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Spiking neural networks (SNNs) require both neurons and synapses. Here we introduce a synaptic unit
with both excitatory and inhibitory biomimetic dynamics (Rall’s function). Combined with our previously
introduced memristive spiking neuron, they complete a minimal model platform to build general SNNs.
Our hardware neurosynaptic (NS) unit is fully analogue and implements a textbook theoretical model. It
avoids the mismatch problem and is easily tunable at biocompatible timescales. We demonstrate the mod-
ularity of our NS-unit platform by building various basic neurocomputing primitives produced by basic
motifs and their combination. With our novel hybrid theoretical and experimental approach we make three
notable contributions: (1) We demonstrate that recursive inhibition (adaptation) and excitation can both
be formulated as self-consistent dynamical problems. (2) We demonstrate that a minimal dynamical mem-
ory can be implemented with just one recursive single neuron. (3) We show that adopting a biomimetic
membrane current in adaptive neuron models reveals an unknown connection to a cornerstone of physics,
the harmonic oscillator model. Our NS unit realizes a building block for midsize SNNs of arbitrary geom-
etry. Its simple design, along with the wide accessibility of ordinary electronic components, make our
methodology an attractive platform to build neural interfaces for biological neuroscience, medical devices
including deep brain stimulation, robotics, and artificial intelligence systems such as reservoir computing.
We provide a bill of materials and printed-circuit-board designs to implement the device.
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I. INTRODUCTION: NEUROCOMPUTING
PARADIGMS AND THE PROBLEM OF

COMPUTING WITH SPIKES

Neuromorphic computing (NC) is a field aimed at
implementing systems that can perform functions taking
inspiration from the nervous system and brain. Examples
range from face recognition through autonomous naviga-
tion to robotic motion, and many more that are revolu-
tionizing modern life. To implement those systems, there
are two main approaches. One is based on software run-
ning on digital computers, and the other is fabricating
neuromorphic hardware that mimics the components of a
neural network. In both cases, NC systems rely on mod-
els from theoretical neuroscience, computer science, or
physics. Every model has a definition of its components,
called neurons and synapses. Neurons are the degrees of
freedom of a neural network, since they can be in differ-
ent states. Synapses describe the couplings and interactions
between them (see Fig. 1).

We recall a paradigmatic example of an NC system,
the Hopfield model, to clarify the roles of neurons and
synapses, which are often a matter of confusion. This is
a model for associative memory, introduced in the 1980s
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[1]. It bears close similarity with magnetic spin models in
physics (see Fig. 1). The neurons are defined as discrete
variables, where Si = ±1 denotes the ith member of the
network. The synapses are the interactions between neu-
rons, where the real parameter Jij denotes the interaction
between neurons i and j . The model has an energy given
by the expression E = (1/N )

∑
Jij SiSj , where N is the

number of neurons. Each memory corresponds to a local
minimum of the energy landscape. The genius of Hop-
field was to formulate a simple recipe to choose the Jij
couplings that provide such a landscape. The model can
recall a memory by association. Namely, given an arbitrary
initial state Si for i = 1, . . . , N , an algorithm of energy
minimization will retrieve its associated memory.

A. Neurocomputing with software

The Hopfield model, as any of the modern deep neural
networks for artificial intelligence, is an algorithm imple-
mented in software that runs on digital computers. The
computers may be conventional or the so-called “neuro-
morphic chips,” such as TrueNorth or Loihi, which are
digital processors with an optimized architecture to run
those types of models [2]. Bitlike variables and Jij cou-
plings are the simplest modeling for neurons and synapses
and allow for computation with massive neural networks,
such as those used in artificial intelligence. However,
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FIG. 1. Schematic view of the presynaptic (red) and postsy-
naptic (blue) neurons. The neurons are coupled by a synapse.
The action potential reaching the end of the axon terminals of
the preneuron induces a synaptic input current in the postneuron,
which can be excitatory (positive) or inhibitory (negative). The
inset shows the analogy with the Hopfield model, where neurons
are spins Si, and synapses are the couplings Jij .

severe limitations emerge quickly if one wants to adopt a
more biomimetic spiking-neural-network (SNN) model.

In fact, neurons and synapses are qualitatively differ-
ent than the simplified description of the Hopfield model:
they are dynamical systems. Neurons are a special type
of cell in the body that are characterized by having elec-
trical activity. They are not just active or inactive, but
emit action potentials that are fast voltage spikes. Synapses
involve the dynamical process of transferring neurotrans-
mitters between a presynaptic and a postsynaptic neuron,
so they are not just real-valued parameters (see Fig. 1) [3].

The dynamical models of spiking neurons range from
schematic to biorealistic. In the first case, the most paradig-
matic one is the leaky-integrate-and-fire (LIF) model [3,4].
For the latter, the most famous one is the Hodgkin-Huxley
model, which describes the generation of action poten-
tial in the giant axon of the squid [5]. These models
are described by multiple nonlinear differential equations.
Similarly, to describe the synaptic couplings, further differ-
ential equations are needed. Hence, to numerically study
an SNN requires the solution of a challenging system of
multiple coupled nonlinear differential equations. The scal-
ing of these SNNs is typically bad, as the number of
differential equations grows rapidly with the size of the net-
work and its synaptic connectivity. Possibly an even more
serious problem is the scaling of the simulation time. An
action-potential spike typically lasts 1 ms, and the firing
rate of a neuron is roughly between 1 and 100 Hz. Thus a
time step of 0.1 ms is often adopted. The timescale asso-
ciated with the global behavior can be considered of the
order of minutes, so there is at least a 106 factor for the
number of simulation time steps, just for one neuron. How-
ever, this scaling quickly worsens with a growing number
of neurons, at least by a factor of N , in the most favor-
able case. Nevertheless, there are several implementations

of useful numerical simulators of SNNs available (see [6]
for a recent review and benchmark).

It is not easy to find out what is the largest SNN size
that current simulators can handle [6], as this depends
on the model, the connectivity, the computer architecture,
the power, etc. Whatever this estimate may be, it would
become severely reduced if one considers continuous mod-
els, without hard resets of variables, where the spike
emission is not described by time stamps and synapses
are dynamical. Namely, where the full nonlinearity of the
problem is properly treated.

Finally, another severe limitation imposed on software
approaches is the numerical and electric power require-
ments needed to carry out the computation. Power effi-
ciency becomes a relevant aspect, especially for practical
applications such as navigation control, neuroprostheses,
wearable implants, brain-machine interfaces, etc. [7,8].

B. Neurocomputing in hardware

A very different approach to NC is based on the idea of
implementing neurons and synapses directly in hardware.
In fact, a hardware implementation has the very attractive
feature of ideal scaling because time represents itself. In
other words, the system evolves in real time and the time
evolution occurs irrespective of the number of neurons in
the network. If it takes one minute to simulate the behavior
of one neuron, it takes the same one minute to simulate the
behavior of a network of size N .

Modern silicon electronic technology based on com-
plementary metal oxide semiconductor (CMOS) systems
can implement, a priori, almost any desired mathemat-
ical model. This approach has had several decades of
development, starting with the pioneering work of Mead,
who coined the term “neuromorphic electronics” [9]. He
observed that transistors operating in the subthreshold
regime, i.e., not as digital switches but as variable con-
ductances, show a behavior analogous to the activation
of ionic channels in neuron membrane models. There are
currently many electronic chips that integrate millions of
silicon neurons, which typically require tens of transistors
each [10,11]. Surprisingly, the implementation of dynam-
ical synapses in hardware has received comparatively less
attention [12], although they are a key feature in theoretical
neuroscience [13].

A remarkable example of this type of hardware imple-
mentation is the DYNAP-SE chip, which counts 4 × 256
neurosynaptic computing units [14]. Each one implements
an adaptive-exponential integrate-and-fire neuron [3] that
generates discrete spike events, plus a dynamical synapse
that can implement biomimetic currents. This chip exhibits
the appealing feature of ultralow power consumption. In
contrast, some significant inconveniences of this approach
are that it requires a high level of technical expertise
and of fabrication capabilities, beyond the reach of most
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research labs, and that it lacks flexibility, as it takes years
to design and implement each electronic chip. Neverthe-
less, the most significant of all issues, common to all other
electronic implementations that work in the transistor sub-
threshold regime, is that it suffers from a severe problem of
device mismatch [15].

Here we propose to take a drastically alternative
approach to fabricating, studying, and understanding
SNNs. While current CMOS VLSI may be considered
as a top-down method, where fabricating a large number
of units is a main goal, here, we propose a bottom-up
approach. Our methodology is constructive, with neu-
rosynaptic units that can be modularly interconnected to
implement neurocomputing primitives. Crucially, we can
do this in a fully controlled manner, including the homo-
geneity between the spiking units, hence mitigating the
mismatch problem. Thus, our approach to implementing
SNNs in hardware qualitatively differs from all others in
multiple aspects: it is of extreme simplicity, extreme flex-
ibility, extreme tunability, controlled reproducibility, very
low fabrication cost, and based on theoretical neuroscience
textbook modeling.

Here, we shall introduce and demonstrate our hybrid
theoretical and experimental methodology by implement-
ing in hardware all the basic neurocomputing motifs from
theoretical neuroscience. The originality and value of our
approach will be highlighted by the relevant novel results
and insights that emerge from the study of dynamical
systems.

Specifically, here we shall demonstrate the following
important results.

(1) We demonstrate that the minimal recursive SNN,
i.e., a single neuron with either autoinhibition (adaptation)
or autoexcitation, can be mapped onto a self-consistent
dynamical problem with a geometrical representation.
Based on this formulation and its hardware implementation
we demonstrate the two following important results.

(2) For the case of autoexcitation, we obtained
the unprecedented realization of a single-neuron stable
dynamical memory (also known as a working memory).
This is significant, because in the current literature it is
widely assumed that, to achieve a stable working memory,
a recursive neuron assembly is needed [3]. This finding
may also explain the recent striking experimental obser-
vation of the bump of activity in the head direction system
of Drosophila. This is realized in a neural structure called
the ellipsoidal body, which counts with only a handful of
neurons [16].

(3) For the case of autoinhibition, we made two signifi-
cant findings. First, we show that our model is a hardware
counterpart of paradigmatic models of theoretical neuro-
science, the Izhikevich and the AdEx [3,17]. Similarly
to those models, the adaptation is mediated by a spike-
dependent membrane current. But, improving on them, we
model the current with the more biorealistic Rall’s function

[13]. This yields the second significant finding, where we
theoretically show that the model can be mapped to a cor-
nerstone model of physics, namely, the driven harmonic
oscillator with friction. We also demonstrate this experi-
mentally, by the measured currents in our hardware circuits
that realize an intrinsic burster or pacemaker state.

