2 Recurrent neuronal networks: Associative memory

2.1 Recurrent connections and memories

The storage of memories in the brain is an old and central issue in neuroscience. As we last discussed, it was known since the 1930’s that bistable devices formed from threshold elements, like a digital flip-flop, could be built using feedback to hold electronic summing junctions in a particular state after their inputs had decayed away. By the 1970’s, it was conjectured that networks with many summing junctions, or neurons, might be able to store a multitude of states if the feedback was extended across all pairs of cells, i.e., order N^2 connections across N neurons. What are the expected motifs for such circuits? By extension of the idea of flip-flops, we might expect to find regions of the brain with neurons whose axon collaterals feed back onto other neurons. This anatomical arrangement was highlighted for the perform cortex of the olfactory system in a ca 1980’s paper by Haberly (Figure 1) and by other researchers for the CA3 region of hippocampus. It was explored theoretically starting in the 1970s and culminated with a pivotal contribution by Hopfield in 1982 and an analysis of Hopfield’s model by Amit, Gutfriend and Sompolinsky, by Gardner, and by others, in the mid 1980s.

Figure 1: Summary of major excitatory connections in piriform cortex. Each cell represents a population. From Haberly 1995.
The hippocampus seemed a particularly valuable region to consider feedback, as it is known for the occurrence of place cells. In their simplest substantiation, these are neurons that fire only when the animal reaches a particular location in the local environment. Different cells prefer to spike in different locations. Thus the animals builds up a map of the space, and in principle can use this map to determine a path to move from one location to another.

So we have an idea - the use of feedback connections to form memories of many places, or of anything by extrapolation, and we have biological motivation, in terms of the anatomical evidence, to understand the dynamics of such networks as well as search for them in real nervous systems.

2.2 What is a state?

We previously considered the output from neuronal networks with only two cells, so the notion of a state was pretty obvious. In general, the state is simply the arrangement of ON or active neurons (+1) and OFF or quiescent neurons (-1) under observation. Ideally this is every neuron in the circuit, which is possible in some preparations, like the invertebrate preparations at the end of lesson 1. In some large preparations, the size of the animal or brain region is sufficiently small that preparations with hundreds to thousands of contiguous neurons can be imaged with sufficient speed and reliability. Do large systems also exhibit detectable states?

The ideal of repeating patterns came to the front many years ago in the cortical studies of Moshe Abeles. They recorded from frontal areas of monkey cortex and tended to see repeated patterns of spikes, even though they recorded from relatively few cells. Judge for yourself (Figure 2)!

Zooming up to modern times, the technology has vastly improved to get a much better view across very many neurons, as recently measured with electrodes across wide volumes of the brain by Mateo Carandini and Kenneth Harris (Figure 3). We see many repeating or near repeating patterns among what is really a very sparse sample, i.e, 10^4 neurons among the 10^8 neurons in the mouse brain. The same neurons can be active or quiescent across a multitude of states.

Finally, states appear to occur in preparations that contain tens to hundreds of neurons in which every cell can be observed at effectively the same time. This is shown from recording from Zimmer of neurons in the worm c. Elegans (Figure 4). Again, we leave interpretation aside and simple note the clear occurrence of four states.

One special aspect of all of these and related data is that stable
Figure 2: Firing times of six neurons in monkey frontal cortex over a total of 93 trials were used to construct a hidden Markov model. Six states were identified. From Abeles, Bergman, Gati, Meilijson, Seidemann, Tishby and Vaadia 1995.

Figure 3: Sorted output from Neuropixels probes in the brain of mouse. From Stringer, Pachitariu, Steinmetz, Reddy, Carandini and Harris 2019

firing patterns exist. In the last two case would could see patterns without special statistical tools - just recording of the presentation. A second aspect is that the number of states are few, i.e., far less than the number of cells, denoted N, and far, far less than the number of possible states, i.e., 2^N, although likely large than the minimum number of connectivity of a graph, i.e., $N\log N$.

2.3 Are real networks highly interconnected?

The connectome of very few animals has been brain completed. In fact, only the connections among the neural integrator for horizontal eye position position in the juvenile zebrafish has been reconstructed over a large enough region - to date - to draw any conclusions (Figures 5 and 6). Here about 0.1 of the neurons make recurrent connections on each other; this should be taken as a lower bound on connections (Figures 7). In any case all this means is that
we need $0.1 \cdot N \gg \log N$ or $N \gg 35$, which is consistent with about 500 neurons in the integrator.

