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3 Recurrent neuronal networks: Associative mem-

ory II

3.1

We saw that an associate memory based on a recurrent Hopfield network stores a
number of memories that scales more weakly than the number of neurons if one
cannot tolerate any errors upon recall. The form of the feedback bears resemblance
to CA2 in hippocampus and to piriform cortex. We now review the situation when
a fixed, nonzero error rate is tolerated.

Figure 1: The Hopfield recurrent network. From Hertz, Krogh and Palmer 1991 following Hopfield 1982

3.2 Energy description and convergence

The following notes were abstracted from Chapter 2 of ”Introduction to the Theory
of Neural Computation” (Addison Wesley, 1991) by Hertz, Krogh and Palmer.

One of the most important contributions of Hopfield was to introduce the idea of
an energy function into neural network theory. For the networks we are considering,
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Figure 2: The anatomy of recurrent feedback in piriform (olfactory) cortex. From Haberly 1985

the energy function E is

E = −1

2

N∑
ij;i 6=j

WijSiSj . (3.3)

The double sum is over all i and all j. The i = j terms are of no consequence because
S2
i = 1; they just contribute a constant to E, and in any case we could choose Wii

= 0. The energy function is a function of the configuration Si of the system, where
Si means the set of all the Si’s. Typically this surface is quite hilly.

The central property of an energy function is that it always decreases (or remains
constant) as the system evolves according to its dynamical rule. Thus the attractors
(memorized patterns) are at local minima of the energy surface.For neural networks
in general an energy function exists if the connection strengths are symmetric, i.e.,
Wij = Wji. In real networks of neurons this is an unreasonable assumption, but it
is useful to study the symmetric case because of the extra insight that the existence
of an energy function affords us. The Hebb prescription that we are now studying
automatically yields symmetric Wij’s.

For symmetric connections we can write the energy in the alternative form

E = −
N∑

(ij)

WijSiSj + constant (3.4)

where (ij) means all the distinct pairs of ij, counting for example ”1,2” as the same
pair as ”2,1”. We exclude the ii terms from (ij); they give the constant. It now is
easy to show that the dynamical rule can only decrease the energy. Let S ′i be the
new value of Si for some particular unit i:

S ′i = sgn

 N∑
j 6=1

WijSj

 . (3.5)

Obviously if S ′i = Si the energy is unchanged. In the other case S ′i = −Si so, picking
out the terms that involve Si

E ′ − E = −
N∑
j 6=i

WijS
′
iSj +

N∑
j 6=i

WijSiSj (3.6)
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= 2Si
N∑
j 6=i

WijSj.

This term is negative from the update rule. Thus the energy decreases every time
an Si changes, as claimed.

Figure 3: A and B are the energy landscape for a model with symmetric W. C corresponds to an asymmetric
W, for which the stem can drift or have limit cycles. From Hertz, Krogh and Palmer 1991.

The idea of the energy function as something to be minimized in the stable
states gives us an alternate way to derive the Hebb prescription. Let us start again
with the single-pattern case. We want the energy to be minimized when the overlap
between the network configuration and the stored pattern ξi is largest. So we choose

E = − 1

2N

P∑
k=1

(
N∑
i=1

Siξ
k
i

)2

. (3.7)

Multiplying this out gives

E = − 1

2N

P∑
k=1

(
N∑
i=1

Siξ
k
i

) N∑
j=1

Sjξ
k
j

 (3.8)

= −1

2

N∑
i 6=j

(
1

N

P∑
k=1

ξki ξ
k
j

)
SiSj

which is exactly the same as our original energy function if Wij is given by the Hebb
rule. This approach to finding appropriate Wij’s is generally useful. If we can write
down an energy function whose minimum satisfies a problem of interest, then we
can multiply it out and identify the appropriate strength Wij from the coefficient of
SiSj.

3.3 The issue of spurious attractors

The following notes were abstracted from Chapter 2 of ”Introduction to the Theory
of Neural Computation” (Addison Wesley, 1991) by Hertz, Krogh and Palmer.

