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Ring attractors are a class of recurrent networks hypothesized to underlie the representation
of heading direction. Such network structures, schematized as a ring of neurons whose
connectivity depends on their heading preferences, can sustain a bump-like activity pattern
whose location can be updated by continuous shifts along either turn direction.We recently
reported that a population of fly neurons represents the animal’s heading via bump-like
activity dynamics.We combined two-photon calcium imaging in head-fixed flying flies with
optogenetics to overwrite the existing population representation with an artificial one,which
was then maintained by the circuit with naturalistic dynamics. A network with local
excitation and global inhibition enforces this unique and persistent heading representation.
Ring attractor networks have long been invoked in theoretical work; our study provides
physiological evidence of their existence and functional architecture.

S
tudies of neural circuits near the sensory
periphery have produced deep mechanistic
insights into circuit functions (1, 2). How-
ever, it has beenmore challenging to under-
stand circuit functions in central brain regions

dominated by recurrent networks, which often
produce complex neural activity patterns. These
dynamics play a major role in shaping cognitive
functions (3–7) , such as themaintenance of head-
ing information during navigation (8–10). A head-
ing representation must be unique (because an
animal can face only one direction at a given
time) and persistent (to allow an animal to keep
its bearings in darkness), yet must allow updating
thatmatches themagnitude and speed of heading
changes expected from the animal’s movements.
Theoretically, this can be accomplished by ring
attractor networks (11–14), wherein the posi-
tion of a localized subset of active neurons in a
topological ring represents the animal’s heading
direction. However, whether the brain uses these
hypothesized networks is still unknown (8, 15).
A recent study reported that a population of
neurons, called E-PG neurons (Fig. 1, C and D;
see supplementarymaterials for nomenclature),
in the Drosophila melanogaster ellipsoid body
(EB) appears to use bump-like neural activity dy-
namics to represent the animal’s heading in
visual environments and in darkness (16, 17). Here,
we establish essential properties of the network
that enables this representation.
We first determined whether the E-PG popu-

lation activity bump tracks the fly’s heading direc-
tion relative to its visual surroundings during
tethered flight (Fig. 1 and fig. S1). We used two-
photon imaging with the genetically encoded cal-
cium indicator GCaMP6f (18) to record dendritic
calcium activity of the entire E-PG population in
the EB while the fly was flying in a virtual-reality
LED arena. The azimuthal velocity of the visual

scene was proportional to the fly’s yaw velocity
(Fig. 1, A and B). As with walking flies (16), E-PG
population activity during flight was organized
into a single bump, whether the visual scene con-
tained a single bar (fig. S1B) or a more complex
pattern (Fig. 1G). The activity bump closely tracked
the fly’s heading in flight (Fig. 1K) and persisted
in darkness (Fig. 1H). However, unlike in walking,
the activity bump seldom tracked the fly’s motor
actions in darkness (Fig. 1, H and K, and fig. S1C),
potentially because tethering deprives the fly of nor-
mal sensory feedback about its rotational move-
ments from its halteres (19). Although the location
of the activity bump eventually drifted in some
flies, the bump’s movement was, on average,
uncorrelated to the animal’s turning move-
ments in darkness (Fig. 1K). These findings
suggest that the representation of heading in
the E-PG population has intact, visually driven
dynamics as well as persistence, but is largely
uncoupled from updating by self-motion cues
during tethered flight.
To test whether the fly’s compass network

enforces a unique bumpwithin the EB, we took
advantage of the relative persistence of the visually
evokedactivity bump indarkness, andaskedwheth-
er this bump could coexistwith an “artificial” bump
of activity. We used localized optogenetic stimula-
tion to create artificial activity bumps in different
locations within the E-PG population. Using a
transgenic fly line in which E-PG neurons co-
expressedCsChrimson (20) andGCaMP6f,weused
alternating two-photon laser scan lines of excita-
tion (higher laser intensity) and imaging (normal
laser intensity) to monitor changes in E-PG pop-
ulation dynamics in response to an optogeneti-
cally created spot of local activity (Fig. 2, A and B,
and fig. S2, A and B). By varying the intensity of
stimulation light delivered to the target location,
we could create bumps of increased calcium ac-
tivity (Fig. 2, C toF, andmovie S1). As thenewbump
formed, activity at the previous location began
to decline and eventually disappeared (Fig. 2D)
without significantly perturbing the fly’s behavior
(but see fig. S2E).When the optogenetic excitation

