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5 Networks of Phase Coupled Neuronal Oscilla-

tors

We consider small networks or simple networks in which cells are coupled only
weakly, in the sense that then can effect each others timing but do not turn each
other on or off or, more formally, do not effect the shape of each others limit cycle.

5.1 Basic formalism

Equation of motion for a general dynamical system

d ~X

dt
= F ( ~X;µ) (5.5)

where the ~X is a vector that contains all the dynamical variables and the µ are
parameters. At steady state

d ~X0

dt
= F ( ~X0;µ) (5.6)

where a closed orbit satisfies

~X0(t+ T ) = ~X0(t) (5.7)

See attached figure from Kuromoto’s book

We associate a value of ψ with each point along ~X(t). Thus the multidimensional
trajectory is reduced to a single variable.

It is useful to extend the definition of ψ off of the limit cycle, or contour, C, to
all points within a tube around C so that ψ is defined for all ~X in the tube. This
will allow us to study perturbations to the original limit cycle.

Look on a surface, denoted G, normal to and in the neighborhood of C. Let P
be a point on G and Q be the point on C, the limit cycle, that passes through the
same surface. We posit that as the trajectories evolve, the point P will approach the
closed orbit defined by C. There will be a phase difference between P and Q. This
is equivalent to an initial phase difference among the points. The main idea is that
the physical perturbation can be transformed into a phase shift along the original
limit cycle, C, if the perturbed point collapses to or forever parallels the original
limit cycle.

There are a set of points in the tube that will lead to the same phase shift. These
define a surface of constant phase shifts, that is denoted I(ψ). For all points ~X on
I(ψ) we have
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dψ( ~X)

dt
= ω (5.8)

for the unperturbed system. But, by the chain rule,

dψ

dt
=

∑
i

∂ψ

∂Xi

∂Xi

∂t
(5.9)

= ~∇ ~X ψ · d
~X

dt

= ~∇ ~X ψ · ~F ( ~X)

Let’s perturb the motion by

~F ( ~X)→ ~F ( ~X) + ε ~P ( ~X, ~X ′) (5.10)

where ε is small in the sense that the shape of the original trajectory in unchanged
as ε → 0 and ~X ′ contains all the variables that define the perturbation, e.g, the
trajectory of a neighboring oscillator and the interaction between the two oscillating
systems. Then

dψ

dt
= ~∇ ~X ψ ·

[
F ( ~X) + ε ~P ( ~X, ~X ′)

]
(5.11)

= ω + ε~∇ ~X ψ · ~P ( ~X, ~X ′)

So far everything is exact, that is, all calculations are done with respect to the
perturbed orbit. The difficulty is that the orbits are not necessarily closed. But if
we can make ε small enough so that | ~X(t)− ~X0(t)| → 0 as t→∞, the perturbation
will lead to a closed path. This results in periodic orbits, so that the independent
variable can now be taken as the phase, ψ, rather than time, t, where the two are
related by

ψ = 2π
t

T
modulo(2π) (5.12)

Using

~X(t)→ ~X0(ψ) (5.13)

we have

dψ

dt
= ω + ε~∇ ~X0(ψ) ψ · ~P

[
~X0(ψ), ~X ′0(ψ′)

]
(5.14)

≡ ω + ε~Z(ψ) · ~P (ψ, ψ′)

The term ~Z(ψ) depends only on the limit cycle of the oscillator and defines the
sensitivity of the phase to perturbation. It clearly varies along the limit cycle and is
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sometimes called a ”phase-dependent sensitivity”. It may be calculated directly by
evaluating the trajectory of points inside a tube around the original limit cycle, or
more expeditiously using a trick due to Bowtell, in which the perturbed system is

rewritten in the form d ~X
dt

= A(t) ~X, with A(t) = A(t + T ), which can be shown to
have only one periodic solution. A cute way to find the periodic solution is to solve

the adjoint problem, d~Y
dt

= AT (t)~Y , for which all of the solutions decay except for

the periodic one. From this one backs out ~Z(ψ).

