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5 Networks of Phase Coupled Neuronal Oscilla-
tors

We consider small networks or simple networks in which cells are coupled only
weakly, in the sense that then can effect each others timing but do not turn each
other on or off or, more formally, do not effect the shape of each others limit cycle.

5.1 Basic formalism
Equation of motion for a general dynamical system
dX
dt

where the X is a vector that contains all the dynamical variables and the p are
parameters. At steady state

= F(X;p) (5.5)

dX, .
— = F(Xy; 5.6
dt ( 0?:“) ( )
where a closed orbit satisfies
Xo(t+T) = Xo(t) (5.7)

See attached figure from Kuromoto’s book

We associate a value of ¢ with each point along X (¢). Thus the multidimensional
trajectory is reduced to a single variable.

It is useful to extend the definition of v off of the limit cycle, or contour, C, to
all points within a tube around C so that ¢ is defined for all X in the tube. This
will allow us to study perturbations to the original limit cycle.

Look on a surface, denoted G, normal to and in the neighborhood of C. Let P
be a point on G and Q be the point on C, the limit cycle, that passes through the
same surface. We posit that as the trajectories evolve, the point P will approach the
closed orbit defined by C. There will be a phase difference between P and Q. This
is equivalent to an initial phase difference among the points. The main idea is that
the physical perturbation can be transformed into a phase shift along the original
limit cycle, C, if the perturbed point collapses to or forever parallels the original
limit cycle.

There are a set of points in the tube that will lead to the same phase shift. Tllese
define a surface of constant phase shifts, that is denoted I(¢)). For all points X on
I(v)) we have



dip(X
dt
for the unperturbed system. But, by the chain rule,

~—

=w (5.8)

dp o 0X,
dt Zaxi ot (5.9)

. dX
RREAT

= Vgt F(X)

Let’s perturb the motion by

F(X) = F(X) 4+ eP(X, X (5.10)

where € is small in the sense that the shape of the original trajectory in unchanged

as € — 0 and X' contains all the variables that define the perturbation, e.g, the

trajectory of a neighboring oscillator and the interaction between the two oscillating
systems. Then

W= Vgu [FE) + PR, X (5.11)

So far everything is exact, that is, all calculations are done with respect to the
perturbed orbit. The difficulty is that the orbits are not necessarily closed. But if
we can make e small enough so that | X (t) — Xo(t)] — 0 as t — oo, the perturbation
will lead to a closed path. This results in periodic orbits, so that the independent
variable can now be taken as the phase, 1, rather than time, t, where the two are
related by

Using
X(t) = Xo(v) (5.13)
we have
d = = —
dqf = Wt Vg v P [Xo(@), X)) (5.14)
= w+eZ()- P(,y)

The term Z (1) depends only on the limit cycle of the oscillator and defines the
sensitivity of the phase to perturbation. It clearly varies along the limit cycle and is
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sometimes called a ”phase-dependent sensitivity”. It may be calculated directly by
evaluating the trajectory of points inside a tube around the original limit cycle, or
more expeditiously using a trick due to Bowtell, in which the perturbed system is
rewritten in the form £X = A(t)X, with A(t) = A(t + T), which can be shown to
have only one periodic solution. A cute way to find the periodic solution is to solve
the adjoint problem, 4 E = AT(t )17', for which all of the solutions decay except for
the periodic one. From this one backs out Z(1).

The cool thing in that the oscillator is seen to rotate freely (w term) with phase-
shifts and frequency shifts that are determined solely by the perturbations. The term
ﬁ(zﬁ, "), which can be calculated from the perturbation, allows these perturbations

to be interactions with neighbors.

Let’s look at the nature of the perturbation term. The idea is that this is small,
so that the shift in frequency on one cycle is small. We consider

Y =01+ wt (5.15)

Then the relative motion is given by

déy

= €ZW) P (5.16)

= €Z(8 + wt) - P(6Y + wt, 60 + wt)

This can be further simplified. To the extent that the change in ¢ is small over

one cycle, i.e., dg—f << w, we can average the perturbation over a full cycle. We
write
do
T (5.17)
where
(6, 60') / 0 Z(50 + ) - By + 0,89 + 6) (5.18)

The above result can be generahzed to the case where the internal parameters,
i.e., the X'’s are a bit different between oscillators, so that the underlying oscillations
are slightly different frequency. We then have

doy

— = T30, 80) + bw (5.19)

