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A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

B WARREN S. MCCULLOCH AND WALTER PITTS
University of Tllinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

Because of the “all-or-none” character of nervous activity, neural events and the relations among
them can be treated by means of propositional logic. It is found that the behavior of every net can
be described in these terms, with the addition of more complicated logical means for nets
containing circles; and that for any logical expression satisfying certain conditions, one can find a
net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions are equivalent, in the sense that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus are
discussed.



Figure 1. The neuron ¢, is always marked with the numeral i upon the body of the
cell, and the corresponding action is denoted by “N” with i s subscript, as in the text:

(ol w (b) <I N (a) Ny(t).=.N,(t—1)
M— (b) Ny(t).=.N,(t—1) v Ny(t—1);
(©) Nyt).=.N(t—1).N,(t—1);
() (d) Ny(t).= Ny(t—1).~N,(t—1);

(&) Ny(0):=:N,(t—1).v.N,(t—3).~N,(t—-2);
N (t).=.N,(t=2). N,(t—1);

(f) Ny(t):i=: ~N,(t—1). Nyt —1) v Nyt—1).v. N (t—1).
N,(t—1). Ny(t—1)
N(t):=: ~N(t—=2). Nyt—2) v N5(t—2).v.N,(t—2).
N,o(t—2).N,(t=2);

(8) Ni(1).=.N,y(t—=2).~N (t=-3);

(h} Ny(t).=.N,(t—1).N,(t=2);
(1) NL(t)=:N,(t—1).v. N (t—1). (Fx)t—1_N,(x). N,(x).
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Circuits constructed from identified Aplysia neurons exhibit
multiple patterns of persistent activity

D. Kleinfeld,* F. Raccuia-Behling,* and H. J. Chiel*

*Solid State and Quantum Physics Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey 07974 and
‘Department of Biology, Case Western Reserve University, Cleveland, Ohio 44 106
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FIGURE2 The basic dynamic behavior of the inhibitory circuit. This particular circuit consisted of L10 co-cultured with two LUQs. The L10 formed
reciprocal connections with each LUQ; the LUQs were coupled by a strong electrotonic connection and thus functioned essentially as a single cell. The
bias currents were Jy = 0.15, 0.55, and 0.15 nA for LUQ!, L10, and LUQ2, respectively. The circuit was initially in the state OFF/ON, with the
LUQs quiescent and L10 active. At time 1 a brief pulse of current was injected into the LUQs, causing a transition to the state ON/OFF. Subsequent
transitions were induced at times 2, 3, and 4.
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Neural networks and physical systems with emergent collective

computational abilities

(associative memory/parallel processing/categorization/ content-addressable memory/fail-soft devices)

J. J. HOPFIELD

Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974

Contributed by John J. Hopfield, January 15, 1982

NEURONS
Mean Firing Rate or "Output"

-0.1/ 0]
Membrane Potential (Volts) or "Input"

Fic. 1. Firing rate versus membrane voltage for a typical neuron
(solid line), dropping to O for large negative potentials and saturating
for positive potentials. The broken lines show approximations used in
modeling.
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FiG. 2. An electrical circuit that corresponds to Eq. 5 when the
amplifiers are fast. The input capacitance and resistances are not
drawn. A particularly sjmple spec1al case can have all positive T;; of
the same strength and no negative T;; and replaces the array of nega-
tive wires with a single negative fccdback amplifier sending a com-
mon output to each “neuron.” “



Using goal-driven deep learning models to understand
sensory cortex

Daniel L K Yamins’? & James ] DiCarlo!

Encoding Decoding
a Stimulus Neurons S Behavior
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Spatial convolution
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Operations in linear-nonlinear layer

Figure 1 HCNNs as models of sensory 5o,
cortex. (a) The basic framework in which ® 0, _}E_pﬁ_}@
sensory cortex is studied is one of encoding—the process by which stimuli are transformed b, Shreshold - Peol Momalks

into patterns of neural activity—and decoding, the process by which neural activity generates Filter
behavior. HCNNs have been used to make models of the encoding step; that is, they describe

the mapping of stimuli to neural responses as measured in brain. (b) The ventral visual pathway is the most comprehensively studied sensory cascade.

It consists of a series of connected cortical brain areas (macaque brain shown). PIT, posterior inferior temporal cortex; CIT, central; AlIT, anterior;

RGC, retinal ganglion cell; LGN, lateral geniculate nucleus. DoG, difference of Gaussians model; T(#), transformation. (¢} HCNNs are multilayer neural
networks, each of whose layers are made up of a linear-nonlinear (LN) combination of simple operations such as filtering, thresholding, pooling and
normalization. The filter bank in each layer consists of a set of weights analogous to synaptic strengths. Each filter in the filter bank corresponds to a
distinct template, analogous to Gabor wavelets with different frequencies and orientations; the image shows a model with four filters in layer 1, eight in
layer 2, and so on. The operations within a layer are applied locally to spatial patches within the input, corresponding to simple, limited-size receptive
fields (red boxes). The composition of multiple layers leads to a complex nonlinear transform of the original input stimulus. At each layer, retinopy
decreases and effective receptive field size increases. HCNNs are good candidates for models of the ventral visual pathway. By definition, they are image
computable, meaning that they generate responses for arbitrary input images; they are also mappable, meaning that they can be naturally identified in a
component-wise fashion with observable structures in the ventral pathway; and, when their parameters are chosen correctly, they are predictive, meaning
that layers within the network describe the neural response patterns to large classes of stimuli outside the domain on which the models were built.




Train binary classifiers to recognize patches inside vs. outside each structure
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Textures (currently) represented with convolutional neural networks

Encode an image patch into a feature vector.

- Alternating convolution layers and subsampling layers of various sizes.
- Output of each layer modulated by nonlinear function.

- Several fully connected layers at the end.

- Pre-trained on natural images, also applicable to histology images.
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These lowest-level filters resemble Gabor filters

-
(simple cells in mammalian primary visual cortex). e, ’ .ni" -. ‘ _‘F :' .




C1 feature maps

c1
convolution

52 feature maps

FC features

Filters @ convolution layer 2

These mid-level filters appear as Surrealist elements




C1 feature maps

S1 feature maps €2 feature maps

Output @ fully connected layer

Neurons at the output of fully connected layer comprise
the feature vector of this patch.




Prediction: Assign each patch a score vector, form score maps

Interpolated
score maps

\__ sliding window

Binary

t ¢ Structure
support vector
4096-dimensional classifiers score vector
00 yum x 100 ym patch feature vector Y

[ 7N-in vs. 7N-out ]E> 0.75

[ 5N-in vs. 5N-out JE:> 0.92

Pre-trained
convolution
neural net

[VLL-in vs. VLL-out ]E> 0.16
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