was terminated, the amplitude of the artificially
created bump settled at levels typically evoked by
sensory stimuli and did not disappear; it either
stayed in the induced location for several sec-
onds (fig. S2F) or slowly drifted away (see below)
(Fig. 3).
The bump’s uniqueness may arise through ei-

ther recurrent mutual suppression or an indirect
mechanism whereby strong bump activity in the
EB functionally inhibits feedforward sensory in-
puts to other E-PG neurons. To discriminate be-
tween these alternatives, we simultaneously excited
two locations on the EB ring. A reference location
was excited at a fixed laser power, and a second,
spatially offset location was excited at increasing
levels of laser power (fig. S2G and movies S3 to
S5). We could always suppress the reference
bump by increasing laser power at the second
location above a certain threshold, consistent
with mutual suppression.
Recurrent suppression can ensure a unique

activity bump through a simple winner-take-all
(WTA) circuit (fig. S3A). However, an animal’s
representation of its angular orientation should
favormore continuous updates based on turning
actions. Such gradual, ordered drift to nearby
locations would be more consistent with contin-
uous, or ring, attractor models (fig. S3, B to D).
We therefore examined changes in the location
of an artificially created bump after the stabili-
zation of its peak activity at the “natural” level.
The experiments were performed in darkness to
untether the bump from any potentially lingering
visual input (Fig. 3). If EB dynamics were driven
by a WTA network, bumps would be expected
to disappear at times and to jump to random
distant locations (fig. S3E). In contrast, the bump
drifted gradually around the EB (Fig. 3, B and
D, andmovie S6); this finding suggests that the
fly’s heading representation is updated through
functionally excitatory interactions between neigh-
boring E-PG neurons, consistent with a ring
attractor model. These observations together
rule out the possibility that network dynamics
in darkness result purely from cell-intrinsic me-
chanisms (21, 22) or slowly decaying visual input.
Most important, direct manipulation of E-PG
neuron activity changed the network state, which
implies that E-PG neurons do not merely mirror
dynamics occurring in a different circuit, but are
themselves an important component of the ring
attractor (23).
We next aimed to dissect the effective con-

nectivity pattern underlying ring attractor dy-
namics in the E-PG population. A wide range of
network structures can, in principle, implement
ring attractors (11, 13, 14, 24, 25). We focused our
efforts to a model space between two extreme net-
work architectures that are analytically solvable:
(i) a “globalmodel” based on global cosine-shaped
interactions (fig. S3B) (11, 13, 26) and (ii) a “local
model” based on relatively local excitatory inter-
actions (fig. S3D and supplementary text) (24, 27) .
Under constraints of a fixed bump width of 90°
to match physiological observations (Fig. 1J) and
an assumption of effectively excitatory visual in-
put without any negative bias, bothmodels could
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explain the basic properties of bump dynamics,
including its uniqueness and its persistence in
darkness. We therefore probed the network’s re-
sponse to more artificial conditions, such as
abrupt visual stimulus shifts.
We first examined experimentally how the E-PG

population responded to unnatural, abrupt visual
shifts. Depending on the distance of the shift, the
E-PG bump either “flowed” continuously (shorter
shift distances; Fig. 4, A and C, andmovies S7 and
S8) or “jumped” to the new location (longer shift
distances; Fig. 4, B and C, and movie S9) (16). In
simulations, both models predicted a mixture
of jump and flow responses, depending on the
strength andwidth of the abruptly shifting visual
input (Fig. 4D, fig. S4A, and supplementary text).
For example, weakwide input induced flows and
strongnarrow input evoked jumps (Fig. 4D).How-
ever, the jump-flow balance predicted by the two

models differed and was more consistent with
the local model in several aspects (Fig. 4D and
fig. S4A). First, the visual input strength we in-
ferred fromnormal conditions wasmuchweaker
than requiredby the globalmodel for bump jumps
(fig. S1D). Second, the global model required a
much-wider-than-normal range of visual input
strengths to explain jumps at multiple distances
(Fig. 4D, fig. S1D, and fig. S4A). Third, using pa-
rameters consistent with the rest of our findings,
we could reproduce the jump-flow ratio observed
in Fig. 4C with the local model but not with the
global model (fig. S4B).
To obtainmore concrete evidence, we compared