(4) We show how the single-neuron motifs can be lever-
aged as components of higher-level two-neuron motifs,
which produce three different types of central pattern
generators (CPG). Our results demonstrate two features:
(i) the modular constructive nature of our methodology;
and (ii) that our CPGs can easily work at biocompatible
timescales, making them ready for deployment in practical
applications.

The paper is organized as follows. In Sec. II we first
describe the neurosynaptic unit model and its circuit imple-
mentation, emphasizing the connection to mathematical
models and its full parameter tunability. Then, in Secs. III
and IV we demonstrate the implementation of the simplest
motifs of spiking neural networks, that realize neuro-
morphic primitives, i.e., basic neurocomputing functions.
Then, in Sec. V we discuss how our present work is
related to the intense activity in the search for memristive
materials. We also make some general remarks about the
positioning of our approach with respect to other hardware
in regard to power efficiency. In the final Sec. VI we con-
clude with a recap on the main contributions of our present
work both for science and in neuromorphic electronics.
Finally, in the Appendix we provide technical details on all
our circuits and a list of materials, which are also available
upon reasonable request.

II. NEUROSYNAPTIC UNIT: THEORETICAL
MODEL AND ITS PHYSICAL EMBODIMENT

A. Theoretical model

The neurosynaptic (NS) hardware unit takes inspiration
from a basic model in Wilson’s textbook on theoretical
neuroscience (cf. Ch. 12 of Ref. [13]). It is a set of differen-
tial equations for a spiking neuron of type I supplemented
with synaptic currents. A type-I neuron, such as a corti-
cal neuron [13,18], characteristically fires action potential
spikes at arbitrarily low rates.

When a presynaptic (or upstream) neuron emits a spike,
which is a very fast event, typically lasting 1 ms, the
action potential liberates a certain amount of neurotrans-
mitters (see Fig. 1) into the synaptic cleft, which is about
20 nm wide [19]. Those molecules reach the dendrites of
the postsynaptic (or downstream) neuron where they open
ionic channels that induce synaptic currents integrated in
the cell body. The neurotransmitters can be either excita-
tory or inhibitory, depending on whether they contribute
or prevent the emission of a spike by the postsynaptic
neuron. This depends on the sign of the synaptic cur-
rent: if positive, or depolarizing, it brings the potential of
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the neuron closer to the firing threshold; if negative, or
hyperpolarizing, it has the opposite effect.

This synaptic current process typically occurs in the
range of tens to hundreds of milliseconds, thus at a much
longer timescale than the spike emission, and has its
own dynamics. This introduces an additional and relevant
timescale in SNN dynamics, which is well recognized to
have significant consequences [20].

In the 1960s Rall introduced a set of differential equa-
tions to model this phenomenon, which has been widely
adopted [3,13,21,22]. When applied to a delta function
representing the sharp spike emission, they provide as
a solution a synaptic current with the functional form
known as Rall’s alpha function, α(t) = (t/τ 2

s ) exp(−t/τs).
Thus, the sharp (∼ 1 ms) spike emitted by the preneuron
is perceived by the postneuron as a broad synaptic cur-
rent input that peaks and decays in a typical timescale τs
(∼ 10–100 ms).

Rall’s differential equations for the synaptic current are
incorporated in Wilson’s book model (cf. Eq. (12.18) of
Ref. [13]). Those equations, along with the expression for
a general integrate-and-fire spiking neuron from Gerstner’s
book (cf. Eq. (5.2) of Ref. [3]), conform to the mathemati-
cal model that underlies our hardware implementation. The
set of equations reads

Cm
dVm

dt
= f (Vm) + Iα + I0, (1)

τs
dIe

dt
= −Ie + IδH(Vpre − �), (2)

τs
dIα
dt

= −Iα + Ie. (3)

Here Vm is the neuron’s membrane potential; Cm is the
membrane capacitance; τs = RsCs is the synapse time con-
stant, with Cs and Rs being the capacitance and leak
resistance of the synapse, respectively; I0 is an external
input current to the neuron; and Ie and Iα are dynamical
synaptic currents (analogous to f and g in Wilson’s book
[13]). Also closely following the notation of Wilson, H
denotes a step function (or Heaviside function) that is unity
if the presynaptic voltage Vpre is larger than the synaptic
threshold �, or zero otherwise [13]. Thus, the presynaptic
action potential is modeled as a narrow pulse of rectangu-
lar shape that represents a δ(t)-like spike. The condition
(Vpre > �) sets the width of the narrow pulse, which we
call τa, and its magnitude we denote by Iδ . Hence, this
spike carries a charge

QN = Iδτa (4)

that physically may represent the amount of neurotransmit-
ter liberated by the preneuron into the synapse.

The current Ie results from the first leaky integration
equation (2) of the sharp rectangular current pulse. Hence,

with τa � τs, one obtains the exponential current

Ie(t) = QN

τs
exp (−t/τs) , (5)

This current is the input to the third equation (3), so after
this second leaky integration one gets the alpha function
[3,13,22]

Iα(t) = QN

τs

t
τs

exp (−t/τs) . (6)

These currents have biomimetic line shapes [3,13].
They realize the synaptic currents of four basic types,
namely, fast exponential excitatory (AMPA) or inhibitory
(GABAa), and slow alpha-function excitatory (NMDA) or
inhibitory (GABAb) (cf. Ch. 3 of Ref. [3]).

B. Analog leaky-integrate-and-fire model

To fully specify the model, we need to define the non-
linear function f (Vm) in Eq. (1) that generates the spikes.
In the interest of simplicity, we start by recalling the leaky-
integrate-and-fire (LIF) model, which is the most widely
used. In the LIF model, shown in Fig. 2, the body (soma)
of the neuron is represented as a capacitor Cm that charges
by integrating the input ionic currents arriving at its den-
drites. This integration suffers leakage losses, which are
represented by the membrane resistor Rm. The third com-
ponent of the LIF model is a voltage-dependent switch S
that is normally open, but closes when the potential Vm(t)
on the capacitor reaches a threshold Vth. At that point, one
says that a spike is “fired” at a time t = tfire, the voltage Vm
is reset to a low resting value, and the switch is set back
to open. It is important to realize that the LIF model is a
mathematical model and the spike is an abstract “event”
defined by the condition Vm = Vth [3]. In other words,
there is no dynamical description of the spike [23]. In this
model, the nonlinear function f (Vm) is implemented by the
V-dependent switch.

Here, we shall adopt the above idealized description as
a basis for our hardware implementation, which we shall
also augment to provide an embodiment of the physical
emission of an action-potential spike (see Fig. 2). The first
step is, as shown in Fig. 2, to add a small “load” resis-
tor with Ra � Rm. Then, when S closes at Vm = Vth, the
Cm quickly discharges on Ra and the current on this resis-
tor produces a voltage spike. The fast discharge time is
τa = RaCm, which provides a definite parametrization to
the width of the δ-like spike that we mentioned above
Eq. (4). Interestingly, we may give this spike generation
mechanism a biological interpretation as the action poten-
tial that is initiated in the axon hillock [24]. The axon
hillock is characterized by a high concentration of Na
channels, over 100 times more than in the cell body (soma)
[25]. We can thus think of the closing of the V-dependent
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(a)

(b)

FIG. 2. The analog-LIF model: (a) The leaky-integrate-and-
fire model with a voltage-dependent switch S is augmented with
a discharge resistance Ra to produce an explicit action potential
(left panel). The switch can be implemented by a thyristor T with
a resistor Rm between its gate and anode. This resistor also pro-
vides the leak resistance of the model, while the thyristor is not
conducting (middle panel). The combination of T + Rm realizes
the concept of a memristor, with the functionality of a voltage-
gated conductance, central to all neuron models (right panel). (b)
LIF behavior: The input current pulses (bottom panel) are leaky
integrated, producing the increase of the membrane voltage Vm
(center panel). When Vm reaches the dynamical threshold Vth
(vertical arrows), the forward resistance of the T collapses and
there is the emission of an output of a continuous action-potential
spike Vap (top panel). Circuit technical details and parameter
values for all figures are provided in the Appendix.

switch as representing the massive opening of those chan-
nels and the enhanced membrane conductance at the axon
hillock described by the small resistance Ra. Despite the
extended use of the LIF model, we are not aware of this
simple extension.

The second step to specify the embodiment of the model
is to implement the V-dependent switch. The simplest cir-
cuit to do this exploits the concept of a volatile memristor,
which is a V-dependent resistance (or V-gated conduc-
tance) [26]. We have recently, demonstrated that a com-
bination of a thyristor and a resistor can implement such a
memristive two-terminal device that provides the desired
functionality [27,28].

A voltage-gated conductance is in fact a key ingre-
dient common to all conductance-based neuron models,
such as Hodgkin-Huxley, Morris-Lecar, Hindmarsh-Rose,
etc. [13]. Those theoretical models are formulated with

differential equations that describe the spike emission as
a continuous dynamical process. It results from the strong
nonlinearity of the equations, namely the property of
excitability [13]. We note that simplified models, such as
Izhikevich and AdEx [3], which are popular for numerical
simulations, do not fall in that category. This is because
they require a discontinuous reset, for the sake of their
numerical simplicity [3,23].

Our memristor spiking model implementation is shown
in Fig. 2 and it is described by the following equations:

Cm
dVm

dt
= − Vm

Rm[S] + Ra
+ I0, (7)

Vap = Vm

Rm[S] + Ra
Ra. (8)

Here Rm[S], with high (hi) or low (lo) S, denotes a
volatile memristor whose resistance can switch between
two states: a high resistance Rm[hi] and low resistance
Rm[lo]. The commutation depends on the applied voltage,
thus S = S(Vm), implementing a V-dependent conductance
[28]. Equation (8) is a voltage divider providing the action
potential Vap on the axon-hillock resistor Ra. When the
memristor is in the Rm[hi] � Ra state (i.e., open switch),
then Vap is negligible. When it commutes to Rm[lo] �
Ra (i.e., closed switch), there is an action-potential spike
explicitly described by Vap(t) (see Fig. 2).

Notice that the first differential equation above may
seem linear, but it is not. In fact, the nonlinearity, neces-
sary for the excitability of the model, is provided by the
commutation property of the memristor device [28].

The circuit implementation of the LIF model that we
just described features a fully continuous spike generation
mechanism. Therefore, our circuit model, although not bio-
realistic but biomimetic, can be considered as a member of
the class of conductance-based neuron models and we call
it the analog-LIF (aLIF) model. In Fig. 2 we show the mea-
sured traces of the neuron circuit, which shows the leaky
integration of input current pulses and the resulting output
emitted spikes Vap(t).

