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2 Action Potentials - Hodgkin, Huxley, Kirchoff
and Boltzman
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The experiments of Hill, Katz, Hogkin, and Huxley laid out the ionic basis of
spike generation. We have already considered some of the fundamental physics that
goes into this:

e Lipid membranes are the means to form cellular compartments. This, by
definition, provides a means to develop and maintain concentration differences.
the voltage drop is confined to the membrane.

e Electrochemistry, via ionic concentration gradients, is the basis for potentials
across a cell membrane. The alternative - the movement of charge that is
confined to a transmembrane protein - is not observed.

e Pumps for Na* and K, with Cl~ as the dominant counter ion, are the basis
for the concentration gradient. The dominant pump is Na- K-ATPase, aka,
the Na® /K™ exchanger. Suffice it to say that the pump is sufficiently slow so
that it, and other pumps, do not compete with the spike generations. On the
other hand, the pump rate is sufficiently high so that the ion concentration
gradients are maintained for reasonable spike rates.

e Conservation of current, via Kirchoff’s Law, as a means to describe cables is
used as the basis for a description of the transmembrane voltages.

e Permeabilities that can switch with voltage according to a Boltzman relation.
We considered an extreme version of this relation in the past.
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At the time of the original experiments the field of electrical circuits and elec-
trochemistry were pretty mature, so there was a theoretical framework in place for
the planning of experiments and interpretations. But our discussion certainly has
more structure built into it than is suggested by the historical record.

2.1 Cable Equation with Active Currents

Let’s develop the framework for the physics and electrochemistry of the action po-
tential. This allows one to form a plan, and thus put the experiments in a context.
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where I,,,(x,t) now includes all membrane currents, including the V2™ current
due to passive flow. The sign convention is that current flows out.

The value of the currents I,,,(x,t) are given by the Nernst-Plank relation, which
properly accounts for the difference in conductance moving from region of high
charge density to that of low charge density, and wvice versa. Thus for the Na™
current, the the charge density is higher outside the cell,
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where the spatial dependence of the current is determined by the density of pores,
reflected through the functional dependence of the diffusion coefficient through the
pore, D, on x. The possible transient properties of the current are set by the
temporal dependence of D, and the possible switching of the current with voltage
is set by the voltage dependence of D, so that D = D(V, x,t).
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For changes in potential that are |V| < %, the current can be approximated by
a linear relation (at least it often is approximated by a linear relation; it depends
on the definition of is)

INa+ ([L‘,t) ~ gNg+ (V,a:,t)(V(x) — VNaJr) (24)

where gnq+(V,z,t) = €A (%)N . kBLT[Naﬂout is the conductance for the
a
sodium current. The essential nonlinearities of the membrane incorporated into

gna+ () = gna+(x, V), are detailed below.

The total current, I,,,(z, t), incorporates both voltage dependent, i.e., gnq+ (V) x, t)
and gg+(V, z,t) and voltage independent, i.e., goi-(z), terms. In fact, by tradition
all the voltage independent terms are lumped and called greqx(2). To jump to the
chase, we write
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Looking back, the above expression is really quite general since all the ugly volt-
age dependencies can be stuffed into the voltage dependent conductances. Further,
as we shall see, in many relevant cases the channels conduct only over a narrow range
of physiological voltages, so a linear approximation is often not too unreasonable.
Lastly, if addition ions become relevant (did I hear C'a®*?), one can simply add the
relevant terms to the cable equation.

The first thing we do is get rid of spatial variation - life is hard enough. Hodgkin
and Huxley did this by placing a conductor down the center of the axon, a clever
and essential idea at the time.



2.2 Functional Form of the Conductances

The business end is the form of the conductances g;,,(V, ), although in the labora-
tory one measures the current, which is proportional to the product g;o,(V,t)(V —
Vion). The expectation is that the conductance is in the form of a scale factor times a
voltage (and time) dependent term for the opening of channels, denoted P, (V. 1).
This probability is itself the product of any number of voltage and time dependent
terms that sense the membrane voltage and either activate the or inactivate the
current, denoted P, (V,t) and Pj,u(V,t) = 1 — P, (V,t), respectively.

Thus for each channel we can write
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In practice, channels that have been identified to date have identical activating
and identical inactivating terms. For example, we will see that the sodium current
is of the form

gNa'*'(Vv? t) - gNa+Pc?ct(V t)‘P'L/nact(vv t) (27)

In general, the activation and inactivation terms are governed by a first order
equation that describes their dynamic. We have
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where P,.(V, 00) is the steady value of the activation. Thus

dPact(Va t) _ Pact(vy t) - Pact(V7 OO)
dt N T, ObS(V)
In total, there are two inherently voltage dependent terms, the previous steady

state value and the observed time constant. We consider the steady-state behavior
and kinetics of a two-state system as a means of understanding and parameterizing
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the basic physics of these terms in the current. The idea is that a thermal average or
a population of two-state systems is a reasonable portrayal of ionic currents. In fact,
the decomposition of macroscopic currents in terms of channels is a justification for
this.
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For sake of argument, lets say that the activation sensor works by having a dipole
interact with the transmembrane potential. This interaction is
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The steady state extent of activation to inactivation is given by the usual Boltz-
man relation
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where V,, is the internal potential drop across the activation sensor. Thus
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SKETCH - BOLTZMAN FACTORS

We now come to the issue of the observed time constant, or equilibration time
for the channel. In general, from a classical view point, the rate is determined
by the time it take for the sensors to rearrange themselves in the activated versus
inactivated state.