model predictions to experimentally observed
bump dynamics, under conditions in which input
strength, polarity, and shift distance were control-
led through optogenetic stimulation. To simulate
moderate and large input shift distances, we se-

quentially stimulated two small regions in the EB—
each with an angular width of 22.5°—separated
by either 90° or 180° (Fig. 4, E to G,movie S10, and
fig. S4, C to E). We then varied the stimulation
laser power to detect the threshold required for the
bump to jump (Fig. 4E). The laser power required
to elicit a jump was not significantly different be-
tween the two different shift distances, favoring
the local model (Fig. 4F). We then inferred the
strength of input to the network by comparing the
amplitude of the optogenetically evoked bump to
natural bump amplitudes in darkness. The opto-
genetic input strength required to induce jumps
was smaller than the global model’s prediction
but matched that of the local model (Fig. 4G)
and the range of the inferred visual input strength
under normal conditions (fig. S1D, fig. S4, D and
E, and movie S11). Finally, when we tested inter-
mediate models that lie between the extremes of
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Fig. 1. E-PG neurons encode body orientation relative to the visual world
during tethered closed-loop flight. (A) Setup schematic. (B) Close-up of
tethered flying fly. (C) Central complex. (D) Dendrites of each E-PG neuron
innervate wedge-shaped segment of EB; axons project to corresponding
glomeruli in PB and Gall. (E) Averaged calcium image of dendritic processes of
entire E-PG population segmented into 16 regions of interest (ROIs).
(F) Position (PVAdirection) and strength (PVA amplitude) of bumpobtained by
summation of 16 vectors whose lengths represent magnitude of fluorescence
transients (DF/F0). (G) GCaMP6f fluorescence transients in E-PG dendrites
during tethered flight in complex visual scene.Top: Visual pattern at sample

time points. Second row: Sample frames of calcium imaging.Third row: DF/F0
of 16 ROIs. Grayscale band denotes PVA amplitude; red line is PVA estimate.
Fourth row: PVA estimate and heading (blue). Bottom: Same as fourth row, but
unwrapped. (H) Fluorescence transients in darkness. (I) Number of activity
bumps in E-PG population across flies (n = 10) for three visual conditions.
Each dot with vertical line indicates mean ± SEM for each fly. Population mean
± SEM is shown at left of each scatterplot. (J) Bump width measured by full
width at half maximum. (K) Correlation between estimated bump position and
heading. (L) Angular offset between PVA estimate and scene orientation.
Whisker plots, mean ± circular SD.
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Fig. 2. E-PG neurons compete by mutually suppressing each other
through recurrent connections. (A) Schematic of simultaneous calcium
imaging and localized optogenetic stimulation. (B) Analysis procedure for
collected images. (C) Top: Temporal profile of two-photon optogenetic
stimulation. Bottom: Three sample frames (smoothed with Gaussian
filter). Yellow rectangle with arrow, stimulus OFF; red rectangle with arrow,
stimulus ON. (D) Time course of calcium dynamics from example fly (left)
and population (right). Gray background, optogenetic stimulation period;
gray lines, individual trials (left) or flies (right). Top: Mean F of stimulated

ROIs. Bottom: Mean of the four most active ROIs outside optogenetically
stimulated area before stimulation. Thick colored lines and colored shaded
area denote mean and SEM, respectively. (See fig. S2C for control
experiment.) (E) Distribution of fluorescence ratio during and before
stimulation. P < 0.001, Wilcoxon rank sum test between stimulated (red)
and outside stimulation (blue) areas. (See fig. S2D for control experiment.)
(F) Suppression by optogenetic stimulation. The x axis indicates distance
from stimulation position to existing bump; P < 0.001, t test for each distance.
Limited sample size prevented a statistical test for p/8.