We have shown that the Hebb prescription gives us (for small enough P ) a
dynamical system that has attractors – local minima of the energy function – for
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the desired states ~ξk. These are sometimes called the retrieval states. But we
have not shown that these are the only attractors. And indeed there are others, as
discovered by Dani Amit, Hannuck Gottfried and Hiam Sompolinsky in 1985.

First of all, the reversed states −~ξk are minima and have the same energy as
the original patterns. The dynamics and the energy function both have a perfect
symmetry, Si ↔ – Si ∀ i. This is not too troublesome for the retrieved patterns; we
could agree to reverse all the remaining bits when a particular “sign bit” is –1 for
example.

Second, there are stable mixture states ~ξmix, which are not equal to any single
pattern, but instead correspond to linear combinations of an odd number of patterns.
The simplest of these are symmetric combinations of three stored patterns with
components:

ξmixi = sgn(±ξ1
i ± ξ2

i ± ξ3
i ) . (3.9)

All 23 = 8 sign combinations are possible, but we consider for definiteness the case
where all the signs are chosen as +’s. The other cases are similar. Observe that
on average ξmixi has the same sign at ξ1

i three times out of four; only if ξ2
i and ξ3

i

both have the opposite sign can the overall sign be reversed? So ξmixi is Hamming
distance N/4 from ξ1

i , and of course from ξ2
i and ξ3

i too; the mixture states lie at
points equidistant from their components. This also implies that

∑
i ξ

1
i ξ
mix
i = N/2

on average. To check the stability pick out the three special states with k = 1, 2,
and 3, still with all + signs, to find:

µmixi =
1

N

N∑
j=1

∑
k=1

ξki ξ
k
j ξ

mix
j (3.10)

=
1

2
ξ1
i +

1

2
ξ2
i +

1

2
ξ3
i + cross− terms .

Thus the stability condition is satisfied for the mixture state. Similarly 5, 7, ...
patterns may be combined. The system does not choose an even number of patterns
because they can add up to zero on some sites, whereas the units have to have
nonzero inputs to have defined outputs of ±1.

Third, for large P there are local minima that are not correlated with any finite
number of the original patters ~ξk.

3.4 The phase diagram of the Hopfield model

The following notes were abstracted from Chapter 2 of ”Introduction to the Theory
of Neural Computation” (Addison Wesley, 1991) by Hertz, Krogh and Palmer.

A statistical mechanical analysis by Amit, Gottfried and Sompolinsky (1985)
shows that there is a crucial value of P/N where memory states no longer exist. A
numerical evaluation gives

αC ≡
P

N
|critical ≈ 0.138 . (3.11)

The jump in the number of memory states is considerable: from near-perfect recall
to zero. This tells us that with no internal noise we go discontinuously from a very
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good working memory with only a few bits in error for α < αC to a ”useless” memory
system for α > αC .

Figure 4: The phase diagram of the Hopfield model. From Hertz, Krogh and Palmer 1991, following Amit,
Gutfreund and Sompolinsky 1985.

The phase diagram for the Hopfield model delineates different regimes of be-
havior in the V ariance−α plane (variance is σ2 in our notation, but the statistical
mechanics literature uses T for temperature). There is a roughly triangular region
where the network is a good memory device, as indicated by regions A and B of the
embedded figure. The result corresponds to the upper limit of αC on the α axis,
while the critical variance TC = 1 for the P � N case sets the limit on the variance
axis. Between these limits there is a maximum variance or maximum load defined
by a phase-transition line. As V ariance→ 1, αC(T ) goes to zero like (1− T )2.

Figure 5: The error rate upon retrieval for variance, T = 0. From Hertz, Krogh and Palmer 1991, following
Amit, Gutfreund and Sompolinsky 1985.

In region C of the phase diagram the network still turns out to have many stable
states, called spin glass states, but these are not correlated with any of the patterns
ξki . However, if T is raised to a sufficiently high value, into region D, the output of
the network continuously fluctuates with 〈Si〉 = 0.

