Preliminary notes - Physics 178/278 - David Kleinfeld - Winter 2015

Orientation Tuning in Visual Cortex and the “Ring” Model of Cortical Gain

An interested puzzle is posed by the response of neurons in V1 cortex to oriented
bars or drafting and oriented grating. Different cells respond to different angles,
with a width and baseline to the response. This defines the tuning curve. The same
cells also respond to the contrast of the scene; at high light levels the contrast and
not the absolute intensity determines the average spike rate while the contrast
determines the modulation of the rate so long as the modulation is not too slow or
too fast.

Two conundrums, summarized in the Current Opinions in Neurobiology article by
Shapley and Sompolinsky, arise:

(1) The width of the tuning curve is independent of contrast. This appears to be
inconsistent with feed forward models, in which a fixed threshold would
cause the width to increase with increasing contrast.

(2)  The width of the tuning curve is largely independent of the aspect ratio of the
oriented bar. For small bars, this is inconsistent with a geometrically-based
feed forward model, i.e., the Hubel-Wiesel Model.

Let’s see if a recurrent network with input broadly tuned to orientation can have
positive feedback to surmount these challenges. In the sense, the stable states of the
network are now features, i.e., preferred orientations of edges in the visual field, as
opposed to abstract memories

I. The model

We have N neurons, each with a preferred angle 0; for different stimuli, where
0 < 6; < 7. Thus:

We hypothesize, consistent with the results of experiment, that the weights of the
synaptic connections between neurons is of the form

2 w; = % J(6; — 6;)

which follows from the functional and anatomical data for neurons in cat V1 (see
Figures).
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Figure Y. Angle map resulting from vectonal addition of eight single-condition iso-orientation maps. A, A picture of the imaged region taken in green light to emphasize the vascular
patcm. 17, Anglc map showing the oricntation preference for every segion of the imaged voitea. Fui computing the Jusal oricostions we ok the activity maps obtained with different
oricntations and added them vectorially on a pixel-hy-pixel hasis. The angle of the resulting vector is then color-coded according 10 the scheme at the bottom of the figure: yelfow stands
for sites responding best 1o moving gratings of homorml ontnuuon rtgmns pn:fcmng moving gratings of vertical orientation are coded in Hlue. and so on. Salient in this map are pinwheel-

like structures around centers ( heads). Each d 48 times. No smoothing algorithms were applied. Scale bar, | mm,
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Figure 3. Corrclograms obtained from 2
two cell pairs. A, The cell pair had sim- \
ilar receptive properties: The first cell \ \

had an oricntation preference of 120°,
directional preference to the right and

an ocular dominance group of 2, the

second cell had identical onentation and

direction preference and an ocular -
dominance group of 3. B, The first cell

was the same cell as the first cell in A. TR
The second cell had different receptive
field properties: an orientation prefer-
ence of 20°, upward directionality, and Vo
an ocular dominance of 3. “50ms

Figure 5. Medial bank penstration
samilar to Figure 3. Note tesdency for
the dinsinshing strengih of the peaked
cormelograms with increancy in distance
between cells along the medial bank
peactrabon and the reference cell. Also
eote the lange difference in receptive fickd
postions between the recording sites
furthest apart.




The general equation for the firing rate of the i-th cell is

3) n® = {5 2708 8) 5® + lexe (6;— 6,)}

where 6, is the orientation of the external stimulus, I,,; is the input from the
sensors, and f{...} is the nonlinear gain function, e.g., f{u} = (1/2)[1 + tanh(w)]. For

drl(t)

. . L 1 1 .
convenience we take the continuum limit, i.e., N — oo and N - - [, to write the

dynamics in terms of the network and external inputs:

(4)

d r(e ) /2

+ 10,0 = f{Z [7°d0" J(O - 0)7(6',) + Lx (6 — 60)}.

II. Mean field equations

We need to incorporate two approximations to make headway and solve the above
set of equations.

The first thing is to specify the interaction and input. We note that in general J(8)

can be a function of all of the harmonics of 9,i.e., 20,30, etc. We take the lowest-
order, non trivial form and write:

(5) JO®—8) = Jo+ Jicos(6— 6)
where we keep the cosine and not the sine term because we expect symmetry with

respect to the interaction. Similarly, we take as input to the network only the output
of “simple cells", i.e., orientation specific cells, in V1 cortex and write:

(6)  lexe (8 —6g) = Io(t) + I1(t) cos(6 — 6,)
where 6, is the orientation (or phase) of the stimulus. For completeness, input from

"complex" cells in cortex would involve terms like cos[2(6 — 6,)].