C. Physical embodiment of the neurosynaptic model
equations

One of the main goals of the present work is to pro-
vide a simple and transparent physical instantiation of the
set of equations (1)–(3), which are the mathematical refer-
ence. We would like that each circuit component could be
directly related to the theoretical model parameters. Fur-
thermore, we would like the hardware implementation to
be modular, such that the subcircuit units can be associated
to build arbitrarily spiking neural networks, and eventually
a neurocomputer. We shall see in the rest of the paper that
all these goals are accomplished by the NS unit that we
describe below.
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For the spiking generation mechanism, which is
encoded in Eq. (7), we adopt the aLIF circuit model dis-
cussed in the previous section. Thus, we rewrite below the
reference model equations (1)–(3) including the aLIF and
renaming some variables for convenience:

Cm
dVm

dt
= − Vm

Rm[S] + Ra
+ Is2 + I0, (9)

Vpost = Vm

Rm[S] + Ra
Ra, (10)

τs
dIs1

dt
= −Is1 + IδH(Vpre − �), (11)

τs
dIs2

dt
= −Is2 + Is1. (12)

Here Vpost = Vap denotes the output postsynaptic action
potential, and Is1 and Is2 denote the synaptic currents of
the two leaky-integration stages.

Similar to what was provided for spike generation
via the aLIF circuit, the synaptic current equations (11)
and (12) also have a concrete physical embodiment, as we
show in the circuit in Fig. 3. We indicate in the figure the
correspondence between the equations of the model and
the circuit blocks. We shall now describe the implementa-
tion in detail. For the sake of clarity, we shall explain the
circuit in Fig. 3 from input to output, i.e., from the presy-
naptic neuron on the left (Vpre) to the postsynaptic neuron
on the right (Vpost).

(a)

(b)

FIG. 3. (a) Schematic diagram of the neurosynaptic unit circuit
blocks and their relation with the biological neuron. (b) Physical
embodiment of model equations (9)–(12) with subcircuit blocks
denoting the pre- and postsynaptic neurons and the synaptic
block in between. The synaptic block has two stages that perform
a leaky integration each. The input presynaptic potential pro-
duces a δ(t)-like current spike. A double leaky integration of the
pulse provides an α(t)-like synaptic current into the postsynaptic
neuron, which also receives the external input I0.

1. Neurosynaptic circuit blocks

a. The first block. A is an aLIF representing the presy-
naptic neuron. It generates the action potential spike Vpre
that is the input to the NS unit. It was described in detail
before.

b. The second block. B implements the differential
equation (11) of our model. The current term Is1(t) is the
dynamical variable and IδH(Vpre − �) is an independent
term.

The Iδ(t) currents are rectangular pulses emitted by each
spike Vpre. Their width is τa (see Sec. II B) and their
intensity is controlled by a resistor RW in a conventional
current-source implementation. The technical details are
provided in the Appendix. Here, it is important to mention
that RW controls the synaptic coupling that is denoted Wij
between neurons i and j , in the terminology of artificial
neural networks.

These Wij couplings are key parameters for networks
that implement synaptic learning, such as through spike
time-dependent plasticity [3]. In that case, one may adopt
nonvolatile memristors for the RW, as we shall discuss
elsewhere.

The synaptic current pulse Iδ has a short duration, so
it approximates a delta function Iδ that is leaky integrated
by the RsCs pair. This circuit provides the time constant
τs and implements the differential equation in the current
Is1(t), which is the output of the second block.

c. The third block. C implements Eq. (12) in a similar
fashion. There, the current Is2(t) is the dynamic variable
and the current Is1 enters as the independent term. To do
this we need to take Is1 output from the second block and
input it to the third one. The tricky part is to “copy the
current” from one to the other, independently of the load
represented by the latter. We resolve this by a standard
electronic circuit, aptly called a “current mirror” (CM), and
provide the technical details in the Appendix.

We note a useful feature of our CM implementation,
namely, given the input, the output can be chosen either
positive or negative in polarity. This feature is extremely
convenient, as we can implement either excitatory or
inhibitory synaptic currents. In other words, this feature
allows one to choose the sign of the synaptic coupling
parameters Wij in an artificial neural network.

This circuit block leaky integrates the input current Is1
with timescale constant τs = RsCs, similarly as the previ-
ous stage. The output of this block is the current signal
Is2(t) and the same CM solution is adopted to input it (or its
negative copy) to the last block, which is the aLIF circuit
of the postsynaptic neuron.

034030-6



DYNAMICS OF NEURAL MOTIFS REALIZED. . . PHYS. REV. APPLIED 23, 034030 (2025)

d. The last block. D implements Eqs. (9) and (10), i.e.,
the aLIF neuron model [28]. This subcircuit has already
been discussed in detail above. Here we just note that
it corresponds to the postsynaptic neuron, so the action-
potential spike emitted by this last block is denoted by
Vpost(t).

2. Synaptic current forms

The reader may have realized that our implementation
provides the freedom to adopt either one or two leaky
integration synaptic blocks. If only one (yellow in Fig. 3)
block is used, the single spike input Iδ is transformed into
Is1(t) ∼ ± exp(−t/τs). While, if two blocks are adopted,
the resulting output to a single input Iδ spike is Is2(t) ∼
±α(t/τs).

In Fig. 4, we show an example of the temporal traces
of the currents at different points of the NS-unit circuit
of Fig. 3. The first one is the presynaptic action-potential
spike, the output of box A in Fig. 3, which shows the

(a) (b)

(c) (d)

FIG. 4. Traces at the different stages of the NS unit. (a) The
presynaptic neuron action-potential spike is the input to the NS
unit. (b) The action potential is transformed into a δ(t)-like pulse
with an intensity Iδ (modulated by RW) and a duration given by
the spike emission time ∼ τa. The pulse carries a total “neuro-
transmitter” charge QN ≈ Iδτa. (c) First leaky-integration stage
[Eq. (11)], which provides and exponential current Ie=Is1 with
timescale τs = RsCs, where QN is the time integral of the current.
(d) Second leaky-integration stage [Eq. (12)], which provides an
α(t)-like synaptic current Iα = Is2. Note that, as in the mathe-
matical model, both QN and τs remain constant (to a reasonable
approximation) after each successive leaky integration. They are
also in reasonably good agreement with the nominal parameter
values QN ≈ 80 nC [calculated from Eq. (15)] and τs = 1.6 ms.

triangular shape produced by the fast discharge of Cm on
Ra with τa ∼ milliseconds, as we described before. This
presynaptic potential, through the condition Vpre > � ≈
0.7 V in our implementation (see the Appendix), produces
the Iδ(t) current pulse, which is input to box B. It has dura-
tion ∼ τa and intensity Iδ ≈ V+/RW, where V+ (≈ 4 V) is
set by the circuit voltage source (see the Appendix). The
sharp pulse is then leaky integrated [cf. Eq. (11)] to pro-
duce the synaptic current Is1(t) with the exponential form
as in Eq. (11), at the output of box B. The second leaky
integration produces the synaptic current Is2(t) with the
alpha form as in Eq. (12), at the output of box C. As shown
by the good quality of the fits in Fig. 4, the NS faithfully
implements those functional forms and keeps constant the
normalization of the integrated charge QN to a reasonably
good approximation.

3. Synaptic current versus conductances

There is one important point about our implementa-
tion that is worth clarifying here. Theoretical models are
formulated in terms of either membrane conductances or
synaptic currents (see Ch. 3 and Fig. 3.2 in Ref. [3]). How-
ever, we shall show that these two options are essentially
the same.

The key point is to realize that neurons spend most
of their time at and around their resting potential, Vm ≈
Vrest ≈ −70 mV. The potential Vm slowly drifts up or
down under the influence of synaptic currents. Eventually,
a small upward change of about 10 mV drives the neuron
to emit a short action-potential spike and quickly returns to
Vm ≈ Vrest. The general expression of synaptic currents in
theoretical models reads [3]

Isyn(t) = −gsyn(t)(Vm(t) − E), (13)

where gsyn(t) is the synaptic conductance and E is a con-
stant potential parameter, which is chosen either higher
or lower than Vrest for excitatory or inhibitory currents,
respectively [3,13]. Hence, from Vm(t) ≈ Vrest all the time
except in brief firing events lasting a few milliseconds,
to a good approximation, the temporal dependence of Isyn
is the same as gsyn(t), so one can model either. This
feature is also the reason why one often reads in the
neuroscience literature expressions such as “to inject a
conductance” [29].

D. Synaptic current timescales: spike by spike to rate
coding

An important question in neuroscience is what is the
nature of the neural code. In neural networks, do neurons
code through the timing between spikes or by the neuron
spiking rate? Our neurosynaptic unit is well equipped to
implement both of these representations. The key param-
eters to compare are the timescale for successive spike
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(a) (b) (c)

FIG. 5. (a) Spike-by-spike coding. Each emitted presynaptic
spike (top) produces individual α-type spikes of synaptic current
(bottom). (b),(c) Rate coding. The presynaptic emitted spikes
(top) have a high rate and produce a synaptic current buildup by
accumulation or leaky integration (bottom). The current intensity
encodes the spiking frequency rate, Is = Is(f ).

emission, i.e., the membrane timescale τm ∼ RmCm, versus
the synaptic integration timescale τs ∼ RsCs.

If τs ≤ τm then the synaptic leaky integration can follow
individual spike emission and spike-by-spike time coding
is possible. On the other hand, if τs ≥ τm, the effect of the
successive spikes gets accumulated and a synaptic current
Is proportional to the firing rate f results. In Fig. 5 we
illustrate the different coding regimes. We show the input
spikes Vpre of a presynaptic neuron acting on the synaptic
unit (cf. Fig. 3) and the resulting output synaptic currents
Is2 that it generates.

To determine whether the system is in the spike-by-
spike or rate-coding regime, we need to consider the acti-
vation function of the neuron model f (Iin) that is shown

(a) (b)

FIG. 6. Response functions of neuron and synapse subcircuit
units. (a) The spiking rate as a function of the input current,
f (Iin), produced by the aLIF neuron subcircuit (box D in Fig. 3).
Here Imin denotes the threshold of excitation and Imax the value
where the neuron stops spiking. (b) The synaptic current Is(f )

of the leaky-integrator subcircuit (boxes B and C in Fig. 3) in
the spike rate regime. The slope is given by the neurotransmitter
charge QN , as in Eq. (14). The dashed line shows the theoretical
Is(f ) for the nominal value of QN computed with Eq. (15).

in Fig. 6. The frequency or equivalently the interspike
interval ISI = 1/f depends on the external input current
excitation, so it is more accurate to compare this timescale
(instead of τm) with the leaky-integration timescale τs.
Hence, per our previous discussion, we have that 1/f > τs
would correspond to spike-by-spike coding, while 1/f <

τs would correspond to the rate-coding mode. Thus, higher
spiking frequencies naturally correspond to the rate-coding
regime, and this is well illustrated in Fig. 5

We may make here a side comment on the activation
function f (Iin). As shown in the Fig. 6 this function also
exhibits a maximal current threshold Imax, where the firing
frequency suddenly decreases down to zero [28]. This is
actually a biomimetic property of our neuron model. The
eventual decrease of the spiking frequency at high current
excitation is a phenomenon that is observed in biological
neurons, where is known as “depolarization block” [30].
It is often considered relevant for the understanding of
epileptic seizures [31].