The cool thing in that the oscillator is seen to rotate freely (ω term) with phase-
shifts and frequency shifts that are determined solely by the perturbations. The term
~P (ψ, ψ′), which can be calculated from the perturbation, allows these perturbations
to be interactions with neighbors.

Let’s look at the nature of the perturbation term. The idea is that this is small,
so that the shift in frequency on one cycle is small. We consider

ψ = δψ + ωt (5.15)

Then the relative motion is given by

dδψ

dt
= ε~Z(ψ) · ~P (ψ, ψ′) (5.16)

= ε~Z(δψ + ωt) · ~P (δψ + ωt, δψ′ + ωt)

This can be further simplified. To the extent that the change in ψ is small over
one cycle, i.e., dδψ

dt
<< ω, we can average the perturbation over a full cycle. We

write

dδψ

dt
= Γ(δψ, δψ′) (5.17)

where

Γ(δψ, δψ′) =
ε

2π

∫ π

−π
dθ ~Z(δψ + θ) · ~P (δψ + θ, δψ′ + θ) (5.18)

The above result can be generalized to the case where the internal parameters,
i.e., the ~X’s are a bit different between oscillators, so that the underlying oscillations
are slightly different frequency. We then have

dδψ

dt
= Γ(δψ, δψ′) + δω (5.19)

5.2 Simplified interaction among 2 oscillators.

We take the perturbation to be solely a function of the phase of the other oscillator.
Thus

Γ(δψ, δψ′) =
ε

2π

∫ π

−π
dθ ~Z(δψ + θ) · ~P (δψ′ + θ) (5.20)
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But this is just a correlation integral that is proportion to the differences in
phase, i.e.,

Γ(δψ′ − δψ) =
ε

2π

∫ π

−π
dθ ~Z (θ − (δψ′ − δψ)) · ~P (θ) (5.21)

So that a system of two oscillators obeys

dδψ

dt
= Γ(δψ′ − δψ) (5.22)

dψ′

dt
= Γ(δψ − δψ′)

We subtract the two equations of motion for the phase to get

d(δψ − δψ′)
dt

= [Γ(δψ′ − δψ)− Γ(δψ − δψ′)] (5.23)

≡ Γ̃(δψ′ − δψ)

≡ −Γ̃(δψ − δψ′)

The term Γ̃(δψ − δψ′) is an odd function with period T , with zeros at

x0 ≡ δψ − δψ′ = nπ n = 1, 2, 3, ... (5.24)

and possibly other places. By way of analysis,

• The zeros correspond to phase locking.

• The stability depends on the sign of dΓ̃(x)
dx

∣∣∣
x0

• dΓ̃
dx

∣∣∣
x0
< 0 implies stability with even n; attractive - phases converge.

• dΓ̃
dx

∣∣∣
x0
> 0 implies stability with odd n; repulsive - phases diverge.

5.3 Examples

5.3.1 Two oscillators with delayed coupling.

An interesting example due to Ermentrout is to consider two oscillators that interact
by a synapse with a noninstantaneous rise time. Before we choose a realistic cell
model, let’s try some analytical methods and choose a form of ~Z(δψ) that has
variable sensitivity along the limit cycle. The simplest choice is Z(t) = sinωt, or

Z(δψ) = sin(δψ) (5.25)

The interaction is given by an ”α” function, i.e., P (t ≥ 0) = gsynapse

cm
t
τ
e−t/τ . With

the substitution ψ = ωt, we have
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P (δψ′) = 0 δψ′ < 0 (5.26)

=
gsynapse
cm

δψ′

ωτ
e−δψ

′/ωτ δψ′ ≥ 0

The convolution for Γ̃(δψ′−δψ) can be done by extending the range of integration
over all time, so that

Γ(δψ′ − δψ) =
ε

2π

∫ ∞
0

dθ ~Z (θ − (δψ′ − δψ)) · ~P (θ) (5.27)

