavyside function, τE and τI are the cellular time constant, and the
θEi and θIi are thresholds. The inputs are

µE
i (t) = µE

ext(t) +
K∑
j=1

WEE
i,j V E

j (t) +
K∑
j=1

WEI
i,j V

I
j (t) (9.21)

and

µI
i (t) = µI

ext(t) +
K∑
j=1

W II
i,j V

I
j (t) +

K∑
j=1

W IE
i,j V

E
j (t). (9.22)

As in the case of the model cell, we will scale the synaptic inputs by 1/
√
K, as opposed

to 1/K, i.e.,

WEE
ij → WEE

√
K

; W II
ij → −W II

√
K

; WEI
ij → −WEI

√
K

; W IE
ij → W IE

√
K

(9.23)

where we explicitly put in the negative signs of inhibition. As will soon be clear, we need
to scale the external inputs by

µE
ext(t) →

√
K E mext(t) and µI

ext(t) →
√
K I mext(t) (9.24)

where E and I are inputs of strength of O(1). The dependence on a common term is a
statement that excitatory and inhibitory neurons share the same tuning curve (Figure 1).
All together, we have

µE
i (t) =

√
KEmext(t) +

WEE

√
K

K∑
j=1

V E
j (t)− WEI

√
K

K∑
j=1

V I
j (t) (9.25)

and

µI
i (t) =

√
KImext(t) +

W IE

√
K

K∑
j=1

V E
j (t)− W II

√
K

K∑
j=1

V I
j (t). (9.26)

In terms of the order parameters,

µE(t) =
√
KEmext(t) +

√
KWEE 1

K

K∑
j=1

V E
j (t)−

√
KWEI 1

K

K∑
j=1

V I
j (t)

=
√
KEmext(t) +

√
KWEEmE(t)−

√
KWEImI(t) (9.27)

=
√
K
[
Emext(t) +WEEmE(t)−WEImI(t)

]
and

µI(t) =
√
KImext(t) +

√
KW IE 1

K

K∑
j=1

V E
j (t)−

√
KW II 1

K

K∑
j=1

V I
j (t)

=
√
K
[
Imext(t) +W IEmE(t)−W IImI(t)

]
. (9.28)

As
√
K → ∞ the left hand side goes to zero and the equilibrium state will satisfy

0

(
1√
K

)
= Emext(t) +WEEmE(t)−WEImI(t) (9.29)
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and

0

(
1√
K

)
= Imext(t) +W IEmE(t)−W IImI(t). (9.30)

The implication of this equilibrium condition is that the average input remains finite as
the fluctuations remain large (Figures 12 and 13). This is the balanced state.

Figure 12: Balanced networks have emergent variability. From Shadlen and Newsome, 1994.

Figure 13: Statistics of have emergent variability. From Shadlen and Newsome, 1994.

9.4 The balanced state

Solving the above equations for mo
E and mo

I gives relations for the equilibrium activity of
the excitatory and inhibitory cells in terms of the external drive:

m0
E =

W IIE −WEII

WEEW II −WEIW IE
mext. (9.31)

and

m0
I =

W IEE −WEEI

WEEW II −WEIW IE
mext. (9.32)

Recall that the equilibrium values of activity mo
E and mo

I must be both positive and
bounded by 1. This constrains the values of the synaptic weights.
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9.4.1 Linear response

A seemingly paradoxical effect is that increasing the external inhibitory input, i.e., in-
creasing I, will lead to a net decreased spiking of inhibitory cells and l will concurrently
decrease bothmE andmI (Figure 14). This is a feedback effect. Excitatory and inhibitory
activity track each other until the excitatory cells are completely turned off; this behavior
is seen across cortical regions (Figure 15).

Figure 14: Model predictions of excitatory and inhibitory responses to inhibitory stimulation. (Left) Schematic of model,
showing connections between excitatory (E) and inhibitory (I) neuron populations. (Middle) Predictions for average neural
responses with weak recurrent coupling (left) and strong coupling (right), when inhibitory cells are externally stimulated.
(Right) Schematic of experiment. Extracellular recordings made in visual (V1), primary somatosensory (SOMATO), and
motor/premotor cortices (a: anterior, p: posterior, m: medial, l: lateral) while optogenetically stimulating inhibitory cells
at the recording site in awake VGAT-ChR2 animals. From Sanzeni, Akitake, Goldbach, Leedy, Brunel and Histed 2020.

