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Orientation	Tuning	in	Visual	Cortex	and	the	“Ring”	Model	of	Cortical	Gain	

	

An interested puzzle is posed by the response of neurons in V1 cortex to oriented 
bars or drafting and oriented grating. Different cells respond to different angles, 
with a width and baseline to the response. This defines the tuning curve. The same 
cells also respond to the contrast of the scene; at high light levels the contrast and 
not the absolute intensity determines the average spike rate while the contrast 
determines the modulation of the rate so long as the modulation is not too slow or 
too fast. 

Two conundrums, summarized in the Current Opinions in Neurobiology article by 
Shapley and Sompolinsky, arise: 

(1) The width of the tuning curve is independent of contrast. This appears to be 
inconsistent with feed forward models, in which a fixed threshold would 
cause the width to increase with increasing contrast. 

(2) The width of the tuning curve is largely independent of the aspect ratio of the 
oriented bar. For small bars, this is inconsistent with a geometrically-based 
feed forward model, i.e., the Hubel-Wiesel Model. 

Let’s see if a recurrent network with input broadly tuned to orientation can have 
positive feedback to surmount these challenges. In the sense, the stable states of the 
network are now features, i.e., preferred orientations of edges in the visual field, as 
opposed to abstract memories 

 

I. The model 

We have N neurons, each with a preferred angle θ! for different stimuli, where 
0 < θ! < !. Thus: 

(1) θ! =  !
!
𝑖    ∀! . 

We hypothesize, consistent with the results of experiment, that the weights of the 
synaptic connections between neurons is of the form 

(2) W!"  =   !
!

  J θ! −  θ!  

which follows from the functional and anatomical data for neurons in cat V1 (see 
Figures). 

 



 

   

 
 



The general equation for the firing rate of the i-th cell is 

(3) 𝜏 !"! !
!"

+  r! t  =   𝑓 !
!

  J θ! −  θ!!  r! t  +   I!"#  θ! −  θ!    

where θ!  is the orientation of the external stimulus, I!"#  is the input from the 
sensors, and 𝑓 …  is the nonlinear gain function, e.g., 𝑓{µ}  =  (1/2)[1+ tanh(µ)]. For 
convenience we take the continuum limit, i.e., N⟶ ∞ and !

!
 →  !

!
, to write the 

dynamics in terms of the network and external inputs: 

(4) 𝜏 ! ! !,!
!"

+  𝑟 θ, t  =   𝑓 !
!

  𝑑𝜃!!/!
!!/!  𝐽 θ−  θ′  𝑟 𝜃!, 𝑡 +  I!"# 𝜃 − 𝜃!  . 

 

II. Mean field equations 

We need to incorporate two approximations to make headway and solve the above 
set of equations. 

The first thing is to specify the interaction and input. We note that in general 𝐽 θ  
can be a function of all of the harmonics of θ, 𝑖. 𝑒. , 2θ, 3θ, 𝑒𝑡𝑐.  We take the lowest-
order, non trivial form and write: 

(5) J θ−  θ′ =  𝐽! +  𝐽! cos θ−  θ′  
where we keep the cosine and not the sine term because we expect symmetry with 
respect to the interaction. Similarly, we take as input to the network only the output 
of “simple cells", i.e., orientation specific cells, in V1 cortex and write: 

(6)  I!"# 𝜃 − 𝜃! =  𝐼! 𝑡 +  𝐼! 𝑡 cos 𝜃 − 𝜃!  

where 𝜃! is the orientation (or phase) of the stimulus. For completeness, input from 
"complex" cells in cortex would involve terms like 𝑐𝑜𝑠 2 𝜃 − 𝜃! . 

The second thing is to form a set of mean-field equations to solve for the r 𝜃, 𝑡  in a 
self-consistent manner.  Let’s go back to the input to the cell with the 𝑓 …  term. The 
integral can be written: 

(7) !
!

  𝑑𝜃!!/!
!!/!  𝐽 θ− θ′  r 𝜃′, 𝑡  = !!

!
𝑑𝜃!!/!

!!/! 𝑟 θ!, t +  !!
!

𝑑𝜃!!/!
!!/!  𝑐𝑜𝑠 θ−  θ′ 𝑟 θ!, t . 

Recall that 𝑅𝑒 𝑒! !!!! = 𝑐𝑜𝑠 θ−  θ′ . Then: 

(8) !
!

  𝑑𝜃!!/!
!!/! 𝐽 θ− θ′  r 𝜃′, 𝑡  = 𝐽!

!
!

𝑑𝜃!!/!
!!/! 𝑟 θ!, t + 𝐽!𝑅𝑒 𝑒!" !