Regions A and B of the phase diagram both have the desired retrieval states,
beside some percentage of wrong bits, but also have spin glass states. The spin
states are the most stable states in region B, lower in energy than the desired states,
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whereas in region A the desired states are the global minima. For small enough α
and V ariance there are also mixture states that are correlated with an odd number
of the patterns as discussed earlier. These always have higher free energy than the
desired states. Each type of mixture state is stable in a triangular region (A and B),
but with smaller intercepts on both axes. The most stable mixture states extend to
0.46 on the V ariance axis and 0.03 on the α axis (a subregion of A).

3.5 Can we relate stable states to a task?

The previous data by Carandini and Harris implies states, but the states were tied
to ongoing sensory input. Can we tie states to a task that is is ongoing, such as a
memory task, where the external cues were removed? This is captured by the delay-
to-match task of Joaquin Fuster; we show a more recent incarnation by Yasushi
Miyashita. The monkey is asked to remember a picture and then, after a delay
without visual input, compare a new picture with the old picture. The monkey
signals if the two are part of a matched set.

Figure 6: Delayed match after sample task in monkey recording from IT cortex. From Sakai and Miyashita 1991

The spike rate of different neurons in inferiotemporal cortex cortex are measured
while the monkey is performing this task. Critically, some neurons go up in their
firing rate while others go done in rate. An interested observation is that activity
continues throughout the period of the delay, for which there is no stimulus. This
can occur for 20 seconds or more, i.e., one to two order of magnitudes longer than
the integration time of neurons. We take this as evidence for sustained activity
based on neuronal interactions as the recordings are in regions that appear heavily
interconnected. - Further, with one exceptional case found so far, individual neurons
do not show multistability.

These experiments also addressed an issue of coding. The visual patterns must
be represented as a state, i.e., a pattern of activation across the neurons. Are these
patterns statistically independent of each other, i.e., are their cross-correlations of
order 1/

√
N? Miyashita addressed this by looking at the likelihood of a neuron

firing in response to different visual patterns. Interestingly, he found that the pat-
terns of neuronal firing are related to the order of presentation of the visual images
during training. Imaged next in sequence tend to have correlated firing patterns;
the autocorrelation for five neurons decays to 1/e after three patterns,
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Figure 7: Overlap of firing of two neurons for the fixed sequence for patterns used for training. The Correlation
is shown for 5 different cells. From Miyashita 1988

In a theoretical work that followed the experimental correlation length of 3 to 4,
close to experiment, is found (Amit, Brunel and Tsodyks 1994)by adding a correla-
tion term to the Hebbian learning rule, i.e.,

Wij =
1

N

P∑
k=1

ξki ξ
k
j +

a

N

P∑
k=1

ξki ξ
k+1
j . (3.12)

where a < 1; a = 0.5 was used in the published simulations.

3.6 Can we manipulate a stable state?

First: a short digression on optical approaches to neurotechnology

Recorded neuronal activity is not necessarily from brain regions that are part of
the pathway that drives a task. While stimulation of one or a cluster of neighboring
neurons has been shown to bias behavior in regions that map sensory stimuli to the
cortical mantle, or map motor output, one can ask if manipulating a randomly rep-
resented state can lead to a change in behavior. Such an experiment was performed
by Michael Hausser and colleagues. They recorded from neurons in hippocampus
that responded to locations all along a virtual linear track. They selected on one
location to focus their interest and stacked the deck by asking the mouse to lick at
this location on the track, designated the reward location. Thus a readily observable
behavior was linked to a place.

Figure 8: Set up of virtual record and stimulation task. From Robinson, Descamps,Russell, Buchholz, Bicknell,
Antonov, Lau, Nutbrown, Schmidt-Hieber, Hausser, 2020.
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Hausser demonstrated that cells were excited at all phases along the virtual
track. And that he could target cells for stimulation. Thus he could drive a state,
more than less.

Figure 9: Baseline physiology of virtual record and stimulation task. From Robinson, Descamps,Russell, Buch-
holz, Bicknell, Antonov, Lau, Nutbrown, Schmidt-Hieber, Hausser, 2020.