It is an important question to determine what controls
the intensity of the synaptic current in the rate-coding
mode. We have discussed in Sec. II C 2 how the inten-
sity of the synaptic current that is produced by a single
action-potential spike is controlled by the resistor RW.
More specifically, we showed that for spike-by-spike cod-
ing, RW controls the total charge due to a single spike,
i.e., QN = ∫

Is dt. This charge per spike is conserved
across the leaky-integration stages, i.e., there is no current
amplification.

For the rate-coding case, the successive spikes are accu-
mulated, hence we expect that the synaptic current will be
given by QN f . A subtle point to note, however, and as seen
in Fig. 5, is that the accumulation takes a certain time to
reach a steady state, which is the leaky-integration time
constant τs. Therefore, after the transient integration time,
we have

Ise ≈ QN f (14)

for the excitatory case. This simple relation is in good
agreement with our circuit measurements shown in Fig. 6,
including the quantitative value of the slope QN ≈ 80 nC
(see Fig. 4).

We may provide the explicit dependence of QN with the
circuit model parameters. Recalling the expression for the
charge contribution of each spike, we have

QN ≈ Iδτa ≈ (V+/RW)RaCm. (15)

Finally, we should note that all the previous considerations
also remain valid for the case of inhibitory synaptic cur-
rents (since we just change the polarity of the last current
mirror). Hence, in that case the Is(f ) response function is
simply the reflection of Eq. (14), namely,

Isi ≈ −QN f . (16)
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III. RESULTS

A. Basic spiking-neural-network motifs and
neurocomputational primitives

The methodology that we described above, in terms of
circuit blocks, is modular, and therefore is well adapted
to implement arbitrary biomimetic SNNs. In the next
sections, we shall illustrate how one can establish basic
network motifs, such as a single neuron with synaptic self-
excitation or self-inhibition, and then two mutually inhibit-
ing neurons. The spiking states of these motifs realize
neurocomputational functions or primitives.

The basic motifs that we shall consider are shown in
Fig. 7. The simplest motif is, of course, an isolated spik-
ing neuron. We have already discussed its behavior in
Sec. II B. The first nontrivial motifs display self-feedback,
which is the simplest case of a recursive SNN. The
self-excitatory case provides an instantiation of an impor-
tant neurocomputing primitive, called dynamical memory,
short-term memory, or simply activity “bump.” The sec-
ond case is a self-inhibitory neuron, which implements two
other important neural primitives: spiking adaptation and
bursting [3,13].

Then, we shall leverage those basic primitives to build
more complex two-neuron SNNs. We shall consider two
different motifs, and implement three different types of
central pattern generators (CPGs) [13,32]. These are also
fundamental neuronal functions that are widely studied, as
they broadly appear in neuroscience [33,34] and robotics

(a)

(d) (e)

(b) (c)

FIG. 7. SNN motifs. (a) Single spiking neuron. (b) Single spik-
ing neuron with excitatory feedback. This motif represents both
an autapse (self-axon-dendrite connection) or an intrinsic excita-
tion current, like the inward Ca2+, IT. (c) Single spiking neuron
with inhibitory feedback. This motif represents both an autapse
or an intrinsic adaptation current, like the hyperpolarizing IAHP
that is also mediated by Ca2+ (see Sec. 10.3 of Ref. [13]). (d)
CPG primary-subordinate motif with a burster neuron (primary)
that inhibits a regular spiking neuron (subordinate). (e) CPG of
mutually inhibiting neurons with self-adaptation. The same motif
has two cases: two bursters or two frequency-adaptation neurons,
which give qualitative different traces.

[35,36]. While in the present introductory work, we shall
stop at two-neuron motifs, it should be clear that the
present methodology is general and permits building larger
SNNs with arbitrary architecture.

B. Self-excitation: Activity bump and dynamical
memory

In this section, we begin with the simplest motif: a self-
excitatory neuron (see Fig. 7). This simple motif brings
a significant surprise: contrary to the common wisdom,
it is sufficient to implement a basic neurocomputational
primitive, namely, a dynamical memory [3]. Indeed, it is
expected for a single neuron with a self-excitatory feed-
back to show a runaway rate, and that a population of
neurons is needed to achieve a stable self-excitation [3].
Here, we shall demonstrate that this is not the case by
explicitly exhibiting the dynamical memory in hardware
and also its stability against strong perturbations.

The reverberating self-sustained state is of central
importance in neuroscience, where it is called short-term
memory (cf. Ch. 6 in Ref. [13]) or working memory
[37]. The excitation “bump” neurocomputational function
occurs in models of great current interest, such as place
and grid cells [38] and in head direction systems [39]. It
also appears in models of the oculomotor system, which
allows the gaze to be fixed in a given direction [40].

In a biological neuron, the self-excitatory current may
represent the intrinsic transient inward Ca2+ ionic current,
known as IT (see Ch. 10 in Ref. [13]). If, alternatively, the
self-synaptic connection is extrinsic, such as due to the
neuron’s own axon connecting the dendrites, it is called
an autapse, which is a topic of current interest [41–44].
This may be relevant to epilepsy, where it was reported
that, in epileptic humans, about 30% of cortical neurons of
layer V form autapses [45]. Moreover, very recently, it was
observed that the ictal source point of epileptic seizures
occurs in layers IV, V, and VI [46].

For a self-excitatory synaptic current, the system of
equations (9)–(12) of our model become

Cm
dVm

dt
= − V

Rm[S] + Ra
+ Isse + I0, (17)

Vap = Vm

Rm[S] + Ra
Ra, (18)

τs
dIs1

dt
= −Is1 + IδH(Vap − �), (19)

τs
dIsse

dt
= −Isse + Is1. (20)

Here, for the self-excitation, the spike potentials become
Vpre = Vpost = Vap. Additionally, to indicate the synaptic
self-excitatory current, Is2 is renamed Isse. The system of
equations above corresponds to the neurocomputing cir-
cuit shown in Fig. 8. The key feature of the activity bump
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FIG. 8. Self-synaptic current circuit. Here I0 is the external
current input; and Vap is the output train of action-potential
spikes. The output spikes are feedback to the neuron through the
self-synaptic current Isse.

is that the neuron can reach a spiking state, and remain
self-excited, despite the input external current I0 being sub-
threshold, namely I0 < Imin. As we shall discuss below,
the self-excitation state is maintained by the buildup of the
self-synaptic current Isse.

To start the bump of activity, it is necessary to apply a
short excitatory external current pulse I� on top of the con-
stant subthreshold current I0, as shown in Fig. 9. Since I0
is subthreshold, we observe that there is no activity during
the first 2 s. Then an excitatory pulse is applied, that fulfills
two requirements: (i) it has to drive the neuron to the exci-
tatory regime above threshold, i.e., Imin < I0 + I� < Imax;
and (ii) its duration τ� has to allow for the buildup of the
self-synaptic current Isse, i.e., τ� > τs.

We observe in Fig. 9 that the spiking starts as soon as
I� begins, and within the next second ∼ τs the Isse starts to
build up and the frequency rate increases. Within the next
second, by the time Isse is terminated, the self-feedback is
well in place. The persistent state is realized as I0 + Isse >

Imin. The spike rate of the bump of activity stabilizes at the
self-consistent rate f ∗ as we discuss below.

We can recall the two response functions that charac-
terize the neurosynaptic unit (see Fig. 6) and use them to
formulate the bump state as a self-consistent problem. On
the one hand, we have f (Iin), the neuron activation func-
tion; on the other, the synaptic current Is(f ) that results
from the synaptic circuit, given an input spike rate f from
a neuron. We should also note from Fig. 9 that τs > 1/f ,
so we are indeed in the rate-coding regime.

We would now like to analyze the dynamical memory
state under a different light. We shall show that it can be
cast as a self-consistent problem, which can be solved by
a geometrical construction. The same method will be used
in the next section to consider the case of self-inhibition,
i.e., adaptation.

In the self-excitatory motif, the synaptic current is feed-
back to the neuron, hence Is = Isse (see Fig. 6). Therefore,

(a)

(b)

FIG. 9. (a) Top: Spike trace of the excitation bump. The blue
line schematically denotes the applied external subthreshold cur-
rent I0 with the short excitation I� that starts the bump, and
inhibition that terminates it. Bottom: The instantaneous spike-
rate emission f of the neuron (black line); and the self-synaptic
current Isse buildup during excitation and relaxation during inhi-
bition (red line). The state has an external continuous subthresh-
old I0 = 44.7 µA. (b) Geometrical construction to determine the
self-consistent frequency f ∗. Insets: f ∗ as functions of RW and I0.
The parameters are τs = 0.47 s, I0 = 44.7 µA, +I� = 22.9 µA,
−I� = −24.4 µA. For clarity, the number of spikes is reduced to
one-tenth of the originally measured number.

we can cast the bump as a self-consistent problem: (i) the
total input current is Iin = I0 + Isse[f ], where I0 denotes
a constant subthreshold external current and Isse is the
self-excitatory contribution that depends on the spiking
frequency; and (ii) the total Iin produces a spike rate f (Iin),
which itself produces the feedback current Isse. There-
fore, the problem of simultaneously fulfilling (i) and (ii)
is to find the self-consistent frequency f ∗ such that f ∗ =
f [I0 + Isse(f ∗)].

The solution to this problem can be obtained by a geo-
metrical construction. It corresponds to the crossing point
(I∗

in, f ∗) between the two response functions measured on
the NS unit (see Fig. 6). From the first response, we call
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f1 = f1(Iin), which is shown by the blue line in Fig. 9(b).
From the second response, we invert the variables to
get f2 = f2(Is) = f2(Isse), shown in dashed yellow line in
Fig. 9(b) (and compare to Fig. 6). From (i) above, we have
Iin = I0 + Isse; then we get f2 = f2(Iin − I0), which is the
yellow solid line in Fig. 9(b). The geometrical solution
is obtained by requiring f1 = f2, which gives the crossing
point (I∗

in, f ∗), as shown as a red cross in Fig. 9(b).
We can further explore how the self-consistent firing

rate f ∗ systematically depends on two main parameters
of the model, as we show in Fig. 9. One is the synaptic
weight RW, which controls the intensity of the feedback
current. This intensity is controlled by the “neurotrans-
mitter” charge QN , which is modulated by the synaptic
resistor RW (see Fig. 4 and Sec. II D). The other parame-
ter is the external current intensity I0, which is always kept
subthreshold for the activity bump. One could in princi-
ple set I0 = 0 and still realize a bump. The requirement is
a strong enough feedback, such that Isse > Imin. The con-
tinuous dependence of the f ∗ on the model parameters is
shown in the insets of Fig. 9(b).