!
 𝑑𝜃!!/!
!!/! 𝑒!!!!𝑟 θ!, t . 

This simplifies in terms of two “order parameters”. The mean spike rate at time t is just: 

(9) 𝑟! t =  !
!

𝑑𝜃!!/!
!!/! 𝑟 θ!, t  

and the amplitude and phase of the activity modulated by the stimulus is just the 
complex valued function: 



(10) 𝑟! t ≡  𝑟! t  e!!" ! = !
!

𝑑𝜃!!/!
!!/! 𝑒!!!𝑟 θ!, t  

where the phase is relative to that of the stimulus. So now the interaction simplifies to: 

(11) !
!

  𝑑𝜃!!/!
!!/!  𝐽 θ−  θ′  r 𝜃′, 𝑡  = 𝐽!r! t + 𝐽!𝑅𝑒 𝑒!" r! t  e!!" !  

    "  = 𝐽!r! t + 𝐽! r! t  𝑐𝑜𝑠 θ−  ψ t  . 
When all is said and done, the equation for the activity of the neurons becomes: 

(12) 𝜏 !" !,!
!"

+ 𝑟 𝜃, 𝑡 = 𝑓 𝐽!𝑟! t + 𝐽! 𝑟! t  𝑐𝑜𝑠 θ−  ψ t + I! + I!𝑐𝑜𝑠 θ− θ!  . 

Equations 9, 10 and 12 define the system, to be solved self-consistently. 

 

III.  Solution in steady state 

Here 𝑑𝑟 𝜃, 𝑡 𝑑𝑡 = 0 and thus 𝑟 𝜃, 𝑡 = 𝑟 𝜃  . The equation for the activity becomes 

(13) 𝑟 𝜃 = 𝑓 𝐽!r! + 𝐽!r!𝑐𝑜𝑠 θ−  ψ + I! + I!𝑐𝑜𝑠 θ− θ! . 
Let’s assume that the system in linear, that is, all cells are above threshold but not at 
saturating rates. Then maximizing the right hand side allows us to express the 
maximum rates, denoted 𝑅 θ− θ! , as: 

(14) 𝑅 θ− θ!  = 𝑓 𝐽!R! + I! + 𝐽!r! + I!  𝑐𝑜𝑠 θ− θ!  . 
We note that 

(15) 𝑅 θ− θ! = R! + 2R! θ− θ! +⋯ 
by Fourier’s Theorem, with the factor of 2 coming from integrating over 2! and not 
!. Then the linearized equations, i.e., 𝑓{µ}  =  µ,  yields: 

(16) R! + 2R! 𝑐𝑜𝑠 θ− θ! = 𝐽!R! + I! + 𝐽!R! + I!  𝑐𝑜𝑠 θ− θ!  . 

The term that are constant and the terms proportional to 𝑐𝑜𝑠 θ− θ!  must each be 
equated with zero. This leads to a crux result: 

(17) R! =
!!
!!!!

  

and 

(18) R! =
!!
!!!!

 . 

The network amplifies the average rate through the 1− J!  term in the 
denominator and, critically, amplifies the modulation by the 2− J!  term. The 
invariance of the tuning to changes in contrast occurs if the saturating part of full 
nonlinear form of 𝑓 …  comes into play, so that the output is largely independent of 
the value of I!. 



 
 

Beyond vision per se, amplification may be seen in the very recent data of Frostig 
(Figures below) on the response of units as well as aggregate measures of neuronal 
activity in the rat vibrissa system. Stimulation of a single central vibrissa leads to 
nearly the same spatial extent of activity as stimulation of some 24 vibrissa (center, 
nearest neighbors, and next nearest neighbors). At the very least the radius of the 
stimulus is tripled while the width of the response, as judged by the multiunit data, 
is increase by only some 40 %. This suggests that the cortical response is saturating; 
whether it is explained by our theoretical mechanism remains to be seen! 

 
 



 
 

A final point is that the network dynamics get interesting for J! > 2, which leads to 
the network picking an arbitrary phase, or drifting through all phases which appear 
as waves of activity, until the stimulus turns on. This limit can be viewed as a 
"moving bump" of activity, for which there is evidence from heading in thalamus in 
mice (see Peyrache Buzsaki 2015) and the ellipsoid body in flies (see Seelig and 
Jayaraman 2014) 

 

In visual cortex, it is hypothesized that neurons with an orientation preference 
between the initial and final orientation of the stimulus would be activated. This 
remains to be seen. A somewhat analogous prediction for activity moving among 
locations for a visual saccade appears to be observed in the superior colliculus. 
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