2.4 The network

We consider the dynamics of a fully connected recurrent neuronal network. We will begin our analysis guided by this task:

Store a set of P patterns ξ^k in such a way that when presented with a new pattern that has partial overlap with an existing pattern \tilde{S}^{test}, the network responds by producing whichever one of the stored patterns most closely resembles \tilde{S}^{test} (Figure 8). Close is defined by the Hamming distance, the number of different “bits” in the pattern.
The neurons are labelled by \(i = 1, 2, \ldots, N \) and the individual stable patterns are labeled by \(k = 1, 2, \ldots, P \).

We denote the activity of the \(i \)-th neuron by \(S_i \). The input to neuron \(i \) is denoted by \(\mu_i \) and is given by

\[
\mu_i = \sum_{j=1; j \neq i}^{N} W_{ij} S_j + I_{i}^{ext}
\]

(2.2)

where the \(W_{ij} \) are analog-valued synaptic weights and \(I_{i}^{ext} \) is an external input. The dynamics of the network are (Figure 9):

\[
S_i \equiv \text{sgn} (\mu_i - \theta_i)
\]

(2.3)

where \(\theta_i \) is the threshold and we take the sign function \(\text{sgn}(h) \) to be

\[
\text{sgn}(x) = \begin{cases}
1 & \text{if } x \geq 0 \\
-1 & \text{if } x < 0
\end{cases}
\]

(Figure 10). Clearly the output \(S_i \) is driven by the external input when \(I_{i}^{ext} \) is sufficiently large.

Going forward, we may take \(\theta_i = 0 \ \forall i \) as befits the case of random patterns on which neuronal outputs take on the values +1 and −1 with equal probability. In the further absence of external input, we have the minimal description

\[
S_i \equiv \text{sgn} \left(\sum_{j \neq i}^{N} W_{ij} S_j \right)
\]

(2.4)
There are at least two ways in which we might carry out the updating specified by the above equation. We could do it synchronously, updating all units simultaneously at each time step. Or we could do it asynchronously, updating them one at a time. Both kinds of models are interesting, but the asynchronous choice is more natural for both brains and artificial networks. The synchronous choice requires a central clock or pacemaker, and is potentially sensitive to timing errors, as is the case of sequential updating. In the asynchronous case, which we adopt henceforth, we can proceed in either of two ways:

- At each time step, select at random a unit i to be updated, and apply the update rule.

- Let each unit independently choose to update itself according to the update rule, with some constant probability per unit time.

These choices are equivalent, except for the distribution of update intervals. For the second case there is vanishing small probability of two units choosing to update at exactly the same moment.

Rather than study a specific problem such as memorizing a particular set of pictures, we examine the more generic problem of a random set of patterns drawn from a distribution. For convenience, we will usually take the patterns to be made up of independent bits ξ_i that can each take on the values +1 and -1 with equal probability.

Our procedure for testing whether a proposed form of W_{ij} is acceptable is first to see whether the patterns to be memorized are
themselves stable, and then to check whether small deviations from these patterns are corrected as the network evolves.

2.5 Storing one pattern

To motivate our choice for the connection weights, we consider first the simple case whether there is just one pattern ξ_i that we want to memorize. The condition for this pattern to be stable is just

$$\text{sgn} \left(\sum_{j \neq i} W_{ij} \xi_j \right) = \xi_i \quad \forall i$$

(2.5)

since the update rule produces no changes. It is easy to verify this if we take

$$W_{ij} \propto \xi_i \xi_j$$

(2.6)

since $\xi_j^2 = 1$. We take the constant of proportionality to be $1/N$, where N is the number of units in the network, which yields

$$W_{ij} = \frac{1}{N} \xi_i \xi_j,$$

(2.7)

Furthermore, it is also obvious that even if a number (fewer than half) of the bits of the starting pattern S_i are wrong, i.e., not equal to ξ_i, they will be overwhelmed in the sum for the net input.
∑_{j≠i} W_{ij} S_j by the majority that are correct, so that sgn[∑_{j≠i} W_{ij} S_j] will still give ξ_i.

An initial configuration near to ξ_i will therefore quickly relax to ξ_i. This means that the network will correct errors as desired, and we can say that the pattern ξ_i is an attractor. Actually, there are two attractors in this simple case; the other one is at − ξ_i. This is called a reversed state. All starting configurations with more than half the bits different from the original pattern will end up in the reversed state.