=
gsynapse
cm

ε

2π
ωτ

∫ ∞
0

d

(
θ

ωτ

)
sin [θ − (δψ′ − δψ)]

(
θ

ωτ

)
e−θ/ωτ

=
gsynapse
cm

ε

2π
ωτ

1

2i

(
e−i(δψ

′−δψ)
∫ ∞

0
x dx eiωτx e−x − ei(δψ

′−δψ)
∫ ∞

0
x dx e−iωτx e−x

)

=
gsynapse
cm

ε

2π
ωτ

1

2i

(
e−i(δψ

′−δψ)

(1− iωτ)2
− ei(δψ

′−δψ)

(1 + iωτ)2

)∫ ∞
0

x dx e−x

=
gsynapse
cm

ε

2π

ωτ

[1 + (ωτ)2]2

([
1− (ωτ)2

]
sin(δψ′ − δψ) + 2ωτ cos(δψ′ − δψ)

)
and thus

Γ̃(δψ′ − δψ) =
gsynapse
cm

ε

π

ωτ [1− (ωτ)2]

[1 + (ωτ)2]2
sin(δψ′ − δψ) (5.28)

so that

d(δψ − δψ′)
dt

=
gsynapse
cm

ε

π

ωτ [(ωτ)2 − 1]

[1 + (ωτ)2]2
sin(δψ − δψ′) (5.29)

This says that, for excitatory connections (g > 0), the synchronized state, i.e.,
δψ′ = δψ, is stable only for τ < 1

ω
. In contrast, for τ > 1

ω
the antiphastic state with

δψ′ − δψ = ±π is stable.
Interestingly, synchronous, all inhibitory (g < 0). networks are observed experi-

mentally at high frequencies. This is consistent with

d(δψ − δψ′)
dt

=
|ginhibitorysynapse |

cm

ε

π

ωτ [(1− ωτ)2]

[1 + (ωτ)2]2
sin(δψ − δψ′) (5.30)

5.3.2 Two identical Hodgkin Huxley oscillators.

How well does the above analysis hold with more realistic cells.
Recall the Hodgkin Huxley equations for a point neuron, where ~X = (V, h,m, n)T ,

i.e.,
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∂V (t)

∂t
=
−rm
2πaτ

(
gNam

3h(V − VNa) + gKn
4(V − VK) + gleak(V − Vl) + Isyn

)
dh(V, t)

dt
=

h∞(V )− h(V, t)

τh(V )
(5.31)

dm(V, t)

dt
=

m∞(V )−m(V, t)

τm(V )

dn(V, t)

dt
=

n∞(V )− n(V, t)

τn(V )

Hansel and later van Vreeswijk considered two Hodgkin Huxley cells with a
synaptic current given by

Isyn = −Gsyn [V (t)− Vsyn]
spikes∑
i

f(t− ti) (5.32)

where he used an ”alpha” function for f(t). The form of ~Z(ψ + t) is found
from directly evaluating perturbations to the limit cycle, which is found from the
Hodgkin-Huxley equations with Isyn = 0. The perturbation is given by

P (ψ + t, ψ′ + t) = −Gsyn [V (ψ + ωt)− Vsyn]
spikes∑
i

f(ψ′ + ωt− ωti) (5.33)

The systematics as a function of α for fixed ω were explored by van Vreeswijk
The phase as a function of Iext, really ω, for fixed α were explored by Hansel.

He also examined where in the cycle the neuron is most sensitive to perturbations.

5.3.3 Two oscillators with different intrinsic frequency.

We take

Γ(δψ − δψ′) ≡ −Γ0 sin(δψ − δψ′) (5.34)

Then

dδψ

dt
= Γ0 sin(δψ′ − δψ) + δω (5.35)

dδψ′

dt
= Γ0 sin(δψ − δψ′) + δω′

The system will phase lock, for which dδψ
dt

= dδψ′

dt
, so long as the interaction

strength can satisfy
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Γ̃ = Γ0 sin(δψ′ − δψ)− Γ0 sin(δψ − δψ′) (5.36)

