
Physics 178/278 - David Kleinfeld - Winter 2021 - Lecture 2

Revised 7 January 2021 20:00

2 Recurrent neuronal networks: Associative mem-

ory 1

2.1 What is a state?

We previously considered the output from neuronal networks with only two cells,
so the notion of a state was pretty obvious. In general, the state is simply the
arrangement of ON or active neurons (+1) and OFF or quiescent neurons (-1) under
observation. Ideally this is every neuron in the circuit, which is possible in some
preparations, like the invertebrate preparations at the end of lesson 1. In some
large preparations, the size of the animal or brain region is sufficiently small that
preparations with hundreds to thousands of contiguous neurons can be imaged with
sufficient speed and reliability. Do large systems also exhibit detectable states?

The ideal of repeating patterns came to the front many years ago in the cortical
studies of Moshe Abeles. They recorded from frontal areas of monkey cortex and
tended to see repeated patterns of spikes even though they recorded from relatively
few cells. Judge for yourself!

Figure 1: Firing times of six neurons in monkey frontal cortex over a total of 93 trials were used to construct
an HMM. Six states were identified. From Abeles, Bergman, Gati, Meilijson, Seidemann, Tishby and Vaadia 1995.

Zooming up to modern times, the technology has vastly improved to gett a much
better view across very many neurons, as recently measured with electrodes across
wide volumes of the brain by Mateo Carandini and Kenneth Harris. We see many
repeating or near repeating patterns among what is really a very sparse sample, i.e,
104 neurons among the 108 neurons in the mouse brain. The same neurons can be
active or quiescent across a multitude of states.

1

Figure 2: Sorted output from Neuropixels probes in the brain of mouse, From Stringer, Pachitariu, Steinmetz,
Reddy, Carandini and Harris 2019

Finally, states appear to occur in preparations that contain tens to hundreds of
neurons in which every cell can be observed at effectively the same time. This is
shown for the worm c. Elegans. Again, we leave interpretation aside and simple
note the clear occurrence of four states.

Figure 3: Calcium imaging from c. Elegan neurons during movement. Kato, Kaplan, Schrodel, Skora, Lindsay,
Yemini, Lockery and Zimmer 2015

One special aspect of all of these and related data is that stable firing patterns
exist. In the last two case would could see patterns without special statistical tools
- just recording of the presentation. A second aspect is that the number of states
are few, i.e., far less than the number of cells, denoted N , and far, far less than the
number of possible states, i.e., 2N , although likely large than the minimum number
of connectivity of a graph, i.e., NlogN .

2.2 Are real networks highly interconnected?

The connectome of very few animals has been brain completed. In fact, only the
connections among the neural integrator for horizontal eye position position in the
juvenile zebrafish has been reconstructed over a large enough region - to date - to
draw any conclusions. Here about 0.1 of the neurons make recurrent connections on
each other; this should be taken as a lower bound on connections. In any case all

2

this means is that we need 0.1 ∗N >> logN or N >> 35, which is consistent with
about 500 neurons in the integrator.

Figure 4: Velocity-to-position neural integrator. Schematic showing the proposed wiring of modO, cells that
project to the periphery, along with the two submodules modOI and modOM, and DO neurons that synapses onto
ABDM and ABDI. From Vishwanathan, Ramirez, Wu, Sood, Yang, Kemnitz, Ih, Turner, Lee, Tartavull, Silversmith,
Jordan, David, Bland, Goldman, Aksay and Seung, unpublished

Figure 5: Cut-section view of the reconstructed volume and labeling of a synapse. From Vishwanathan, Ramirez,
Wu, Sood, Yang, Kemnitz, Ih, Turner, Lee, Tartavull, Silversmith, Jordan, David, Bland, Goldman, Aksay and
Seung, unpublished

2.3 The network

We consider the dynamics of a fully connected recurrent neuronal network. We will
begin our analysis guided by this task:

Store a set of P patterns ~ξk in such a way that when presented with a
new pattern ~Stest, the network responds by producing whichever one of
the stored patterns most closely resembles ~Stest. Close is defined by the
Hamming distance, the number of different ”bits” in the pattern.

The neurons are labelled by i = 1, 2, ... , N and the individual stable patterns are
labeled by k = 1, 2, ... , P .

We denote the activity of the i − th neuron by Si. The input to neuron i is
denoted by µi and is given by

µi =
N∑

j=1; j 6=i
WijSj + Iexti (2.2)

3

Figure 6: Connectivity matrix of center neurons organized into two modules (modA, modO). Neurons in the
center were clustered whereas neurons in the periphery were not. Neurons in the periphery were organized by
known cell types, vSPNs and ABD neurons. Colored dots represent the number of synapses. From Vishwanathan,
Ramirez, Wu, Sood, Yang, Kemnitz, Ih, Turner, Lee, Tartavull, Silversmith, Jordan, David, Bland, Goldman, Aksay
and Seung, unpublished

Figure 7: Function of the network as a content addressable memory in the recovery of a full memory from partial
initial information. from Hertz, Krogh and Palmer 1991, following Hopfield 1982.

where the Wij are analog-valued synaptic weights and Iexti is an external input. The
dynamics of the network are:

Si ≡ sgn (µi − θi) (2.3)

where θi is the threshold and we take the sign function sign sgn(h) to be

sgn(x) =

{
1 if x ≥ 0
−1 if x < 0

Clearly the output SI is driven by the external input when Iexti is sufficiently large.
Going forward, we may take θi = 0 ∀i as befits the case of random patterns on

which neuronal outputs take on the values +1 and −1 with equal probability. In

4

Figure 8: Basic associative or ”Hopfield” network. From Hertz, Krogh and Palmer 1991, following Hopfield
1982.