2.6 Storing many patterns

How do we get the system to recall the most similar of many patterns? The simplest answer is just to make the synaptic weights
\(W_{ij} \) by an outer product rule for each of the \(P \) patterns, which corresponds to

\[
W_{ij} = \frac{1}{N} \sum_{k=1}^{P} \xi_i^k \xi_j^k.
\] (2.8)

The above rule for synaptic weights is called the "Hebbian rule" because of the similarity with a hypothesis made by Hebb (1949) about the way in which synaptic strengths in the brain change in response to experience: Hebb suggested changes are proportional to the correlation between the firing of the pre- and post-synaptic neurons.

2.7 Scaling for error-free storage of many patterns

We consider a Hopfield network with the standard Hebb-like learning rule and ask how many memories we can imbed in a network of \(N \) neurons with the constraint that we will accept at most one bit of error, i.e., one neuron’s output in only one of the memory states. The input is

\[
\mu_i = \sum_{j \neq i} W_{ij} S_j
\] (2.9)

\[
= \frac{1}{N} \sum_{k=1}^{P} \sum_{j \neq i} \xi_i^k \xi_j^k S_j.
\]

Let \(S_j \equiv \xi_j^1 \), one of the stored memory states, so that

\[
\mu_i = \frac{1}{N} \sum_{k=1}^{P} \sum_{j \neq i} \xi_i^k \xi_j^k \xi_j^1
\] (2.10)

\[
= \frac{1}{N} \sum_{k=1}^{P} \xi_i^k \sum_{j \neq i} \xi_j^k \xi_j^1
\]

\[
= \frac{1}{N} \xi_i^1 \sum_{j \neq i} \xi_j^1 \xi_j^1 + \frac{1}{N} \sum_{k \neq 1} \xi_i^k \sum_{j \neq i} \xi_j^k \xi_j^1
\]

\[
= \frac{N - 1}{N} \xi_i^1 + \frac{1}{N} \sum_{k \neq 1} \xi_i^k \sum_{j \neq i} \xi_j^k \xi_j^1
\]

Thus, in the limit of large \(N \), the first term leads to stability while the second term goes to zero, so that the average input is

\[
< \mu_i > \approx \xi_i^1
\] (2.11)

Even when the second term for pattern 1 is not zero, the state \(\xi_i^1 \) is stable if the magnitude of the second term is smaller than 1, i.e., if
the second term cannot change the sign of the output S_i. It turns out that the second term is less than 1 in many cases of interest if P, the number of patterns, is sufficiently small. Then the stored patterns are all stable – if we start the system from one of these states the system will remain in that state. A small fraction of bits different from a stored pattern will be corrected in the same way as in the single-pattern case; they are overwhelmed in $\sum_{j \neq i}^N \sum_{k \neq l}^P W_{ij} S_j$ by the vast majority of correct bits. A configuration near to ξ^1_i thus relaxes to ξ^1_i.

What is the variance, denoted σ^2, induced by the storage of many memories, the so-called structural noise? The second term consists of $(P - 1)$ inner products of random vectors with $(N - 1)$ terms. Each term is $+1$ or -1, i.e., binomially distributed, so that the fluctuation to the input is

$$\sigma = \frac{1}{N} \cdot \sqrt{P - 1} \cdot \sqrt{N - 1} \quad (2.12)$$

$$\approx \sqrt{\frac{P}{N}}. $$

More laboriously,

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^N \left(\frac{1}{N} \sum_{k \neq 1}^P \xi_i^k \sum_{j \neq i}^N \xi_j^k \xi_j^l \right) \left(\frac{1}{N} \sum_{k' \neq 1}^P \xi_i^{k'} \sum_{j' \neq i}^N \xi_j^{k'} \xi_j^{l'} \right) \quad (2.13)$$

$$= \frac{1}{N^3} \sum_{k \neq 1}^P \sum_{k' \neq 1}^P \left(\sum_{i=1}^N \xi_j^k \xi_j^{k'} \right) \sum_{j \neq i}^N \xi_j^k \xi_j^l \sum_{j' \neq i}^N \xi_j^{k'} \xi_j^{l'}$$