= −2Γ0 sin(δψ − δψ′) = δω − δω′ (5.37)

or

2Γ0

|δω′ − δω|
> 1 (5.38)

The phase shift is just

δψ − δψ′ = sin−1

(
δω′ − δω

2Γ0

)
(5.39)

and the frequency under phase lock is

ωobserved = ω +
δω + δω′

2
(5.40)

The above are the two quantities are the ones measured in the lab!
Outside of the phase locked region, the system undergoes quasiperiodic motion

with a time varying phase shift given by

δψ − δψ′ = 2 tan−1


√

(δω − δω′)2 − 4Γ2
0 tan

(√
(δω−δω′)2−4Γ2

0 t

2

)
+ 2Γ0

δω − δω′

 (5.41)

5.3.4 Chain of oscillators with δω ∝ ∆x: The example of Limax.

dδψx
dt

= δωx +
∑
x6=x′

Γ(δψx − δψx′) (5.42)

with

δωx ∝ x+ constant (5.43)

When the system locks, there is a single frequency, but a gradient of phase shifts
with ∆ψx

dx
given by a monotonic function of x, like ∆ψx

dx
∝ constant, i.e., the phase

shift appears as a traveling wave. The data from Limax shows traveling waves
and a gradient of intrinsic frequencies. The article by Ermentrout and Kleinfeld
summarizes this and other data.

5.3.5 Two oscillators with propagation delays.

We again take

Γ(δψ − δψ′) ≡ −Γ0 sin(δψ − δψ′) (5.44)

Then
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dδψ

dt
= Γ0 sin(δψ′(t− τD)− δψ(t)) + δω0 (5.45)

dδψ′

dt
= Γ0 sin(δψ(t− τD)− δψ′(t)) + δω0

where the frequencies δω0 are assumed to be equal. We assume a solution of the
form

δω = δω0 − Γ0 cosα sin δωτD (5.46)

This is satisfied for

α =

{
0 if cosωτD ≥ 0
π if cosωτD < 0

Thus we observe both frequency shifts and potential phase shifts. The syn-
chronous stare is stable only for 0 < τD < π

2δω
. The details of this relation will

change if the symmetry of the waveform changes, but the gist is correct.
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Phase resetting of whisking by breathing (sniffing & basal respiration)
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Moore*, Deschenes*, Huber, Smear, Demers & Kleinfeld (Nature 2013)
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Figure S2. Coordination of whisking and breathing in one rat.

Temporal relationship between whisking and breathing events. Raster plots of inspiration and 
protraction onset times relative to each breath are sorted by the duration of the breath. In an indi-
vidual animal, the intrinsic whisking oscillation frequency is stable and locked to the measured 
breathing onset time at both basal respiratory frequencies as well as sniffing frequencies. During 
basal respiration, the first, second, and third whisks following inspiratory drive occur at stereotypic 
times relative to breathing.
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Figure S5. Response of the whisking rhythm to breathing versus the breathing rhythm to 
whisking

To emphasize the asymmetric interaction between whisking and breathing, we plot the shift in 
period (T1 -T0) of each behavior as a function of the time within the cycle when the other behavior 
occurs (treset). As in Figure S4, T0 represents the expected period of the perturbed behavior, 
taken as the period of the cycle prior to that which contains an interrupting event, and T1 repre-
sents the interrupted period. Unlike Figure S4, both sniffing and basal respiratory frequencies are 
included in the analysis to permit a symmetric comparison between the response of whisking to 
breathing and the response of breathing to whisking.

(a) Shift in whisking period  (T1 -T0) relative to the reset by an inspiration (at times treset). As in 
Figure S4, there is a bias for the intervening whisks to be shortened by the onset of breathing 
during basal respiration. The inhalation locked whisks during sniffing are not in steady state and 
not so constrained.

(b) Shift in respiratory period  (T1 -T0) relative to the reset by a vibrissa protraction (at times treset). 
There is a no apparent bias for the period of breathing to be shifted by the presence of a whisk 
during either sniffing or basal respiration.