Figure 9: Input-output relation. From Hertz, Krogh and Palmer 1991, following Hopfield 1982.

the further absence of external input, we have the minimal description

Si ≡ sgn

 N∑
j 6=i

WijSj

 . (2.4)

There are at least two ways in which we might carry out the updating specified by
the above equation. We could do it synchronously, updating all units simultaneously
at each time step. Or we could do it asynchronously, updating them one at a time.
Both kinds of models are interesting, but the asynchronous choice is more natural
for both brains and artificial networks. The synchronous choice requires a central
clock or pacemaker, and is potentially sensitive to timing errors, as is the case of
sequential updating. In the asynchronous case, which we adopt henceforth, we can
proceed in either of two ways:

5

• At each time step, select at random a unit i to be updated, and apply the
update rule.

• Let each unit independently choose to update itself according to the update
rule, with some constant probability per unit time.

These choices are equivalent, except for the distribution of update intervals. For the
second case there is vanishing small probability of two units choosing to update at
exactly the same moment.

Rather than study a specific problem such as memorizing a particular set of
pictures, we examine the more generic problem of a random set of patterns drawn
from a distribution. For convenience, we will usually take the patterns to be made
up of independent bits ξi that can each take on the values +1 and -1 with equal
probability.

Our procedure for testing whether a proposed form of Wij is acceptable is first to
see whether the patterns to be memorized are themselves stable, and then to check
whether small deviations from these patterns are corrected as the network evolves.

2.4 Storing one pattern

To motivate our choice for the connection weights, we consider first the simple case
whether there is just one pattern ξi that we want to memorize. The condition for
this pattern to be stable is just

sgn

 N∑
j 6=i

Wijξj

 = ξi ∀i (2.5)

since the update rule produces no changes. It is easy to verify this if we take

Wij ∝ ξiξj (2.6)

since ξ2
j = 1. We take the constant of proportionality to be 1/N , where N is the

number of units in the network, which yields

Wij =
1

N
ξiξj . (2.7)

Furthermore, it is also obvious that even if a number (fewer than half) of the bits
of the starting pattern Si are wrong, i.e., not equal to ξi, they will be overwhelmed
in the sum for the net input

∑N
j 6=iWijSj by the majority that are correct so that

sgn(
∑N
j 6=iWijSj) will still give ξi.

An initial configuration near to ξi will therefore quickly relax to ξi. This means
that the network will correct errors as desired, and we can say that the pattern ξi is
an attractor. Actually, there are two attractors in this simple case; the other one is
at −ξi. This is called a reversed state. All starting configurations with more than
half the bits different from the original pattern will end up in the reversed state.

6

2.5 Storing many patterns

How do we get the system to recall the most similar of many patterns? The simplest
answer is just to make the synaptic weights Wij by an outer product rule for each
of the P patterns, which corresponds to

Wij =
1

N

P∑
k=1

ξki ξ
k
j . (2.8)

The above rule for synaptic weights is called the “Hebb rule” because of the similarity
with a hypothesis made by Hebb (1949) about the way in which synaptic strengths in
the brain change in response to experience: Hebb suggested changes are proportional
to the correlation between the firing of the pre- and post-synaptic neurons.

2.6 Scaling for error-free storage of many patterns

We consider a Hopfield network with the standard Hebb-like learning rule and ask
how many memories we can imbed in a network of N neurons with the constraint
that we will accept at most one bit of error, i.e., one neuron’s output in only one of
the memory states. The input is

µi =
N∑
j 6=i

WijSj (2.9)

=
1

N

P∑
k=1

N∑
j 6=i

ξki ξ
k
j Sj.