One of the long-standing issues in theoretical models
of this type of dynamical attractor concerns their stability
with respect to perturbations, since it is based on a pos-
itive feedback loop [19,40]. Therefore, it is important to
note a conceptual point in this regard. The methodology
that we adopt in the present work is based on the physical
implementation of a theoretical model. Thus, the stability
of the dynamical attractor model is directly demonstrated
by construction. Namely, if it works, therefore, it must be
stable. Nevertheless, we may further demonstrate this fea-
ture by explicitly applying strong external perturbations to
the activity bump state. This is shown in Fig. 10. Despite

FIG. 10. Stability of the bump attractor state. Top: An exci-
tatory current pulse of intensity +I� = 22.9 µA (blue line) is
applied during 1.2 s, producing an increase in the firing rate,
which rapidly relaxes after the perturbation stops. Bottom: An
inhibitory perturbation −I� = −24.4 µA is applied during 0.8 s,
producing a halt on the spiking. The bump recovers rapidly after
the perturbation stops. Inset: Evolution of the synaptic currents
Is1 and Is2 = Isse during the perturbation. The parameters are
τs = 0.47 s and I0 = 44.7 µA. The number of spikes is reduced
to one-fifth for the sake of clear display.

these strong perturbations, even halting the spikes in the
inhibitory case, the dynamical attractor returns promptly to
its stable state, as shown in the inset. A key feature for the
stability, however, is that the perturbations should not last
much longer than the synaptic timescale τs. Hence, we may
say that this state can keep a short-term memory encoded
by f ∗ during that characteristic timescale.

Finally, from these stability considerations, it follows
that, to stop the active bump state, one needs to apply an
inhibitory current pulse −I� that is sufficiently long and
strong. More precisely: (i) its magnitude has to be such
that the total input current Iin = I0 + Isse − I� < Imin, i.e.,
falls below the onset of excitability, so stops the firing and
allows the feedback to relax; and (ii) its duration, therefore,
should be longer than τs, such that the self-synaptic current
Isse relaxes sufficiently, as shown in Fig. 10, such that the
condition (i) is fulfilled.

C. Self-inhibition: Adaptation and bursting

In this section, we turn to another minimal motif, namely
that of neuron self-inhibition (see Fig. 7). As we shall see,
this motif produces two important spiking modes: adapta-
tion and bursting. These modes will be the basis for the
multineuron motif for central pattern generators, which we
shall describe later in the next section.

1. Adaptation

Adaptation is a relevant function in neuroscience.
An example of this type of self-inhibition is the after-
hyperpolarization current IAHP, which is mediated by Ca2+

(see Ch. 10 in Ref. [13]). Similarly, as mentioned in the
previous section, this motif may also be realized by an
external connection between the neuron’s own axon and its
dendrites. This case is called an inhibitory autapse, which
is now known to be a common feature of some neocor-
tical and parvalbumin (PV) neurons, with the function of
regulating the rate of spike emission [42,45,47,48]. Self-
inhibition is also a main ingredient of two of the most pop-
ular schematic theoretical models, Izhikevich and AdEx
[3,17]. In both models, the self-inhibition is described by a
second dynamical equation for the adaptation or recovery
variable.

Similarly as done in the previous section, we shall also
show how the spiking states of this motif can be cast as
a self-consistent problem. The geometrical solution of the
self-consistent problem brings valuable insights, specially
for the understanding of the stability of the firing states and
the nature of the bursting one. Rather surprisingly, despite
a very large literature on the Izhikevich and AdEx models,
we are not aware of any similar treatment to the one we
introduce here [3]

We first begin by exploring the dynamical behavior of
this important motif by means of our hardware implemen-
tation. In this case, the system of equations (9)–(12) of our
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theoretical model becomes:

Cm
dV
dt

= − V
Rm[S] + Ra

− Issi + I0, (21)

Vpre = V
Rm[S] + Ra

Ra, (22)

τs
dIs1

dt
= −Is1 + IδH(Vap − �), (23)

τs
dIssi

dt
= −Issi + Is1. (24)

Here we now need to excite the aLIF neuron with a
suprathreshold external current I0, unlike in the previ-
ous section. Also, we rename the synaptic current Is2 as
−Issi to denote the synaptic self-inhibition. The circuit
configuration is identical to that shown in Fig. 8 for the
self-excitation, with the sole difference that the mirrored
current Is2 is now of inverted polarity.

While it is possible to have some degree of adapta-
tion in the spike-by-spike regime, when τm > τs, the most
natural, interesting, and biologically relevant case is the
rate-coding regime, i.e., for τm ∼ 1/f � τs. Hence, we
focus here on the latter. In Fig. 11 we show the behavior
of the aLIF with a self-adapting current. The adaptation
results from the buildup of the inhibitory current inten-
sity Issi on the synaptic subcircuit, which occurs within
the synaptic timescale τs. The total current exciting the
neuron gets reduced to Iin = I0 − Issi, which leads to the
reduction of the firing rate with respect to the original one,
f (I0). This phenomenon of spiking rate reduction is called
frequency adaptation.

As we did before, we may also consider this state as a
self-consistent problem, where we need to find the spike
rate f ∗. Now, the self-consistent condition is given by
f ∗ = f ∗(Iin) = f ∗[I0 − Issi(f ∗)]. As we discussed before,
in Sec. II D, Eq. (16), the response function Issi(f ) ≈
−QN f , i.e., identical to the response function Isse(f ) with
a change of sign. So the inhibitory current represents a
discharge of Cm.

In Fig. 11 we show the geometrical construction for the
case of a negative self-synaptic current, which follows the
same steps outlined before. Similarly, as in the case of self-
excitation, the self-consistent frequency can be controlled
by modulating the intensity of the feedback current. This
can be achieved by varying the model parameters, such as
RW and I0, as shown in the insets of Fig. 11.

Also similarly as done before for the bump, the stability
of the adapted self-consistent state can also be tested by
applying perturbations. Our results are shown in Fig. 12,
where we demonstrate very good stability.

Before leaving this section we should make a final point.
As already mentioned before, it is one’s choice to adopt
one or two leaky integration blocks. This choice can be
made in either the excitatory or the present inhibitory case.

(a)

(b)

FIG. 11. Adaptation traces. (a) Top: Spiking trace showing the
progressive reduction of the frequency. The blue line indicates
the external current input I0 = 92.8 µA. Bottom: The instan-
taneous spike rate f . The red line shows that the self-synaptic
adaptation current Issi builds up over a timescale τs ≈ 1 s; and f ∗
denotes the self-consistent asymptotic frequency. (b) Geometri-
cal construction to determine the self-consistent frequency f ∗.
Insets: f ∗ as functions of RW and I0. The number of spikes is
reduced to one-twentieth for the sake of clear display.

Below, we explicitly write the model equations, where we
adopt the simplified notation of Eq. (1), for the sake of clar-
ity, and adapt them for the case of one inhibitory leaky
integration stage. The system reads

Cm
dVm

dt
= f (Vm) − Issi + I0, (25)

τs
dIssi

dt
= −Issi + IδH(Vap − �). (26)

The reader may verify that these equations now share the
same form as the Izhikevich and AdEx models [3,17]. The
Iδ term represents the spikes due to the action potentials
Vap(t), which are analogous to the potential spikes of fast
variable V(t) in the theoretical models. In all cases, these
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FIG. 12. Stability of the frequency-adaptation state. Top: An
excitatory perturbation current pulse of intensity +I� = 22.6 µA
(blue line) is applied during a short period. This produces an
increase in the firing rate, which rapidly relaxes after the pertur-
bation stops. Bottom: An inhibitory perturbation −I� = −24 µA
(red line) is applied, producing a halt on the spiking. The adapted
state recovers rapidly after the perturbation stops. Inset: Evolu-
tion of the synaptic currents Is1 and Is2 = Issi during the perturba-
tion. The parameters are τs = 1 s and I0 = 92.8 µA. The number
of spikes is reduced to one-twentieth for clarity.

spikes are identically leaky integrated by the recovery
variable.

2. Bursting

We have adopted the intuitive perspective of considering
states as the solution of self-consistent problems. There-
fore, it is interesting to pose the following question: What
would happen if we increase the intensity of the adaptation,
so that the resulting total input current to the neuron falls
below the excitability threshold? Namely, Issi is such that
Iin = I0 − Issi(f ) < Imin, so that the strong self-inhibition
would stop the firing, hence the self-consistent solution is
no longer possible.

Let us analyze what would be the expected behavior.
The self-inhibition takes a time τs to build up and stop
the firing. However, this quiescence provokes the relax-
ation decay of the feedback current, within a timescale τs.
Recalling that I0 > Imin, the total input Iin = I0 − Issi will
grow as Issi decreases and, eventually, the neuron will get
re-excited and start spiking again. Thus, this dynamical
bistability points to periods of spike emission alternat-
ing with quiescent ones. Such a state is called bursting,
which is another basic neurocomputing primitive of the
self-adaptation motif.

The bursting state is implemented by the NS unit as we
show in Fig. 13. From the qualitative discussion, it should
be clear that the bursting state is controlled by the two
timescales τm and τs. The latter controls the alternation
period or burst cycle, and the former the interspike inter-
vals during each burst. Hence, we have τm � τs so the
neuron is in the rate-coding regime. Moreover, from the
previous discussion, one should expect that the intraburst
spiking frequency has to evolve around the excitability

FIG. 13. Burster or pacemaker state. Top: Spike traces show-
ing bursts of activity separated by quiescent states. Middle: The
total input current Iin is oscillating narrowly around the thresh-
old Imin. Bottom: The self-inhibitory current Issi resembling a
harmonic oscillation with period ≈ τs = 1 s, as discussed in the
text.

threshold Imin. As shown in Fig. 13 this is indeed the
case, with Issi oscillating around the threshold Imin within a
fraction of a µA.