5.2 Simplified interaction among 2 oscillators.

We take the perturbation to be solely a function of the phase of the other oscillator.
Thus

(5, 6") / 6 Z(5 + 6) - B(oy' + 6) (5.20)



But this is just a correlation integral that is proportion to the differences in
phase, i.e.,

D@ = 0%) = 5 [ a9 Z(0— (30 = 5v)) - P(6)

So that a system of two oscillators obeys

sy

== TV —dv)
&y ,
= T -8

We subtract the two equations of motion for the phase to get

d(wd—téw') = [D(6¢ — 6¢) — T(8¢) — 6v)')]
= f(?lﬁ’ — &)
= —I'(0y — oY)

The term (1) — 6¢') is an odd function with period T, with zeros at

To =0 — Y =nm n=123,..

and possibly other places. By way of analysis,

5.3

The zeros correspond to phase locking.

The stability depends on the sign of =~

zo

% o < 0 implies stability with even n; attractive - phases converge.
% ” > 0 implies stability with odd n; repulsive - phases diverge.

Examples

5.3.1 Two oscillators with delayed coupling.

(5.21)

(5.22)

(5.23)

(5.24)

An interesting example due to Ermentrout is to consider two oscillators that interact
by a synapse with a noninstantaneous rise time. Before we choose a realistic cell
model, let’s try some analytical methods and choose a form of 7 (01) that has
variable sensitivity along the limit cycle. The simplest choice is Z(t) = sinwt, or

Z(5v) = sin(5v)

(5.25)

The interaction is given by an "’ function, i.e., P(t > 0) = e Le=t/7 Wit
the substitution ¢ = wt, we have

Cm



P(&Y) = 0 s <0 (5.26)

/
gsynapse %ef&p’/wq— 51/}/ Z 0
Cm wT

The convolution for T'(§¢) —8)) can be done by extending the range of integration
over all time, so that

D@ —00) = 5= [T a0 Z(0— (@30 = ov) - P(9)

_ Yoynapse € (N s — 0 — 0\ o
= T o wT/O d (w-) sin [0 — (0¢" — dv)] <w7'> e
1

(5.27)

_ Ysynapse € —i(oY' =& o WTT —T (o' —68 o —twTT —X
= Zynapse —  r — [ emH0Y=0Y) z dx e g% — eiov'=0Y) xdx e e
0 0

Cm 2 2
gsynapse € 1 e_i(éd)l_éw) ei(ﬁd}’—dw) o] d —z

T 22 <(1 —iwr)® (1—|—icu7)2> /0 rare

o gsynapsei wT B : ) ;o ,

T on 2n[l+ (wr)?? ([1 (wr) }Sln((w 5) + 2wt cos(d1 5¢))
and thus

T / Jsynapse € WT [1 — (w7'>2] . ,
Hov — o) = . - 2
v =ov) Cm T [14 (wT)?? Sin(0y” — ov) (5.28)

so that

d(6 — 6’ conanse € WT [(wT)? — 1] .
Sl — ) _ g P [1[i (037)2]2] sin(8¢) — 64 (5.29)
This says that, for excitatory connections (g > 0), the synchronized state, i.e.,
0" = d1p, is stable only for 7 < i In contrast, for 7 > % the antiphastic state with
0" — 0 = £ is stable.
Interestingly, synchronous, all inhibitory (g < 0). networks are observed experi-
mentally at high frequencies. This is consistent with

Ao — %) lgliers] ¢ wr [(1 - wr)?)
dt Cm o [14+ (wr)?)?

sin(0y — 6v) (5.30)

5.3.2 Two identical Hodgkin Huxley oscillators.

How well does the above analysis hold with more realistic cells.
Recall the Hodgkin Huxley equations for a point neuron, where X = (V, h, m,n)7,
ie.,



(9V (t) —Tm (

Ina* BV = Viva) + G (V = Vie) + Greae(V = V1) + Loy

ot 2rar
dh(V,t)  he(V) = h(V,t)
i o) (5:31)
dm(V,t)  me (V) —m(V,t)
dt B T (V)
dn(V,t)  ne(V) —n(V,1)
. (V)

Hansel and later van Vreeswijk considered two Hodgkin Huxley cells with a
synaptic current given by

spikes

]syn = _Gsyn [V(t) - Vsyn] Z f(t - ti) (5'32)

where he used an “alpha” function for f(¢). The form of Z(¢ + t) is found
from directly evaluating perturbations to the limit cycle, which is found from the
Hodgkin-Huxley equations with I, = 0. The perturbation is given by

spikes

P+t +1t) = =G [V (¢ + wi) — Vi Z JW + wt — wty) (5.33)

The systematics as a function of « for fixed w were explored by van Vreeswijk
The phase as a function of I.xt, really w, for fixed a were explored by Hansel.
He also examined where in the cycle the neuron is most sensitive to perturbations.