Let Sj ≡ ξ1
j , one of the stored memory states, so that

µi =
1

N

P∑
k=1

N∑
j 6=i

ξki ξ
k
j ξ

1
j (2.10)

=
1

N

P∑
k=1

ξki

N∑
j 6=i

ξkj ξ
1
j

=
1

N
ξ1
i

N∑
j 6=i

ξ1
j ξ

1
j +

1

N

P∑
k 6=1

ξki

N∑
j 6=i

ξkj ξ
1
j

=
N − 1

N
ξ1
j +

1

N

P∑
k 6=1

ξki

N∑
j 6=i

ξkj ξ
1
j

Thus, in the limit of large N , the first term leads to stability while the second term
goes to zero, so that the average input is

< µi > ' ξ1
i (2.11)

Even when the second term for pattern 1 is not zero, the state ~ξ1 is stable if the
magnitude of the second term is smaller than 1, i.e., if the second term cannot change

7

the sign of the output Sli. It turns out that the second term is less than 1 in many
cases of interest if P , the number of patterns, is sufficiently small. Then the stored
patterns are all stable – if we start the system from one of these states the system
will remain in that state. A small fraction of bits different from a stored pattern will
be corrected in the same way as in the single-pattern case; they are overwhelmed
in
∑N
j 6=i

∑P
k 6=lWijSj by the vast majority of correct bits. A configuration near to ξ1

i

thus relaxes to ξ1
i .

What is the variance, denoted σ2, induced by the storage of many memories,
the so-called structural noise? The second term consists of (P − 1) inner products
of random vectors with (N − 1) terms. Each term is +1 or −1, i..e., binomially
distributed, so that the fluctuation to the input is

σ =
1

N
·
√
P − 1 ·

√
N − 1 (2.12)

'
√
P

N
.

More laboriously,

σ2 =
1

N

N∑
i=i

 1

N

P∑
k 6=1

ξki

N∑
j 6=i

ξkj ξ
1
j

 1

N

P∑
k′ 6=1

ξk
′

i

N∑
j′ 6=i

ξk
′

j′ ξ
1
j′

 (2.13)

=
1

N3

P∑
k 6=1

P∑
k′ 6=1

(
N∑
i=i

ξki ξ
k′

i

)
N∑
j 6=i

ξkj ξ
1
j

N∑
j′ 6=i

ξk
′

j′ ξ
1
j′

−−−−−→
N →∞ 1

N3

P∑
k 6=1

P∑
k′ 6=1

N δ(k − k′)
N∑
j 6=i

ξkj ξ
1
j

N∑
j′ 6=i

ξk
′

j′ ξ
1
j′

−−−−−→
N →∞ 1

N2

P∑
k 6=1

N∑
j 6=i

ξkj ξ
1
j

N∑
j′ 6=i

ξkj′ξ
1
j′

−−−−−→
N →∞ 1

N2

N∑
j 6=i

ξ1
j

N∑
j′ 6=i

ξ1
j′

 P∑
k 6=1

ξkj ξ
k
j′


−−−−−−−−−−−−→
N →∞; P →∞ 1

N2

N∑
j 6=i

ξ1
j

N∑
j′ 6=i

ξ1
j′ (P − 1) δ(j − j′)

−−−−−−−−−−−−→
N →∞; P →∞ P − 1

N2

N∑
j 6=i

(
ξ1
j

)2

−−−−−−−−−−−−→
N →∞; P →∞ (P − 1)(N − 1)

N2

−−−−−−−−−−−−→
N →∞; P →∞ P

N

Noise hurts only if the magnitude of the noise term exceeds σ = 1. By the Central
Limit Theorem, the noise becomes Gaussian for large P and N , but constant P/N .
Thus the probability of an error in the recall of all stored states is

perror =
1√

2π σ

[∫ −1

−∞
e−x

2/2σ2

dx +
∫ ∞

+1
e−x

2/2σ2

dx
]

(2.14)

8

=

√
2√
π σ

∫ ∞
+1

e−x
2/2σ2

dx

=
2√
π

∫ ∞
1√
2σ

e−x
2

dx

≡ erfc

(
1√
2σ

)

where efrc(x) is the complementary error function and we again note that the average
of the error term is zero. Thus

perror = erfc

√ N

2P

 . (2.15)

Figure 10: We compute the probability in the tail of the Gaussian. From Hertz, Krogh and Palmer 1991.

For N/P >> 1 the complementary error function may be approximated by an
asymptotic closed form given by

perror '
2√
π

P

N
e−N/2P (2.16)

so that to leading order

log{perror} ' −
N

2P
− log{N

P
}. (2.17)

Now NP is total number of “bits” in the network. Suppose only less than one
bit can be in error. Then we equate probabilities of correct to within a factor of one
bit, or 1/(NP). Thus

1− perror ≥ 1− 1

NP
(2.18)

or
log{perror} < − log{NP}. (2.19)

9

Thus

− N

2P
− log{N

P
} < − log{NP} (2.20)

or

− N

2P
< −2 log{P} (2.21)

so

P <
1

4

N

log{P}
. (2.22)

Since P scales sublinearly with N , we can iterate to write

P <
1

4

N

log{N}
. (2.23)

Thus we see that an associate memory based on a recurrent Hopfield network stores
a number of memories that scales more weakly than the number of neurons if one
cannot tolerate any errors upon recall. Keep a mind that a linear network stores
only one stable state, e.g., an integrator state. So things are looking good.

This is a worst case analysis that holds in the limit of N → ∞. More typically
we want to store states with a fixed, nonzero albeit small error rate. We will explore
this possibility next and see if the scaling among P and N changes.

10