During a test trial, Hausser stimulated the cells that responded at the place
on the virtual track that the animal drank the reward, but during an earlier part
of the run. He found that, indeed. stimulation led to licking . It was as though
the animal thought it was at the reward location, although it was elsewhere. All
this is consistent with, but not a strong demonstrartion of, attractor networks. Yet
we are still in need of experiment that probes the representation in the brain as it
discriminated among a multitude of attractors.

2

Figure 10: Stimulating about ten neurons normally active at the reward zone leads to enhanced licking at the
time of stimulation. From Robinson, Descamps,Russell, Buchholz, Bicknell, Antonov, Lau, Nutbrown, Schmidt-
Hieber, Hausser, 2020.

3.7 Noise and spontaneous excitatory states as a model for
epilepsy

It is worth asking if, by connection with ferromagnetic systems, rate equations of the
form used for the Hopfield model naturally go into an epileptic state of continuous
firing, but not necessarily with every cell firing. Epilepsy typically followed a loss or
reduction in inhibition, so that a particularly simple model is a network with only
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excitatory connections.This exercise also allows us to bring up the issue of fast noise
(variance) that is uncorrelated from neuron to neuron.

Figure 11: The onset of epilepsy recorded in the human brain with indwelling surface electrodes. From Hamer,
LuEders, Knake, Fritsch, Oertel and Rosenow 2003

We consider N binary neurons, with N >> 1, each of which is connected to all
other neighboring neurons. For simplicity, we assume that the synaptic weights Wij

are the same for each connections, i.e., Wij = W0. Then there is no spatial structure
in the network and the total input to a given cell has two contributions. One term
from the neighboring cells and one from an external input, which we also take to be
the same for all cells and denote Iext. Then the input is

µi = W0

N∑
j=1

Sj + Iext. (3.13)

The energy per neuron, denoted εi, is then

εi = −Si µi (3.14)

= −Si W0

N∑
j=1

Sj − Si I
ext

The insight for solving this system is the mean-field approach. We replace the sum
of all neurons by the mean value of Si, denoted < S >, where

< S > =
1

N

N∑
j=1

Sj. (3.15)

so that
εi = −Si (W0N < S > + Iext). (3.16)

We can now use the expression for the value of the energy in term of the average
spike rate, < S >, to solve self consistently for < S >. We know that the average
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rate is given by a Boltzman factor over all of the Si. Thus

< S > =

∑
Si=±1 Si e

−εi/kBT∑
Si=±1 e−εi/kBT

(3.17)

=

∑
Si=±1 Si e

Si(W0N<S>+Iext)/kBT∑
Si=±1 eSi(W0N<S>+Iext)/kBT

=
e−(W0N<S>+Iext)/kBT − e(W0N<S>+Iext)/kBT

e−(W0N<S>+Iext)/kBT + e(W0N<S>+Iext)/kBT

= tanh

(
W0N < S > +Iext

kBT

)
.

where we made of the fact that Si = ±1. This is the neuronal equivalent of the
famous Weiss equation for ferromagnetism. The properties of the solution clearly
depend on the ratio W0N

kBT
, which pits the connection strength W0 against the noise

level T/N . We also see how the input-output function tanh{x} naturally arises.

Figure 12: The graphical solution to the activity, denoted x rather than < S > in the figure.

• For W0N
kBT

< 1, the high noise limit, there is only the solution < S >= 0 in
the absence of an external input h0.

• For W0N
kBT

> 1, the low noise limit, there are three solutions in the absence
of an external input h0. One has < S > = 0 but is unstable. The other two
solutions have < S > 6= 0 and must be found graphically or numerically.

• For sufficiently large |Iext| the network is pushed to a state with < S >=
sgn(Iext/kBT ) independent of the interactions.

We see that there is a critical noise level for the onset of an active state and that
this level depends on the strength of the connections and the number of cells. We
also see that an active state can occur spontaneously for W0N

kBT
> 1 or T < W0N

kB
.

This is a metaphor for epilepsy, in which recurrent excitatory connections maintain
a spiking output (although a lack of inhibition appears to be required as a seed).
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