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3 Action Potentials - Brutal Approximations

The Hodgkin-Huxley equations for the behavior of the action potential in squid,
and similar equations for action potentials in other cells, are ”exact” but impossibly
complicated. We now consider the use of phase plane techniques a means to get
insight into regenerative neuronal events, such as those exhibited by the Hodgkin
Huxley equations.

The Hodgkin-Huxley equations were functions of 4 variables.

• V (x, t) ← transmembrane potential

• m(V, t) ← activation parameter for Na+ current

• h(V, t)← inactivation parameter for Na+ current

• n(V, t) ← activation parameter for K+ current

The goal is to reduce the Hodgkin Huxley equations from a dependence on 4
variables to a dependence on at most 2 variables.

FIGURE - chapt-8-hh-currents.eps

As a warm-up exercise, we start with an important but simpler problem, the
speed of an action potential

3.1 Speed of the Action Potential

A naive approach is to take the speed to be that from the cable equation with
parameters for the cell during an action potential, i.e.,

u ≈ λAP
2τAP

=

√
rm
2ρc
a

2rmcm
(3.3)

with rm dominated by (GNa+)−1, so that

u ≈ 1

2cm

√√√√GNa+

2ρc
a =

λ

2τ

√
rmGNa+ (3.4)

To get a better approximation, we first recall that the Hodgkin-Huxley neuron
in the absence of external input is given by

τ
∂V (x, t)

∂t
= λ2

∂2V (x, t)

∂x2
− rmGNa+m

3(V, t)h(V, t) (V − VNa+) (3.5)

− rmGKa+n
4(V, t) (V − VK+)− rmGleak (V − Vleak)
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along with equations (three of them) for the activation parameters n(V, t), m(V, t),
and h(V, t), where the conductances have units of (Ωcm2)−1, i.e., conductance per
unit area, so we don’t have to chase factors of 2πa. We need consider only the
leading edge or front of the action potential so that we can ignore the potassium
currents.

The equation for Na+ current will contain an essential nonlinearity to allow
regenerative behavior. This is found by looking at the I-V relation for the squid
axon at short times, when the Na+ current is fully activated. Roughly, it follows a
cubic dependence.

FIGURE - chapt-10-volt-clamp-summary.eps

We take

f(V ) = V
(

1− V

Vthresh

)(
1− V

Vpeak

)
(3.6)

with 0 < Vt < Vp where the resting potential is set to zero in the model and all other
potentials are with respect to the resting level.

FIGURE - chapt-10-F(V).eps

We then have an equation that is roughly valid on the time-scale of the leading
edge of the spike - roughly the first 0.1 ms of the action potential, i.e.,

τ
∂V

∂t
= λ2

∂2V

∂x2
− rmGNa+V

(
1− V

Vthresh

)(
1− V

Vpeak

)
(3.7)

This equation ignores the recovery term and provides an interesting lesson about
a neuron with only noninactivating Na+ currents (perhaps this can be built with
the right molecular tools someday). Recall that the rest level is Vrest = 0mV so that
the voltage in the above equation represents the change away from rest.

We then perform a series of tricks and approximations (Hunter, McNaughton
and Noble).

• Let V (x, t) = V (x− ut) ≡ V (z), so that

−τudV
dz

= λ2
d2V

dz2
− rmGNa+V

(
1− V

Vthresh

)(
1− V

Vpeak

)
(3.8)

• Assume that V propagates as a front when V is not near V = 0 or V = Vpeak,
where dV

dz
= 0. We define the width of the front as Λ, which has to be found

self consistently, and take

V̇ ≡ dV

dz
= −V

Λ

(
1− V

Vpeak

)
(3.9)

where the slope is negative as the propagating front moves into a region with
V = 0.
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• Take V (z → ±∞) = 0

• The trick is to rewrite the equation with

d2V

dz2
=

d

dV

(
dV

dz

)
dV

dz
=
dV̇

dV
V̇ (3.10)

so that

dV̇

dV
= − 1

Λ

(
1− 2

V

Vpeak

)
. (3.11)

• Then

−τuV̇ = λ2
dV̇

dV
V̇ + ΛrmGNa+

(
1− V

Vthresh

)
V̇ (3.12)

or

−u τ
Λ

+
λ2

Λ2
− rmGNa+ =

(
2λ2

Λ2Vpeak
− rmGNa+

Vthresh

)
V (3.13)

The terms proportional to V and those independent of V must independently
sum to zero. Thus

Λ =
λ√

rmGNa+

√
2Vthresh
Vpeak

(3.14)

and we see that the space constant is shortened during an action potential.
Further,

u =
λ

2τ

√
rmGNa+

√√√√2(Vpeak − 2Vthresh)2

VpeakVthresh
(3.15)

and we see that the speed depends on the threshold (roughly a constant) and

on the ratio
rmGNa+VNa+

1+rmGNa+
≈ VNa+ . We pick up an extra term that illustrates quite

clearly how the control of the action potential height and threshold will affect the
speed. The size of the extra term is√√√√2(Vpeak − 2Vthresh)2