The second thing is to form a set of mean-field equations to solve for the r(6,t) in a

self-consistent manner. Let’s go back to the input to the cell with the f{...} term. The
integral can be written:

@) = [, d6’ (88" r(8',t) = ’Of”/z do’ r(e',t) + ’1f”/ do’ cos(8 — 0)r(0',1).

/2

Recall that Re {¢!®=67} = cos(8 — 8'). Then:

/2 /2

® 1 [71,d0'J (6 —0)r(0,6)=Jor[T1,d6 r(8,0) +JiRe fe? % [T

This simphfles in terms of two “order parameters”. The mean spike rate at time  is just:

/2

L de’ e (g, t)}

9) 7, = f”/z do’ r(e',1t)

and the amplitude and phase of the activity modulated by the stimulus is just the
complex valued function:



(10) (D) = |ry (D] e=8® = 1 ™/

1 ,i0’ /
- _n/zde e r(0,t)
where the phase is relative to that of the stimulus. So now the interaction simplifies to:

(11) 5 [77/,d6" J(® = 00 1(8,8) =Joro(t) +J1Re{e®Iry ()] eV}

' =Joro(t) + J1Ir (O] cos[6 — w(D)].
When all is said and done, the equation for the activity of the neurons becomes:

dr(6,t)
dt

(12) = +71(6,t) = f{Joro(t) + J1lr (D) cos[68 — Y(B)] + 1o + 1ycos(6 — 8,)} .

Equations 9, 10 and 12 define the system, to be solved self-consistently.

III. Solution in steady state
Here dr(6,t)/dt = 0 and thus (0, t) = r(6) . The equation for the activity becomes
(13) r(0) = f{org + Jiricos(® — §) + I, + I,cos(0 — 6y)}.

Let’s assume that the system in linear, that is, all cells are above threshold but not at
saturating rates. Then maximizing the right hand side allows us to express the

maximum rates, denoted R(0 — 0,), as:

(14) R(6—6¢) = f{JoRo + 1o + (111 + 11) cos(0 — 6¢)} .
We note that

(15) R(®—06y) =Ry + 2R, (6—06y) + -

by Fourier’s Theorem, with the factor of 2 coming from integrating over 2m and not
7. Then the linearized equations, i.e., f{u} = p, yields:

(16) RO + 2R1 COS(B - 90) =]0R0 + IO + UlRl + Il) COS(@ - 90) .

The term that are constant and the terms proportional to cos(6 — 6,) must each be
equated with zero. This leads to a crux result:

(17) Ry =-2

and

(18) R, =-%.

The network amplifies the average rate through the (1—J],) term in the

denominator and, critically, amplifies the modulation by the (2 —]J;) term. The
invariance of the tuning to changes in contrast occurs if the saturating part of full

nonlinear form of f{...} comes into play, so that the output is largely independent of
the value of I;.
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Beyond vision per se, amplification may be seen in the very recent data of Frostig
(Figures below) on the response of units as well as aggregate measures of neuronal
activity in the rat vibrissa system. Stimulation of a single central vibrissa leads to
nearly the same spatial extent of activity as stimulation of some 24 vibrissa (center,
nearest neighbors, and next nearest neighbors). At the very least the radius of the
stimulus is tripled while the width of the response, as judged by the multiunit data,
is increase by only some 40 %. This suggests that the cortical response is saturating;
whether it is explained by our theoretical mechanism remains to be seen!
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A final point is that the network dynamics get interesting for J; > 2, which leads to
the network picking an arbitrary phase, or drifting through all phases which appear
as waves of activity, until the stimulus turns on. This limit can be viewed as a
"moving bump" of activity, for which there is evidence from heading in thalamus in
mice (see Peyrache Buzsaki 2015) and the ellipsoid body in flies (see Seelig and
Jayaraman 2014)

In visual cortex, it is hypothesized that neurons with an orientation preference
between the initial and final orientation of the stimulus would be activated. This
remains to be seen. A somewhat analogous prediction for activity moving among
locations for a visual saccade appears to be observed in the superior colliculus.
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Internally organized mechanisms of the head direction sense
Nature Neuroscience 2015
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Neural dynamics for landmark orientation and angular path integration
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