We may gain further and deeper analytic understanding
of those small oscillations. This is revealed by a simple
analysis of the model equations, which to our knowledge
has not been done before. We consider the model equations
and take the time derivative of Eq. (24) and replace it into
Eq. (23) to obtain

τ 2
s

d2Issi

dt2
+ 2τs

dIssi

dt
+ Issi = Iδ[f (t)]. (27)

This differential equation is the analogue to the familiar
driven damped harmonic oscillator model [49] with res-
onant frequency 1/τs. The “friction” or damping is the
second term and the “external driving force” is Iδ[f (t)].
From the behavior of this well-known system, we may
expect two different states: one where the damping dom-
inates, and another where the oscillations persist. Indeed,
as shown in Fig. 13, the synaptic current Issi(t) exhibits a
beautiful oscillatory behavior with a period close to τs = 1
s, as predicted by Eq. (27).

However, our driven damped oscillator has a twist, since
the driving force is not arbitrary but depends on the neu-
ron’s spiking trace through the feedback loop. So we can
discuss the nature of the oscillation in more detail. Let
us assume that the system is bursting and show that this
assumption is consistent. The current Iδ[f (t)] consists of
trains of fast spikes at frequency f separated by silent peri-
ods, thus having a rhythmic time dependence with period
τs. The trains of current spikes are twice leaky integrated
with timescale τs; therefore, Issi(t) builds up within the

034030-13



WU, D’HOLLANDE, DU, and ROZENBERG PHYS. REV. APPLIED 23, 034030 (2025)

same timescale as the period. Similarly, during the qui-
escent phase, the inhibitory current relaxes on the same
timescale. Then, the periodic buildup and relaxation of
Issi(t) modulates the firing behavior of f (t), hence of Iδ ,
and the bursting state is consistent. The point to make is
that the “driving force” Iδ(t) is in resonance, as the trains of
spikes are emitted at a frequency 1/τs, which is the natural
frequency of the oscillator equation (27). Within the same
line of reasoning, the simple adaptation can be understood
as an overdamped oscillation.

IV. CENTRAL PATTERN GENERATORS

We are now ready to start building general functional
spiking neural networks. We shall begin by considering
the simplest multineuron motif, namely two neurons cou-
pled by dynamical synaptic currents [20]. We shall focus
on implementing an SNN whose neurons emit periodically
alternating bursts. Such a two-neuron network is called a
central pattern generator and has a very important role in
neuroscience [32]. This type of spiking activity is funda-
mental for motor systems with periodic dynamics, such as
heartbeats, walking, eating, etc. Moreover, CPGs are also
a key component in robotics, self-propelled systems, and
biomedical devices. Therefore, our simple and systematic
methodology may open an interesting avenue for applica-
tions. We want to emphasize here that the methodology
of combining motifs is general. One can go on combin-
ing motifs in a modular manner to achieve more complex
spiking behaviors, such as, for instance, the classic prob-
lems of gaits and swimming [35]. A technical side remark
is to realize here that the formulation of our circuit models
is done in terms of currents and implemented by current
sources and current mirrors. Unlike voltages, input current
sources can be added algebraically.

The CPGs involve an external excitation that induces
the basic tonic spiking of each neuron, which is then
sculpted by inhibitory synaptic currents acting on differ-
ent timescales. As this is a vast field, we shall adopt the
review of Marder and Bucher [32] as guidance to select a
few paradigmatic systems to build. Nevertheless, in doing
that, we shall also obtain insights provided by the present
hardware-based approach.

We shall consider three different basic CPGs [32] that
correspond to two different two-neuron motifs, those in
Figs. 7(d) and 7(e). One has primary-subordinate or feed-
forward inhibition architecture, while the other has recur-
rent connections of mutual inhibition. In the model circuits
here, we adopt all synaptic currents, intra- and interneuron,
as inhibitory α(t)-type functions.

1. Primary-subordinate CPG

We start with the simplest case, the motif in Fig. 7(d).
Such CPG has a bursting neuron (N1), acting as a

FIG. 14. CPG primary-subordinate. Top: Uncoupled case, in
which N1 is a pacemaking burster and N2 is a regular tonic
spiking neuron. Bottom: Coupled case, in which the N2 subordi-
nate is inhibited by the activity of N1, creating a complementary
bursting pattern. Parameters are τssi = 1 s for the pacemaking
and τspi = 1 ms for the fast inhibitory projection.

pacemaker, that sculpts the firing rate of a regular spik-
ing neuron (N2) by projecting inhibition. The pacemaking
neuron is realized by a bursting neuron, as discussed in
the previous section. The subordinate neuron shows regu-
lar spiking when uncoupled, as shown in Fig. 14. When the
inhibitory projection is introduced, the subordinate neu-
ron develops a burst spiking pattern that is the inverse of
its primary’s (see Fig. 14). Hence, the two-neuron sys-
tem displays a sequence of alternating bursts which is
characteristic of CPGs.

A requirement to achieve this state is that the interneu-
ron synaptic projection from the primary has to be strong
enough to silence the subordinate, i.e., to drive the sub-
ordinate under its excitation threshold. So for the currents
acting on N2, we have

Iin = I0 − Ispi < Imin (28)

where Ispi denotes the synaptic projected inhibitory of
N1 on N2. The intensity of the projection can be easily
controlled by the resistance RW of the Ispi synaptic circuit.

2. Mutual-inhibitory CPG

We turn now to the second motif, with mutual inhibition.
In this case, we shall consider two qualitatively differ-
ent possibilities: two coupled bursters and two coupled
adaptive neurons. For simplicity, we shall consider sym-
metric systems. However, it is important to acknowledge
that inherent variability exists in all hardware as a result
of manufacturing tolerances. Nevertheless, as with biolog-
ical neural neurons that are also nonidentical, the emergent
function has to be robust to that type of variability.

Two mutually coupled pacemakers present a more
straightforward case; therefore, we begin our discussion
with this scenario. We consider two neurons that, if decou-
pled, both produce the same bursting (cf. Sec. III C 2), up
to the intrinsic variability just mentioned. Therefore, the
actual observed behavior is of two similar, but not identi-
cal, periodic burstings, as shown in Fig. 15. By introducing
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(a)

(b)

(c)

(d)

FIG. 15. CPG mutual inhibitory pacemaker. (a) Uncoupled
case: N1 and N2 are pacemaking bursters with nominally equal,
but in practice similar, frequencies. (b) Coupled case: N1 and
N2 settle into a common antisynchronous bursting pattern. (c)
Synaptic currents of N1: the self-inhibitory Issi with τssi = 0.47
s (red) and the N1 to N2 projected inhibition Ispi with τspi = 0.1
s (blue). The green line marks the beginning of an N1 burst. (d)
The same as panel (c) but for the synaptic currents of N2. For
clarity, the number of depicted spikes is reduced by one-fifth of
the originally measured number.

coupling in the form of projection of mutual inhibition
[see the motif in Fig. 7(e)], we create anticorrelation in the
respective firing patterns. As we can see in Fig. 15(b), the
state of the two-neuron network finds a compromise where
they burst in antiphase. Therefore, they both lock into a sin-
gle common frequency. This emerging frequency is close
to the uncoupled ones, but relatively reduced due to the
global effect of additional inhibition.

In this case, it is interesting to observe the synaptic cur-
rents, which we show in Fig. 15. They bring interesting
insights. Following the green dashed line we can corre-
late the burst of each neuron with the respective effects
on their synaptic currents. The first thing to realize is that
the burst induces α(t)-type currents, which can be clearly
appreciated. The maximum of α(t) indicates the respec-
tive time constants, which we denote τssi = 0.47 s and
τspi = 0.1 s for synaptic self-inhibitory (red) and synaptic
projected-inhibitory (blue).

If we focus on the synaptic currents of N1, shown
in Fig. 15(c), we can see that the burst starts when the
self-inhibitory Issi decreases to almost its lowest intensity.
Conversely, the burst is terminated shortly after due to the
buildup of Issi, i.e., occurring within a timescale somewhat
shorter than τssi. On the other hand, we observe that the
antisynchrony is due to the strong inhibitory projection,
which has a relatively faster timescale τspi and prevents
the superposition of bursts. Similar considerations can be
made for the other neuron’s currents. We can also observe
that the different initial traces in the two decoupled neurons
[Fig. 15(a)] also reflect some differences in the respective

produced currents. Nevertheless, the two neurons robustly
lock to a common and stable pattern of alternated bursts.

It would be interesting, but beyond the scope of the
present study, to perform a full exploration of the different
emergent states of the two coupled bursters. Nevertheless,
we can now qualitatively discuss some relevant aspects
regarding the relative timescales.

In the case discussed above, we note that the duration
both of the bursts and of the projected inhibition τspi are
relatively short, leading to the antisynchrony already dis-
cussed. However, one may choose to increase τspi, so that
it is significantly longer than the bursts. Then the projec-
tion from, say, N1 to N2 will be delayed compared with the
burst in N1. This projected inhibition would make the burst
of N2 in antisynchrony less likely. The result is that the
emergent state would be that of synchrony between N1 and
N2. This situation is qualitatively similar to that analyzed
by van Vreeswijk et al. [20] for the case of two simple
spiking neurons coupled by a retarded mutual inhibition.

We may finally turn to another, more subtle, form of
CPG, which shares the same motif as in Fig. 7(e), but is
found in a different regime. This CPG is realized with two
neurons that exhibit spike-frequency adaptation, i.e., are
tonic spiking when uncoupled (cf. Sec. III C 1). This type
of CPG model is a classic topic of neuroscience, as it finds
a biological realization in the heartbeat neural activity of
the leech [33,34,50].

The behavior of this mutually adaptive CPG is shown
in Fig. 16. It also shows alternate burst emission, but with
a different mechanism. We note that, for illustrative pur-
poses, we have maintained the synaptic time constants the
same as in the previous case. The present mechanism is
achieved by mainly driving N1 and N2 to the adaptation
regime, reducing the intensity of the self-inhibition (see
Sec. III C 1).

As seen in Fig. 16 the CPG traces show qualitative dif-
ferences with respect to the previous case. One is that the
burst shows some overlap. Also in contrast to the previous
case, we can now observe a significant frequency modula-
tion, where f (t) decreases at the onset and the termination
of the burst. This modulation is correlated to the total input
current Iin(t), which shows a similar behavior. Note that
it crosses the excitability threshold Imin as it produces the
bursts.

To appreciate the mechanism, it is essential to look at
the synaptic currents generated by each neuron. They are
shown in Figs. 16(e) and 16(f). As before, in red is the
self-inhibition Issi, and in blue is the projected inhibition
to the other neuron Ispi. The green dotted lines are a guide
to indicate the beginning and end of the burst of N1. The
analysis for N2 would be the same.