VpeakVthresh
→

√√√√ 2(Vpeak − 2Vthresh + Vrest)2

(Vpeak − Vrest)(Vthresh − Vrest)
≈ 4 (3.16)

using reasonable values. Remember that all of the above was derived just with a
phenomenological model of the nonlinear fast, Na+ current. This appears legitimate
since this current is an order of magnitude faster than the slow recovery dynamics.
We learn that potential regulation of cell parameters provides an alternate means,
compared with myelination, for a neuron to adjust the speed of propagation.

FIGURE - chapt-10-myelin.eps
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3.2 Threshold Phenomenon

The above analysis does not address the threshold phenomena of the action poten-
tial. A means to see where the threshold for active propagation originates, we now
include recovery through a potassium current that provides negative feedback by
acting as the integral of V . Thus we write

τ
∂V (x, t)

∂t
= λ2

∂2V (x, t)

∂x2
− rmGNa+f [V (x, t)] (3.17)

+rmGK+

∫ t

−∞
dt′V (x, t′)

With
∫ 1
0 dV f(V ) > 0, so that excitation exceeds inhibition, theorems by Aron-

son and Weinberger define the initial spatial distribution of V (x, t) that can lead
to an action potential, i.e., analytical justification of threshold potential. This is
a minimalist description f threshold phenomena (although their proof is not very
intuitive).

FIGURE - chapt-10-propagation.eps

3.3 Dimensional Reduction of the Hodgkin-Huxley Model

We return to the Hodgkin Huxley equations and focus on the generation of action
potentials. We thus ignore space so that we have as the voltage equation

τ
∂V (x, t)

∂t
= −rmgNa+

2πa
m3(V, t)h(V, t) (V − VNa+) (3.18)

− rmgKa+

2πa
n4(V, t) (V − VK+)− rmgleak

2πa
(V − Vl) +

rm
2πa

Io

which has 9 independent biophysical parameters, i.e., a, τ , rm, gNa+ , gK+ , gleak,
VNa+ , VK+ , and Vleak as well as 3 (or more in principle) fitting parameters as expo-
nents on the activation and inactivation functions. The activation and inactivation
functions are further described by the equations

dh(V, t)

dt
=
h∞(V )− h(V, t)

τh(V )
(3.19)

dm(V, t)

dt
=
m∞(V )−m(V, t)

τm(V )
(3.20)

dn(V, t)

dt
=
n∞(V )− n(V, t)

τn(V )
(3.21)

where n∞(V ) ≡ n(V, t→∞) and the parameterization for each rate expression
has three fitting parameters, i.e., z′, Vb, τobs(0), for a total of 9 additional parameters.
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Four equations and 18 parameters is too much!. We methodically brutalize them
as follows:

1. The response time for the activation of the sodium current is fast time. We
approximate this as infinitely fast and replace m(V, t) by its steady state value, i.e.,
by m∞(V )

FIGURE - chapt-10-mhn.eps

This leaves us with a single ”fast” variable, that we continue to denote V (x, t)
2. The equation for V (t) will contain an essential nonlinearity to allow regener-

ative behavior. This is found by looking at the I-V relation for the squid axon at
short times, when the Na+ current is fully activated. Roughly, it follows a cubic
dependence.

FIGURE - chapt-10-volt-clamp-summary.eps

3. Both the inactivation of the Na+ current and the activation of the K+ current
are slow. It was noted that an increase in n(V, t) corresponds to a decrease in h(V, t).
In fact, Fitzhugh noted that both activation functions n(V, t) and 1−h(V, t) linearly
covary.

SKETCH - ”n” VERSUS ”1-h”

This leaves us with a single ”slow” variable, that we denote W (t).
Rinzel showed that this can take the form

W (V, t) =
So

1 + S2
o

{So [1− h(V, t)] + n(V, t)} (3.22)

where So is defined at rest, i.e.

So ≡
1− h(Vo, to)

n(Vo, to)
. (3.23)

We will go further (without real justification), and linearize the equation for
W (V, t).

4. The membrane time-constant can be ignored, that is, taken as infinity. The
relaxation of the neuronal dynamic thus occurs on the time-scale of the slow recovery
variable W (t).

5. All of the above motivates the simplified form credited to Fitzhugh and
Nagumo, which contains two equations to describe fast and slow (recovery) variables

dV

dt
= f(V )−W + I (3.24)

where time is in units of τ and f(V ) is a cubic polynomial similar in form to the
instantaneous Hodgkin-Huxley Na+ current.

dW

dt
= φ (V − bW ) . (3.25)
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Note that 1
φ

sets the time scale for the slow variable and thus φ is a small number.
Further, that there are no product terms, i.e., terms of the form ”WV”, to cause
intractable mathematics.