$$N \to \infty; \quad \frac{1}{N^3} \sum_{k \neq 1}^P \sum_{k' \neq 1}^P \sum_{j \neq i}^N \sum_{j' \neq i}^N \xi_j^k \xi_j^{k'} \xi_j^l \xi_j^{l'} \delta(k - k') \sum_{j \neq i}^N \xi_j^k \xi_j^l \sum_{j' \neq i}^N \xi_j^{k'} \xi_j^{l'}$$

$$= \frac{1}{N^2} \sum_{k \neq 1}^P \sum_{j \neq i}^N \sum_{j' \neq i}^N \xi_j^k \xi_j^{l'} \sum_{j \neq i}^N \xi_j^k \xi_j^l$$

$$N \to \infty \quad \frac{1}{N^2} \sum_{j \neq i}^N \sum_{j' \neq i}^N \xi_j^l \xi_j^{j'} \left(\sum_{k \neq 1}^P \xi_j^k \xi_j^{k'} \right)$$

$$N \to \infty; \quad P \to \infty \quad \frac{1}{N^2} \sum_{j \neq i}^N \sum_{j' \neq i}^N \xi_j^l \xi_j^{j'} (P - 1) \delta(j - j')$$

$$N \to \infty; \quad P \to \infty \quad \frac{P - 1}{N^2} \sum_{j \neq i}^N (\xi_j^l)^2$$

$$N \to \infty; \quad P \to \infty \quad \frac{(P - 1)(N - 1)}{N^2}$$

$$N \to \infty; \quad P \to \infty \quad \frac{P}{N}$$

Noise hurts only if the magnitude of the noise term exceeds $\sigma = 1$. By the Central Limit Theorem, the noise becomes Gaussian for
large P and N, but constant P/N (Figure 11). Thus the probability of an error in the recall of all stored states is

$$p_{\text{error}} = \frac{1}{\sqrt{2\pi} \sigma} \left[\int_{-\infty}^{-1} e^{-x^2/2\sigma^2} \, dx + \int_{+1}^{\infty} e^{-x^2/2\sigma^2} \, dx \right].$$

$$= \frac{\sqrt{2}}{\sqrt{\pi} \sigma} \int_{+1}^{\infty} e^{-x^2/2\sigma^2} \, dx$$

$$= \frac{2}{\sqrt{\pi}} \int_{\frac{1}{\sqrt{2}\sigma}}^{\infty} e^{-x^2} \, dx$$

$$\equiv \text{erfc} \left(\frac{1}{\sqrt{2\sigma}} \right)$$

where $\text{erfc}(x)$ is the complementary error function and we again note that the average of the error term is zero. Thus

$$p_{\text{error}} = \text{erfc} \left(\sqrt{\frac{N}{2P}} \right).$$

(2.15)

Figure 11: We compute the probability in the tail of the Gaussian. From Hertz, Krogh and Palmer 1991.

For $N/P \gg 1$ the complementary error function may be approximated by an asymptotic closed form given by

$$p_{\text{error}} \simeq \frac{2}{\sqrt{\pi} \sqrt{N}} \frac{P}{N} e^{-N/2P}$$

(2.16)

so that to leading order

$$\log\{p_{\text{error}}\} \simeq -\frac{N}{2P} - \log\{\frac{N}{P}\}.$$

(2.17)

Now NP is total number of "bits" in the network. Suppose only less than one bit can be in error. Then we equate probabilities of correct to within a factor of one bit, or $1/(NP)$. Thus

$$1 - p_{\text{error}} \geq 1 - \frac{1}{NP}$$

(2.18)
or
\[\log \{ p_{\text{error}} \} < - \log \{ NP \}. \] (2.19)

Thus
\[- \frac{N}{2P} - \log \{ \frac{N}{P} \} < - \log \{ NP \} \] (2.20)
or
\[- \frac{N}{2P} < -2 \log \{ P \} \] (2.21)
so
\[P < \frac{1}{4} \frac{N}{\log \{ P \}}. \] (2.22)

Since \(P \) scales sublinearly with \(N \), we can iterate to write
\[P < \frac{1}{4} \frac{N}{\log \{ N \}}. \] (2.23)

Thus we see that an associate memory based on a recurrent Hopfield network stores a number of memories that scales more weakly than the number of neurons if one cannot tolerate any errors upon recall. Keep a mind that a linear network stores only one stable state, e.g., an integrator state. So things are looking good.

This is a worst case analysis that holds in the limit of \(N \to \infty \). More typically we want to store states with a fixed, nonzero albeit small error rate. We will explore this possibility next and see if the scaling among \(P \) and \(N \) changes.