We focus on the start of the burst of N1. We observe that
its self-inhibition Issi is decreasing towards its minimum
[red line in Fig. 16(e)], similarly as in the CPG case dis-
cussed before. However, unlike that case, now N2 is firing
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 16. CPG mutual inhibitory adaption. (a) Uncoupled case:
N1 and N2 are adaptive neurons with tonic spiking. (b) Coupled
case: N1 and N2 settle into a common antisynchronous bursting
pattern. (c) The instantaneous frequency rate of N1. The green
lines denote the beginning and end of a burst. The horizontal
dashed-dotted line indicates the adapted frequency f ∗ when the
neurons are decoupled. (d) Total input current Iin(t) to N1. The
beginning and end of the burst coincide with the crossing of the
excitation threshold Imin. (e) Synaptic currents of N1: the self-
inhibitory Issi with τssi = 0.47 s (red) and the N1 to N2 projected
inhibition Ispi with τspi = 0.1 s (blue). (f) The same as panel (e)
but for the synaptic currents of N2. For clarity, the number of
depicted spikes is reduced by one-fifth of its original measured
number.

and intensively projecting its inhibition Ispi on N1 [blue
line in Fig. 16(f)]. In consequence, the reason why N1
starts to fire is only due to the decrease of its self-inhibition.
We may say that N1 recovers and escapes from the grip of
N2. This is one of the four typical CPG mechanisms, and
is indeed called “intrinsic escape” [23,51].

We may also look at the end of the burst phase. There
we observe that both Issi and the received projection Ispi
are on the rise, so they both contribute to inhibiting N1.
Moreover, the projection of N2 is necessary to increase the
inhibition of N1 and render it quiescent. This is because N1
is now an adaptation neuron and not a pacemaker as in the
previous case.

This last observation is relevant because it explains
an evident qualitative difference between the patterns of
the two modes of CPG that we considered. By compar-
ing the spiking traces of Figs. 15 and 16, we observe that,
in the first case, the bursts do not overlap in time, while in
the second they do. The reason is that, in the first case, the
ability to burst is an intrinsic feature of each neuron, while
the inhibitory projection solely creates an anticorrelation

between them and lengthens the period. In contrast, in
the second case, the neurons do not have the pacemaking
ability to quiet themselves. Thus the overlap of activity
is a necessity. This qualitative difference is a robust fea-
ture that may help in the classification and understanding
of CPGs in biological systems. For instance, the heartbeat
of the leech is a classic CPG animal model and is a clear
example of overlapping bursts [50]. On the other hand, the
CPG of the stomatogastric ganglion of crustaceans, which
is another paradigmatic animal model, is a clear example
of pacemakers with anticorrelations [32].

V. DISCUSSION: EXTENSIONS TO OXIDE
MEMRISTORS AND TO VLSI

A. A template for memristive material research

In this work, we have introduced a circuit implemen-
tation of a general-purpose, theoretically based, neurosy-
naptic model using solely conventional electronic compo-
nents. This has the evident advantage that the methodology
can be easily reproduced at a very affordable cost and wide
availability.

Nevertheless, our methodology also opens an exciting
perspective for researchers in material science working on
memristive systems. In fact, our circuit can be adopted as a
template for testing memristive devices and building small
to midscale functional networks. More specifically, there
are two places where memristors may find their place. The
first one is in the neuron stage. There, the memristor device
(thyristor plus resistor) can be replaced by a volatile oxide
memristor, such as VO2, V2O3, V3O5, NdNiO3, SmNiO3,
NbO2, etc. [26,52–56].

The synaptic resistance RW is the second place where
an oxide memristor, which should now be a nonvolatile
memristive material, can replace a conventional resistor in
our NS-unit circuit. The RW resistance controls the inten-
sity of the synaptic coupling Wij between two neuron units
i and j , in the language of artificial intelligence systems.
Nonvolatile oxide memristors such as TiO2, Ta2O5, HfO2,
etc., are popular choices for synaptic cross-bar neuronal
networks [26,57]. The plasticity in the resistance modula-
tion of oxide memristors may further endow the network
with learning ability [58].

B. Positioning and comparison to other neuromorphic
hardware

A lot of overlap and confusion exist in the field of
hardware-based neuromorphic systems. So we may first
distinguish our approach by enumerating what our system
is not: (i) It is not based on transistors in the subthreshold
regime, as CMOS chips are. Thus, it is much less affected
by the variability mismatch issue. (ii) It is not based on dig-
ital hardware, which is not well adapted for the continuous
nonlinear dynamics of excitability characteristic of spiking
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systems. (iii) It is not based on memristive oxide systems,
which are still under research in the realm of material
science. (iv) It is not based on software simulations on
neuromorphic digital chips, such as field-programmable
gate arrays (FPGAs), Loihi, etc., which present the issue
of matching biological timescales [34].

On the other hand, we should also enumerate what our
system is: (i) It is a novel hardware implementation of a
textbook set of equations [13] of a general spiking neurosy-
naptic model. (ii) It is implemented with elemental elec-
tronic circuitry (see the Appendix). (iii) It is implemented
in a clear, direct, and quantitative manner, where every
model parameter has a hardware correlate enabling full
tunability (see Sec. II C). (iv) Its electronic components
are widely available and economic, so our system can be
immediately duplicated and the data reproduced (see the
Appendix). (v) It provides a direct hardware implementa-
tion with continuously tuned and biocompatible timescales
(see Sec. IV), so it is ready to be deployed for applications
in robotics, medical devices, control systems, etc.

We would now like to comment on the size of the SNNs
that we may reach with the present methodology. The lim-
itations do not come from fan-in and fan-out, which are
essentially unconstrained. This is because we formulated
all our models in terms of currents which can be added at
the input of neurons. Thus the limitations are due mainly
to the practical size of the systems that one may want
to implement. We can estimate this on the order of hun-
dreds of units, or maybe more for simple architectures.
This should be sufficient, not only for the applications
mentioned above, but also for research in theoretical neu-
roscience. In fact, it is now increasingly recognized that
the dynamics of biological neural systems can often be
described in low-dimensional manifolds.

While the present approach is qualitatively different than
those based on VLSI, we should mention that it can be
ported to VLSI, if it is so desired. In fact, the imple-
mentation of the memristive neuron unit has already been
reported [59], where the function of the thyristor was emu-
lated by two transistors. On the other hand, the synaptic
unit is based on current mirrors, which are standard to
VLSI. A single stage of a leaky-integration synapse has
already been implemented some time ago [12,60]. So,
the present improvement based on a two-stage integra-
tion that implements Rall’s function should not present any
significant impediment.

Nevertheless, it is important to emphasize that two main
features would still distinguish the present methodology
from previous VLSI approaches. First, and more impor-
tant, our neuron circuit design would likely suffer less from
device mismatch, since it is based not on subthreshold
behavior but on the memristive effect [59]. Second, there
is the higher simplicity of our circuit designs.

Another important aspect that needs to be commented
upon is the power efficiency. While the present work is not

focused on engineering aspects, this feature is relevant for
eventual practical applications. The main qualitative dif-
ference from current VLSI implementations is, of course,
the size of the components. One may naively assume that
the miniaturization of VLSI may have a dramatic impact
on power consumption. However, this is not the case. The
energy cost per spike can be estimated as proportional to
CV2

th, where C is the capacitance of the membrane capac-
itor and Vth is the threshold voltage for spike emission.
In VLSI, the miniaturization implies small values of C,
but it also implies high spike frequency rates. In fact, the
energy per spike is proportional to C, but the frequency is
inversely proportional to it. Therefore, the electrical power
(energy of a spike times the spiking frequency) becomes
independent of C, hence miniaturization has no effect. On
the other hand, our bottom-up method can use a smaller
number of spiking units compared to VLSI, which needs to
average populations of neurons to mitigate the mismatch
[15]. Thus, achieving the same function with a dramat-
ically smaller number of units does imply lower power
requirements for our approach.

To compare the power efficiency with digital computers
is less easy to establish. A practical possibility to address
this question would be to compare the implementation of
our CPGs with that achieved using FPGAs [34]. This is an
interesting issue to address, which lies beyond the scope of
the present work.

VI. CONCLUSIONS

In the present work, we have introduced a novel neu-
rosynaptic device that is the building block of a method-
ological platform to implement general spiking neural
networks with a bottom-up approach. More specifically,
we introduced a synaptic unit with biomimetic dynam-
ics that, combined with our previously introduced spiking
neuron [27,28,61], completes a platform to build arbitrary
SNNs in hardware.

We illustrated the advantages of the approach by con-
sidering several basic motifs of theoretical neuroscience,
whose dynamics has already produced results and insights.

Firstly, we found that a dynamical memory can be
implemented with just one recursive spiking neuron, in
contrast to the common wisdom that a population is
required. The stability of the memory state is validated
explicitly by the methodology that is based on measure-
ments done on hardware implementation.

Secondly, we introduced a model of self-adaptation,
similar to Izhikevich or AdEx, but where we adopt a more
biomimetic form for the adaptation variable, given by the
Rall’s function [3]. In that model we found an unexpected
analogy between the bursting state and the oscillations in
a paradigmatic dynamical system of physics, the driven
harmonic oscillator.
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Thirdly, we showed that the problem of recursive motifs
can be cast as a self-consistent problem where we provided
a geometrical solution. This may open the way for progress
in the understanding of spiking neurons with recursion.

In addition, from a neuromorphic electronic systems
perspective, our approach has a number of innovations and
advantages with respect to more conventional ones based
on VLSI systems.

(1) Our synaptic circuit model introduces a novel
double-step leaky integration which implements a realis-
tic biomimetic dynamical function. It introduces a delay,
which, from theoretical neuroscience, is known to be
crucial to capture phenomena such as synchrony with
inhibitory couplings [20].

(2) Our bottom-up methodology trades miniaturization
for tunability and flexibility, hence it can be naturally made
to work at biorealistic timescales. That feature is an impor-
tant drawback in CMOS VLSI, whose miniature capacitors
imply bioincompatible high spike rates.

(3) Our methodology provides an explicit way to avoid
the mismatch problem that plagues VLSI subthreshold sys-
tems and prevents their practical adoption [15]. In contrast,
our circuits are built around thyristors, thus less affected by
mismatch. Moreover, using discrete components, one may
achieve any desired level of device homogeneity by simply
performing presorting.

(4) Our methodology is simple and of extremely low
cost and availability, hence it may be immediately repro-
duced and widely adopted. Moreover, our SNN circuits
produce robust electric signals, making it an ideal plat-
form for the implementation of a large range of practical
applications. Those systems may range from biomedical
devices, such as deep brain stimulation, through reservoir
computers, and neuroscience instrumentation, to central
pattern generators for locomotion, and many others.