5.3.3 Two oscillators with different intrinsic frequency.

We take

L0y — 6¢Y") = —Tgsin(dy) — 0v)') (5.34)
Then

dg;/} = Tysin(0y’ — oY) + dw (5.35)

déy’

= Losin(d0y) — d¢') + 0w’
. 1 do sy’
The system will phase lock, for which sz = T%?

strength can satisfy

so long as the interaction



r Ty sin(6v¢)’ — d1p) — Do sin(deh — 6¢) (5.36)
= —2[gsin(dy) — 0¢') = dw — du' (5.37)
or
2l
1 5.38
|dw’ — dw| ~ (5.38)
The phase shift is just
ow' — 6
b — 8’ = sin! (“’ZFO”> (5.39)
and the frequency under phase lock is
0. ow’
Wobserved = W + w_gw (540)

The above are the two quantities are the ones measured in the lab!
Outside of the phase locked region, the system undergoes quasiperiodic motion
with a time varying phase shift given by

\/(5w — 0w')? — 4T3 tan ( (oo 0)? AT t) + 2T

2

— &5 = 2tan~! 41
0 — o tan S s (5.41)
5.3.4  Chain of oscillators with dw o< Az: The example of Limax.
dd),

Ve gy 3 T (600 — ) (5.42)

dt T

with

dw, X x + constant (5.43)

When the system locks, there is a single frequency, but a gradient of phase shifts
with % given by a monotonic function of z, like % o constant, i.e., the phase
shift appears as a traveling wave. The data from Limax shows traveling waves
and a gradient of intrinsic frequencies. The article by Ermentrout and Kleinfeld
summarizes this and other data.

5.3.5 Two oscillators with propagation delays.

We again take

(8¢ — 6¢') = —Tysin(dy — §') (5.44)
Then



oy

i LCosin(0y' (t — 7p) — 09(t)) + dwo (5.45)
dfg' — Tysin(du(t — ) — 66 (£)) + G

where the frequencies dw, are assumed to be equal. We assume a solution of the
form

dw = dwy — ' cos asin dwTp (5.46)

This is satisfied for

0 if coswrp >0
o= .
7 if coswmp < 0

Thus we observe both frequency shifts and potential phase shifts. The syn-

chronous stare is stable only for 0 < 7p < 5Z-. The details of this relation will

change if the symmetry of the waveform changes, but the gist is correct.
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The Phase Sensitivity Function for Perturbation in Voltage
Data (Reyes & Fetz 1993) vs. Calculation (Ermentrout & Kleinfeld 2000)
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Lesson: Excitatory Coupling Among Cortical Neurons Can Lead to
Cross-Correlations that Peak Away from Equal Time

Challenge for Experimentalists is to Distinguish this from Broadening



Reciprocal, Kuromoto-like Inhibitory Coupling Among Pairs of Neurons

Firing Switches from Antisynchrony to Synchrony near 80 Hz
(data from Barry Connors Laboratory)
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Reciprocal, Kuromoto-like Inhibitory Coupling in a Network of Neurons

Synchronized Oscillations in an All Inhibitory (g < 0) Interneuron Network
(Whittington, Traub and Jeffreys 1995)

(wr) =1

D(AY) — D(-A¢) = g Tt o sin(AY) < 0 for wr > 1

® 06 o ® 0 o
N . ~ _1
. 1TaVaw w = 2m-40 Hz >~ 250 s
50. -
7 =~ 0.02 s,
10 mv L
CBIIEWWWWW = WT >~ O
ol
60 ms
g
E -
100 ¢ e 30 }F
o
o 75| k=
=, = -
' 8
g 2l 2r
wr < 1| wr>1
o 1 1 1 L L 1 J
0 5 10 15 20 25 30 a5
Frequency (Hz) Time (ms}) i.p.s.c. decay constant (ms)




J. Math. Biology (1982) 13: 345369

Journal of

Mathematical
Biology

© Springer-Verlag 1982 .