Our goal is to use this brutalized from to derive the properties of the spike by
viewing the action potential as a limit cycle, etc.

3.4 A Quick Review of the Phase Plane

Before we get knee deep in the phase plane, let’s back up and recall what is meant
by graphical analysis.

Consider dx
dt

= f(x)

• When dx
dt
> 0, x is increasing and the flow is the right along x, i.e., →

• When dx
dt
< 0, x is decreasing and the flow is the left along x, i.e., ←

This is illustrated for the case of dx
dt

= sinx

FIGURE - chapt-10-phase-plane-sinx.eps

Another way to look at this is to consider a potential, U(x), where f(x) = −∂U(x)
∂x

so that U(x) = cos x.

The power of this method comes with sets of equations with 2 dependent vari-
ables, i.e., of the form

dV

dt
= function(V,W, I, constants) ≡ F (V,W, I, constants) (3.26)

dW

dt
= another function(V,W, constants) ≡ G(V,W, constants)

Then we can observe the possible trajectories of the system graphically, and get
insight into certain perturbations.

3.5 The Fitzhugh-Nagumo Model

3.5.1 Formulation

For simplicity, we will use the same form of f(V ) as that taken above.

f(V ) = V (V − Vthresh) (V − Vpeak) (3.27)

= (Vthresh + Vpeak)V
2 − (VthreshVpeak)V − V 3

we will later find it useful to consider the derivative of this function

f ′(V ) ≡ df(V )

dV
= 2 (Vthesh + Vpeak)V − (VthreshVpeak)− 3V 2 (3.28)
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The fast variable, V (t), captures the features of the instantaneous I-V relation
at the height of the action potential. It obeys

dV

dt
= f(V )−W + I (3.29)

= (Vthresh + Vpeak)V
2 − (VthreshVpeakV )− V 3 −W + I

FIGURE - chapt-10-FN-nullclines.eps

The slow variable, W (t), obeys

dW

dt
= φ (V − bW ) (3.30)

where, by construction, φ has a value φ << 1.

3.5.2 Analysis

1. In steady state these must satisfy

W = f(V ) + I (3.31)

= V (V − Vthresh) (V − Vpeak) + I

which, for the case I = 0, has a local minimum at

V− =
1

3

(
Vthresh + Vpeak −

√
Vpeak(Vpeak − Vthresh) + V 2

thresh

)
(3.32)

and a local maximum

V+ =
1

3

(
Vthresh + Vpeak +

√
Vpeak(Vpeak − Vthresh) + V 2

thresh

)
(3.33)

and

W =
V

b
(3.34)

The parameter b sets the scale of growth versus decay. The idea is that a train
of pulses will be produced when dW

dt
≈ 0 when V is near rest and dW

dt
> 0 when V is

near it’s peak value.

This immediately implies that b > 0, so that the slow parameter turns on at
high potentials.

FIGURE - chapt-10-flow.eps

2. We want only a single fixed point near the lcal maximum of f(V ). Rather
than try to solve a cubic, we note that slopes are equal when the curves just touch
in the upper right-hand plane and two solutions just form, i.e.,

7



dW

dV
= 2(Vthresh + Vpeak)V − (VthreshVpeak)− 3V 2 (3.35)

and

dW

dV
=

1

b
(3.36)

or

1

b
> 2(Vthresh + Vpeak)V − (VthreshVpeak)− 3V 2. (3.37)

We can get a worst case estimating bt selecting V to the above inequality to be
the point with the largest slope. This occurs at the inflection point, or when

d2W

dV 2
= 2(Vthresh + Vpeak)− 6V = 0 (3.38)

or at V = (1/3)(Vthresh + Vpeak). Thus

1

b
> Vpeak(Vpeak − Vthresh) + V 2

thresh. (3.39)

0 < b <
1

Vpeak(Vpeak − Vthresh) + V 2
thresh

(3.40)

This is a statement that the relative density of the slow current cannot exceed
an upper limit.