Finally, the present approach opens two exciting per-
spectives ahead: It may finally unlock the promise of
neuromorphic electronics for artificial intelligence devices,
as it provides a simple and widely accessible modular plat-
form to build hardware devices. Also, it may provide a path
to construct a general-purpose SNN simulation machine
based on a sound theoretical model for research in neuro-
science, beyond what can be done with software running
on digital computers.
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APPENDIX

Here we provide details on the circuit implementations
of our NS unit. We shall describe each block in detail, and
give lists of materials for them along with manufacturer

FIG. 17. Details of the neurosynaptic unit circuit blocks. The
neuron block is in the red box, while the blocks of two synaptic
stages are in the green boxes.

(Manuf.) in Tables I and II. We also provide the values of
all components used in the different figures at the end, in
Table III.

While the circuits can be easily implemented in bread-
boards, we also supply the printed-circuit-board (PCB)
designs along with a list of components in github [62].

In Fig. 17 we reproduce the schematic circuit of Fig. 3,
where we have now split the circuit into slightly different
modular blocks. The convenience of this should be evi-
dent, as the two green blocks are identical. Moreover, with
this partition, the system is fully modular. For instance,
one may construct a network of neurons that commu-
nicate δ(t) spikes without any delay by combining the
red neuron blocks. Alternatively, one may just add one
green block at the output of the preneuron to implement
exp(−t/τs) synaptic current coupling. One may also add

FIG. 18. Schematic of the neuron plus Iδ current block. The
Q1, Q3, and Q4 are CMOS transistors from the ALD1105PBL
chip. The memristor that implements the voltage-gated conduc-
tance channel of the axon hillock is implemented with a thyristor
(STMicro P0118MA) with Rm connected between the anode and
the gate (blue box). The action-potential spike voltage Vap results
from the fast discharge of Cm on Ra when the memristor is in the
low-R state.
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TABLE I. List of materials for the neuron plus Iδ block.

Component Manuf. Manuf. no. Number

Thyristor STMicro P0118MA 1
Capacitor Nova CCC-52 1
Resistor Nova CBR-11 2
MOSFET ALD Inc. ALD1105PBL 1
Trimmer resistor Bourns 3296P-1-203LF 1

two green blocks, as in the schematic circuit, to implement
the α(t/τs) synaptic coupling. Another important feature,
as we shall show below is that the last green block has
two further options: one may implement an excitatory or
an inhibitory synaptic current, both of either exp(−t) or
α(t) type.

1. Neuron block

The excitatory part of the neuron circuit has been imple-
mented in Ref. [28]; here we add the synaptic coupling.
The circuit is illustrated in Fig. 18. The voltage spikes are
produced on the “axon hillock” resistor Ra. That voltage
spike needs to be transformed into a strong current impulse
so one upstream neuron is able to excite, i.e., to drive
spikes on a downstream neuron. Moreover, the intensity
of the current needs to be modulated so as to realize the
synaptic weights Wij between the two neurons i and j . The
components to replicate the circuit are listed in Table I.

This is implemented through a simple solution, adopt-
ing a conventional current source configuration taken from

FIG. 19. The excitatory synaptic current circuit block. Here
Q1, Q2, Q3, and Q4 are CMOS transistors from the
ALD1105PBL chip.

TABLE II. List of materials for the excitatory and inhibitory
synaptic current circuit block.

Component Manuf. Manuf. no. Number

MOSFET ALD Inc. ALD1105PBL 1
Capacitor Nova CCC-52 1
Resistor Nova CBR-11 1

the data sheet of the ALD1105PBL chip (which has two
matched pairs of CMOS transistors).

The output synaptic current is δ(t)-like, and is imple-
mented by a rectangular pulse of current with an intensity
controlled by RW. In the range of interest Iout ≈ 200 µA,
i.e., well within the excitatory current interval, it can be
approximated by Iout ≈ 4V/RW. An important point to
make is that RW can be replaced by a nonvolatile memristor
in the implementation of learning neuronal networks.

The duration of the rectangular pulse is controlled by the
condition Vspike > � ≈ 0.7 V, i.e., when the spike over-
comes the synaptic threshold � (cf. Eq. (11) in the main
text).

We can estimate some typical values to see that our neu-
ron circuit can easily match biocompatible timescales. The
duration of a spike is easily estimated, as it is directly given
by the discharge timescale of Cm on the axon hillock resis-
tor Ra. For typical values Cm = 1 µF and Ra = 1 k�, we
obtain τa = 1 ms, which is a typical biological timescale.

We adopted the STMicro P0118MA thyristor, which
has a trigger current IGT ≈ 2 µA. From this value and
the leaky-integration time constant τm, we can obtain an
approximate expression for the firing rate for a constant
input current I0. The capacitor Cm charges approximately

FIG. 20. The last synaptic current circuit block can be
inhibitory or excitatory. For the excitatory case, Q1, Q2, Q3, and
Q4 are CMOS transistors from the ALD1105PBL chip. For the
inhibitory case, Q3 and Q4 are not used.
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TABLE III. Parameters for figures.

Figure no. Theoretical model parameters Hardware model counterparts Timescales

Fig. 2 Cm 0.1 µF τm ≈ 68 ms
Rm 680 k�

Ra 2 k� τa ≈ 200 µs

Fig. 4 Cm, Rm, Ra same as Fig. 2
RW 10 k�

Cs 22 nF τs = 1.8 ms
Rs 82 k�

Fig. 5 Cm, Rm, Ra same as Fig. 2
RW 10 k�

Cs for (a) 47 µF (a) τs = 4.7 s
Cs for (b) and (c) 1 µF (b,c) τs = 100 ms

Rs 100 k�

Fig. 6 Cm, Rm, Ra same as Fig. 2
RW 5 k�

Cs 4.7 µF τs = 470 ms
Rs 100 k�

Fig. 9 Cm, Rm, Ra same as Fig. 2
RW, Cs, Rs same as Fig. 8

Fig. 10 Cm, Rm, Ra same as Fig. 2
RW, Cs, Rs same as Fig. 8

Fig. 11 Cm 33 nF τm ≈ 22.4 ms
Rm 680 k�

Ra 2 k� τa ≈ 66 µs
Cs 10 µF τs = 1 s
Rs 100 k�

RW 2.2 k�

I0 92.8 µA

Fig. 12 Cm, Rm, Ra same as Fig. 11
Cs, Rs, RW same as Fig. 11

I0 92.8 µA

Fig. 13 Cm, Rm, Ra same as Fig. 11
Cs, Rs, RW same as Fig. 11

I0 53.2 µA

Fig. 14 Cm, Rm, Ra same as Fig. 11
self-synapse Cs, Rs same as Fig. 11 τssi = 1 s

self-synapse RW 0.27 k�

projection Cs, Rs 10 nF, 100 k� τspi = 1 ms
projection RW 1.5 k�

RW 4.7 �

N1 I0 62.0 µA
N2 I0 46.5 µA

Fig. 15 Cm, Rm, Ra same as Fig. 11
self-synapse Cs, Rs 4.7 µF, 100 k� τssi = 470 ms

self-synapse RW 100 �

projection Cs, Rs 1 µF, 100 k� τspi = 100 ms
projection RW 0.4 �

N1 I0 78.8 µA
N2 I0 70.6 µA

Continued.
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TABLE III. (Continued.)

Figure no. Theoretical model parameters Hardware model counterparts Timescales

Fig. 16 Cm, Rm, Ra same as Fig. 11
self-synapse Cs, Rs 4.7 µF, 100 k�

self-synapse RW 100 �

projection Cs, Rs 1 µF, 100 k�

projection RW 0.4 �

N1 I0 57.3 µA
N2 I0 52.4 µA

linearly with VC(t) ≈ (I0/Cm)t, hence the gate cur-
rent follows the simple expression IG(t) ≈ VC/Rm =
(I0/RmCm)t = I0(t/τm). The condition to fire a spike is
that the gate current overcomes its switching threshold
IG > IGT. Hence, IG ≈ 2 µA = I0ISI/τm, where ISI is the
interspike interval. Thus, the firing rate results in f (I0) ≈
(I0/2 µA)/τm. For typical values of I0 = 60 µA, Rm =
1 M�, and Cm = 1 µF, we get f ≈ 30 Hz, which is
biocompatible.

2. Synaptic block

The detailed circuit that implements the green blocks of
the schematic model of Fig. 3 is shown in Fig. 19. The
components are listed in Table II. The circuit implements
the leaky integration of the input with a timescale given by
τs = RsCs.

This circuit equation is

dq/dt = −q/τs + iin, (A1)

hence

dVC/dt = −VC/τs + iin/Cs (A2)

and

τs dIR/dt = −IR + iin, (A3)

which is exactly the form of Eqs. (2), (3), (11),
and (12) of the main text. Note that, if iin(t) = I0δ(t),
then IR(t) ∝ exp(−t/τs); and if iin(t) = exp(−t/τs), then
IR(t) ∝ α(−t/τs). This is as discussed in the main text.

The key feature that one needs to achieve with the cir-
cuit to implement the system of equations is to capture the
feature of successive stage current integration. Therefore,
one needs to reproduce or mirror the output current on one
block as the input for the next block. As was explained
in the main text, this is achieved with a standard solution,
namely a current mirror. We implemented this using again
the ALD1105PBL chip.

We may note that there is a price to pay for adopting
this simple solution. The Rs is not connected directly to
the ground, as the equations above require, but to the gate

of the NMOS pair Q1–Q2 in Fig. 19. This introduces an
approximation, since the approximated expression for the
output current becomes IRs ≈ (VC − 0.7V)/Rs.

Nevertheless, as shown in the synaptic current traces
in Fig. 3, the two stages are well approximated by the
exponential and the alpha functional forms, which in prac-
tice demonstrates that the circuit generates the appropriate
waveforms.

Finally, notice that the output current is positive or exci-
tatory (i.e., outgoing), hence this block implements an
excitatory synaptic current. The excitatory synaptic circuit
can be easily modified to implement the inhibitory synap-
tic current case. It is sufficient to take out half of the current
mirror, so the output becomes a “sink to ground” of a cur-
rent of magnitude identical to its input. Hence, this would
be a negative or inhibitory current; if connected to a neu-
ron, it would decrease the charge of the membrane Cm. The
circuit implementation is shown in Fig. 20.

With these synaptic blocks, we can realize the four
model synaptic currents that we discussed in the text, as
follows. For the AMPA, i.e., excitatory exponential type,
adopt one block (Fig. 19). For the NMDA, i.e., excitatory
alpha type, adopt two identical blocks (Fig. 19). For the
GABAa, i.e., inhibitory exponential type, adopt one block
(Fig. 20). For the GABAb, i.e., inhibitory alpha type, adopt
two blocks, the first stage (Fig. 19) and the second stage
(Fig. 20).

3. Model parameters

In Table III, we list all the theoretical model parameters
and their counterparts in the hardware model.
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