The Nature of the Coupling Between Segmental Oscillators

of the Lamprey Spinal Generator for Locomotion:

A Mathematical Model

Avis H. Cohen!, Philip J. Holmes? and Richard H. Rand?
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Fig. 1.2, Ventral root recordings from an isolated piece of spinal cord. Recordings are from the right and
left roots of segments 7 and 19 (from Cohen and Wallén, 1980)
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Central Olfactory Organ in the
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Phase Shift, Ay [radians]

Electrical Wave Propagation in the Central Olfactory Organ of Limax
(Delaney et al 1994; Kleinfeld et al 1994; Ermentrout et al 1996)
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isphere of Pseudemys scripta elegans

Transverse Nissl section through cerebral hem

- from P. S. Ulinski







Demodulated Response at 18 Hz Versus Time
(Magnitude and Phase Plots)




Upcoming Applications for Kuromoto-like Coupling

Spiral Waves in Disinhibited Mammalian Neocortex
(Huang, Troy, Yang, Ma, Laing, Schiff and Wu, 2004)

Electrical (local field potential) and optical (voltage sensitive dyes and brightfield illumination)
recording of spatially averaged (~ 100 um) activity across layer 2/3 tangential slice



Upcoming Applications for Kuromoto-like Coupling

Spiral Waves in Disinhibited Mammalian Neocortex
(Huang, Troy, Yang, Ma, Laing, Schiff and Wu, 2004)
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Rotating waves during human sleep
spindles organize global patterns of
activity that repeat precisely through the
night

Lyle Muller’, Giovanni Piantoni®, Dominik Koller', Sydney S Cash? Eric Halgren®*,
Terrence J Sejnowski'™

Figure 1. Rotating waves during spindles. (&) Electrode placement for subject 1 (left), with a stereotypical spindling epoch cbserved on the amay fright).
The right panel depicts the average over channels fblack] together with the individual channels (gray). (B) When visualized on the cortex, individual
spindle cycles are often organized as rotating wawves traveling from temporal {(+0ms, top) to parietal (+20 ms, middle) to frontal (+40 ms, bottom) lobes.

{D) The field of propagation directions, aligned on the putative rotation center and averaged across oscillation cycles and
across subjects, shows a consistent flow in the tempomal — parietal — frontal (TPF) direction. The center point is marked in red.
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Phase resetting of whisking by breathing (sniffing & basal respiration)
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Figure S2. Coordination of whisking and breathing in one rat.

Temporal relationship between whisking and breathing events. Raster plots of inspiration and
protraction onset times relative to each breath are sorted by the duration of the breath. In an indi-
vidual animal, the intrinsic whisking oscillation frequency is stable and locked to the measured
breathing onset time at both basal respiratory frequencies as well as sniffing frequencies. During
basal respiration, the first, second, and third whisks following inspiratory drive occur at stereotypic

times relative to breathing.



()]

£ 200 o .

£ 00 Inspiration locked whisks

5 :

£ .

> 100

Q0

N

ge o

o |

S F

4

“ :

£ -100f

= SN

£ : . .

& - Intervening whisks shortened by a breath
= —200 . . . . )
v 0 50 100 150 200 250

Tr: Time of breath within whisk cycle (ms)

Breathing period unaffected by whisking

Shift in breathing period by whisking

0 200 400 600 800 1000
Tr: Time of whisk within breath cycle (ms)

Figure S5. Response of the whisking rhythm to breathing versus the breathing rhythm to
whisking

To emphasize the asymmetric interaction between whisking and breathing, we plot the shift in
period (T1 -TQ) of each behavior as a function of the time within the cycle when the other behavior
occurs (treset). As in Figure S4, T represents the expected period of the perturbed behavior,
taken as the period of the cycle prior to that which contains an interrupting event, and T1 repre-
sents the interrupted period. Unlike Figure S4, both sniffing and basal respiratory frequencies are
included in the analysis to permit a symmetric comparison between the response of whisking to
breathing and the response of breathing to whisking.

(a) Shift in whisking period (T4 -TQ) relative to the reset by an inspiration (at times treset). As in
Figure S4, there is a bias for the intervening whisks to be shortened by the onset of breathing
during basal respiration. The inhalation locked whisks during sniffing are not in steady state and
not so constrained.

(b) Shiftin respiratory period (T1 -TQ) relative to the reset by a vibrissa protraction (at times treset).
There is a no apparent bias for the period of breathing to be shifted by the presence of a whisk
during either sniffing or basal respiration.