SKETCH - ACTIVATION BARRIERS

The time-constants 7,.¢(V) and 7. (V), in the absence of an applied electric
field, i.e., V = 0, are of the form
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whet v is a molecular attempt frequency and AG, is a barrier height. With
the addition of an electric field, the activation barrier is modified. The simplest
assumption is that 7, (V) is raised as much as 7j,4 (V) is lowered. Thus
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This functional form has the shape of a bowl (an igloo for 7,s(V)). Thus the
larger the magnitude of the voltage change, the shorter the time or the faster the
rate.

The bottom line is that the above forms for P, (V,oc0) and 7,(V') provide a
formulation of the ionic basis for the action potentials. This framework includes the
observation that the peak of the time constants and the midpoint of the activaton
functions occur at the same potential. As we shall see this is usually - but not always
- obeyed.

2.3 The Consequence of Multiple Voltage Sensors

Real channels oftrn have multiple voltage seniors that, if ideal, would give rise
to active currents that are proportion to P,.(V,t) to a power, i.e., P,(V,t) =
PN.(V,t) when N is the power. What is the consequence of this?

The first question concerns the steady state value PY,(V,00). We wish to find
the value of V where the slope, dPY,(V,00)/dV is greatest, which means calculating
V for which d?PX,(V,00)/dV?=0 and plugng this value back into the equation for
the slope.

First, a preliminary.
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which has a zero at the finite voltage of
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Thus there is a shift in the inflection point of the opening probability as a weak
function of V.
The slope at the inflection becomes
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to the slightly larger asymptotic value
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The strongest effect is on the time dependence, whose onset is delayed and steeper
for large values of N. to get a flair of this, consider the approach to steady-state for

PN.(V,t); at short times the leading term is of order (¢/7)", which increase slower

than (¢/7).

(2.26)

2.4 Experimental Self-Consistency of the Hodgkin-Huxley
Model

From a formal point of view, the transmembrane voltage, V' (z,t) and the activation
parameters for each current, P, (V,t), form the state variables for the the system.
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For the Hodgkin-Huxley model there are 4 state variables total, while for models of
thalamic relay neurons the number of state variables is (presently) 13.

The actual decomposition of currents is done by blocking the membrane conduc-
tances to all but one channel and using a voltage clamp to measure I, versus V.
The block is done by pharmacological means or by ion substitution. Currently, the
measurements are best done by measuring "tail” currents to avoid the contributions
of leakage currents. In any case, one arrives at measured currents for each ion that
can be used to parameterize P, (V,00) and 7,s(V') for that ion.
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The Hodgkin-Huxley equations are functions of 4 variables.

o V(x,t) < the transmembrane potential
e m(V,t) < the activation function (P,(V,t)) for Na™ current

e h(V,t) < the inactivation function (a separate function, P/ . .(V,t) = 1 —
P!, (V,t)) for Na® current

act

e n(V,t) « the activation function (P.,(V,t)) for K* current

act

The exact fitting parameters are in standard texts and we will not show them.
The functional dependencies on V' that we expect are clearly seen.
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The dynamic equations are

oV (LC,t) QaQL (l',t) "mINe+ 3
ovizL,t) VYAV (V =V 2.2
T T = A 9 9ra m ( )h( )( Na+) ( 7)
"mIKat 4 T'mYicak "'m
—_— VYV =V — —=2(V - V) + I
2ma " ( )( K+) 2ma ( l) 2ra’

which has 10 independent biophysical parameters, i.e., a, 7, A\, "m, Gnats G+
Tieaks VNat, Vigr, and Ve, as well as 3 (or more in principle) fitting parameters as
exponents on the activation and inactivation functions.

dh(V,t)  he(V) = h(V,t)

at (V) (2.28)
dm(V,t)  me(V)—m(V,1)

i ) (2.29)
dn(V,t)  ne (V) —n(V,t)

at 7,(V) (230)

where n.. (V) = n(V,t — o0o) and the parameterization for each rate expression
has three fitting parameters, i.e., 2/, Vj, 7o5(0), for a total of 9 parameters.
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These circuit equations, derived from current clamp data, were used to predict
the shape of the action potential (in both the space clamped and non-space clamped
case) and later the speed of propagation. The results showed self consistency about
the ionic currents and the voltage changes and the propagation speed.
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To recap, the action potential results from an instability in the conductance
(negative conductance), such that the direction of the membrane current transiently
reverses (growth) in response to a perturbative current. Eventually, the conductance
saturates and recovers to a linear response. In both cases, the cell is leaky and the
effective time-constant is transiently very short, so that the width of the action
potential is small, less than one millisecond. Further, the current flow is localized
so that the voltage disturbance propagates as a wave.
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Action-potential latency. For these results a 2 pulse protocol
was used with variable times between the 2 pulses between 5 and 28 ms.
Pulse duration was 1 ms, pulse amplitude was 30 mAr cm®?. The rest

interval between each 2 pulse sequence was 2 s. .
A: superimposed responses

of an experimental preparation to several 2 pulse stimuli. The times of pulse
delivery are shown below the experimental traces.

B : Simulations for pulse conditions that were
similar to those in A. Pulse amplitude A 30 mAr cm®?. Times of pulse
delivery are indicated below each panel; bar to the right of each panel
represents 50 mV. Top of the bar is 0; bottom is 0 50 mV
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