Figure 15: Inhibition stabilization across cortical areas. (Left) Motor/premotor cortex recordings and motor cortex
population firing rates for E and I units. Initial mean response of inhibitory cells is negative, showing paradoxical sup-
pression. Mean rate is significantly reduced. (Right) Similar experiment but for recordings from somatosensory cortex; the
mean I rate is significantly reduced. From Sanzeni, Akitake, Goldbach, Leedy, Brunel and Histed 2020.

A second issue is that rapid feedback prevents the occurrence of significant correlations.
This depends of having faster inhibitory than excitatory synapses, as occurs for Gaba-A,
but not Gaba-B (Figure 16).

9.4.2 Stability and response speed

We return to the full network equations and look at the variation around the equilibrium
value of mE and mI . Taking the time constants, τ , conversion gains, β, and thresholds
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Figure 16: Synaptic rise and decay times

to be the same for the E and I populations, and denoting

δmE(t) = mE(t)−mo
E (9.33)

and
δmI(t) = mI(t)−mo

I (9.34)

leads to

τ
d δmE(t)

dt
+ δmE(t) =

[
β
√
K
(
WEEδmE(t)−WEIδmI(t)

)]
+

(9.35)

and

τ
d δmI(t)

dt
+ δmI(t) =

[
β
√
K
(
W IEδmE(t)−W IIδmI(t)

)]
+
, (9.36)

where β is the gain of the I-O function. When the neurons are active, this reduces to the
linear equations

τ
d δmE(t)

dt
+ δmE(t) = β

√
K
(
WEEδmE(t)−WEIδmI(t)

)
(9.37)

and

τ
d δmI(t)

dt
+ δmI(t) = β

√
K
(
W IEδmE(t)−W IIδmI(t)

)
. (9.38)

These linear equations are solved by taking δmE(t) ∝ eλt, so that

(λτ + 1) δmE(t) = β
√
K
(
WEEδmE(t)−WEIδmI(t)

)
(9.39)

and
(λτ + 1) δmI(t) = β

√
K
(
W IEδmE(t)−W IIδmI(t)

)
, (9.40)

which requires that∣∣∣∣∣ β
√
KWEE − 1− λτ −β

√
KWEI

β
√
KW IE −β

√
KW II − 1− λτ

∣∣∣∣∣ = 0 (9.41)
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and leads to

λ1,2 =
β
√
K
(
WEE −W II

)
− 2

2τ
(9.42)

± 1

τ

√√√√(β√K (WEE −W II)− 2

2

)2

− β2K W IEWEI

−−−−−→
K → ∞ β

√
K

τ

WEE −W II

2
±

√√√√(WEE −W II

2

)2

− W IEWEI



=
β
√
K

τ

[
WEE −W II

2

] 1±
√√√√(1− 4

W IEWEI

(WEE −W II)2

) .
The system is stable only if the real part of λ1,2 < 0. This implies

W II > WEE, (9.43)

which is a prediction for connectomic analysis. We note that, by construction, W IEWEI >
0. The response time of the system is shortened by a factor of

√
K, i.e.,

τ

β
→ τ

β
√
K

O(1). (9.44)

The change in recovery speed of the network has not been properly measured. But a
sudden jump in the excitation of cortical input leads to an observed time-constant of
about 10 ms. Unfortunately this is not very different from estimates for isolated neurons
and thus the dynamics of the balanced still is a topic under analysis. More so, the response
rate in cortex appears to largely mirror that of input from thalamus; albeit faster under
awake versus anesthetized conditions (Figure 17).

Figure 17: Response rate of the signal in V1 cortical neurons compared to those in thalamus under two conditions.
Primary visual (V1) cortex appears to track input rates from lateral geniculate (LGN) thalamus. Multi-unit data from ten
animals per point. From Reinhold, Lien and Scanziani 2015
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