3. Additional constraints appear by considering the stability of the system. We
expand around an equilibrium point (Vo,Wo). Then we can expand the original
equations to obtain an expression for (V (t),W (t)) in the vicinity of (Vo,Wo). We
write

F (V,W ) ≈ F (Vo,Wo) +
∂F

∂V

∣∣∣∣∣(Vo,Wo)δV +
∂F

∂W

∣∣∣∣∣
(Vo,Wo)

δW (3.41)

etc., so that with F1(V,W ) = f(V ) −W + I and F2(V,W ) = φ (V − bW ) we
have

dδV

dt
= f ′(V0)δV − δW (3.42)

dδW

dt
= φ δV − bφ δW (3.43)

We do the usual thing of assuming that the solutions are of the form δV (t) ∼=
A1e

α1t + A2e
α2t, etc.,with the constraints that the real parts of both α’s must be

negative for a solution to be stable, and the α’s must be purely imaginary for a
stable limit cycle , i.e., oscillatory solution. Thus, we evaluate
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∣∣∣∣∣ f ′(V0)− α −1
φ −bφ− α

∣∣∣∣∣ = 0 (3.44)

α1,2 =
(f ′(V0)− bφ)±

√
(f ′(V0) + bφ)2 − 4φ

2
(3.45)

The first term on the RHS is always negative only for bφ > f ′(V0). This is the
statement of stability. For the cell to fire repetitively, we must have instability, or
satisfy

f ′(V0) > bφ (3.46)

Since both b and φ are positive, this means that the slope of f(V0) must be
positive. This only happens only between the minimum and maximum values of
f(V ). The details of f(V ) are seen to be unimportant.

As a means to look at the onset of firing, we expand just about the point of
stability/instability. We let

1 + ε ≡ f ′(V0)

bφ
(3.47)

so that

α1,2 = ε
bφ

2
± i

√
φ− b2φ2 (3.48)

As ε goes from negative to positive the system goes from stable to unstable, yet
the value of the imaginary past, which sets the frequency, is unchanged. This is why
the frequency jumps from zero (stable solution, with no oscillation) to a finite value
of

f ≈ 1

2π

√
φ
√

1− b2φ (3.49)

∼ 1

2π

√
φ

where the final step holds if b2φ << 1 consistent with b of order 1 and φ <<
1. It is remarkable that the frequency depends only on φ, which is the scale of
the difference in time scales between the fast and slow variables. Thus, as the
system changes from stability to unstable, the frequency remains the same, i.e., the
oscillations start from a nonzero value.

SHOW ANIMATION

The choice of the parameter b such that the system is unstable will lead to a
limit cycle (ε > 0). This corresponds to a neuron that oscillates in the absence of
external input.
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SHOW ANIMATION

3. The presence of a small value of φ implies that the trajectories are simple. In
particular, the slope of the trajectory is

dW

dV
=

dW
dt
dV
dt

= φ
V − bW

f(V )−W + I
(3.50)

so that dW
dV
≈ φ ≈ 0, i.e., the trajectories are nearly horizontal, unless we are

close to the nullcline for dV
dt

. Further, the speed along the horizontal nullcline is
small compared to that on the vertical nullclines.

FIGURE - chapt-10-FN-trajectories-1.eps

3.5.3 Examples

It is now useful to examine the behavior to perturbed values of V and W . We see
that the response is stable so long as we are on the left side of the cubic curve,
otherwise a spike is initiated.

FIGURE - chapt-10-FN-trajectories-2-eps

Interesting cases occur when the value of b is chosen to insure stability in the
absence of input, but transient current injection leads to a shift in V . In particular:

• Spike initiation by a depolarizing current pulses (point C).

• Absolute refractory period in response to a depolarizing current pulse(point
A).

• Relative refractory period in response to a depolarizing current pulse(point
B).

• Abolition of a spike by a hyperpolarizing pulse (point D).

SHOW ANIMATIONS

Our final and perhaps most important example is to consider the effect of in-
jecting steady current, I, which causes the nullcline for dV

dt
to shift up or down.

This leads to a current threshold. As mentioned above, the firing rate jumps dis-
continuously from 0 to a nonzero value. This happens when I is increased so that
bφ = f ′(Vo) or ε = 0 in the above analysis, and the α’s are imaginary with value

α1,2 ≈ ±i
√
φ. (3.51)

Thus the frequency at the onset of oscillations starts away from zero.

FIGURE - chapt-10-f-vs-I.eps
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3.5.4 Saddle Node versus Hoft Bifurcations

Our final point concerns the onset of oscillations from zero frequency. Unlike the
case of digital logic, when strongly nonlinear circuitry is the order of the day, sensory
systems and motor plants tend to require the use of graded system (although one
can build this from an ensemble of binary systems with a spectrum of thresholds).

Oscillations can start at zero frequency for the case b > 1 (strong inhibition), so
that 4b2φ ∼ 1. This is accompanied by three rather than a single crossing of the
dV
dt

= 0 and dW
dt

= 0 nullclines. The initial frequency can obtain any value as the
real part of α becomes positive (unstable), i.e.,

f ≈ 1

2π

√
φ
√

1− b2φ (3.52)

The intermediate crossing serves as a saddle point, that is, paths along a partic-
ular trajectory lead to the point while all other paths lead away. As the current I
increases, the stable resting point and the unstable threshold point begin to merge
and oscillations start. An example of this occurs with A-type K+ currents

FIGURE - chapt-10-saddle-node.eps
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