Fig. 3. Drift of the ac-
tivity bump. (A) Sample
frames. Same convention
as Fig. 2C. (See movie S6.)
(B) Temporal evolution
of bump position
(PVA) over time. Gray
background denotes
stimulation period. Top:
Original bump positions of
individual trials (colored
thin lines are PVA
estimates). Second row: Distance between bump and stimulation position.
Red line and shade denote mean ± SEM. Bottom: Population mean ± SEM
(red) across flies (gray lines). (C) Same as (B), without CsChrimson. (D)
Distribution of bump drift distances after the end of optogenetic stimulation.
Colored lines represent different conditions. P = 0.324 between gray and

blue, P < 0.0001 between blue and red, P < 0.0001 between gray and
red; two-sample Kolmogorov-Smirnov tests without multiple-comparisons
correction. Distributions are skewed toward short drift distances. Inset
shows fraction of trials with drifting bump in each fly (P = 0.0008, t test
compared to 0.5).
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the local and global models (fig. S4, H and I,
and supplementary text), we found that anymodel
that exhibited the observed jumps in response to
aweak 22.5°-wide input had narrow connectivity
profiles (fig. S4I). All these observationswere once
again consistent with the local model.
Inmammals, heading representations are thought

tobedistributedacrossmultiple neural populations
and multiple brain areas (8). In Drosophila as
well, the compass system likely involves multiple
cell types, including neurons in the protocerebral
bridge (PB) (17, 23). Further, occasional changes
observed in the dynamics suggest network modu-
lation by other factors not yet known. For exam-
ple, we sometimes observed sudden changes in
E-PG dynamics, as when the amplitude of the
sensory-evoked activity bump changeddepending
onwhether or not the tethered fly was flying (see
supplementarymaterials) and, occasionally, during
flight [population vector average (PVA) amplitude
plots in Fig. 1, G and H, Fig. 4, A and B, and fig.
S1B]. Nonetheless, the E-PGpopulation provides a

powerful physiological handle on the internal
representation of heading (16): a single activity
bump moving through topographically arranged
neurons. The experimental approach this enabled
provides one avenue for investigating which of
multiple populations are key circuit components
of a computation and which simply read out the
results of that computation. We found that the
artificial bump created by directly manipulating
E-PG population activity displays natural dynam-
ics, which indicates that these neurons are a key
component of the heading circuit.
Our finding that the uniqueness of the E-PG

activity bump is ensured via global competition
strengthens the conclusion that this population
encodes an abstract internal representation of the
fly’s heading direction (16). Such abstract repre-
sentations permit an animal to untether its actions
from the grasp of its immediate sensory environ-
ment and thereby confer flexibility in both time
and behavioral use. Combining an analysis of arti-
ficially induced bump dynamics with theoretical

modeling allowed us to interrogate this recurrent
circuit architecture. We found that the effective
network connectivity profile was consistent with
ring attractor models characterized by narrow
local excitation and flat long-range inhibition.
This neural circuit motif of local excitation and
long-range inhibition is ubiquitous across many
brain areas and across animal taxa (28–31). Such
observations support the idea that common circuit
motifsmight be evolutionarily adapted to serve as
crucial building blocks of cognitive function.
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Fig. 4. Probing the connectivity profile of the ring attractor network.
(A) Example of bump “flow” in response to abrupt shift of vertical bar.
Same convention as Fig. 1G. Red dots are bump positions estimated from
Bayesian sampling method. (B) Bump “jump.” (C) Jump probability
increases with distance of visual input shift. Red line and shading denote
mean ± SEM. (D) Input-response phase diagrams. Top: Response of local
model (fig. S3D) to various input widths, strengths, and abrupt shift
distances. Bottom: Global model (fig. S3B). Note that the y axis increments
are different between the two models. Red lines denote input strength for
bump jump with narrow input, which is constant for the local model and

increases with shift distances for the global model. (E) Schematics of
stimulation protocol to detect the threshold input strength for bump jump in
response to narrow (22.5°) input. Two 22.5° areas were sequentially
stimulated. (F) Laser power required to make bump jump from the first
stimulation position (1 or 2) to a fixed second stimulation position (A or B).
P = 0.102, paired t test. (G) Input strength, estimated by normalized
bump amplitude, required for bump jump from fixed first stimulation position
to second stimulation position. Red dashed line denotes simulated threshold
of the local model. Solid dots are trials with first stimulation at position 1; open
dots are trials with first stimulation at position 2.
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MATERIALS AND METHODS 
 
Nomenclature   
E-PG neurons are variously referred to as eb-pb-vbo (32), EIP (33), PBg.b-EBw.s-gall.b (17), 
and EBw.s (16) neurons in the fly literature. Here, we follow a new convention agreed upon by a 
few research groups working in the central complex: E-PG, where E (Ellipsoid Body) before ‘-’ 
represents predominantly spiny and putatively postsynaptic processes, and P (Protocerebral 
Bridge) and G (Gall) after ‘-’ represent predominantly bouton-like and likely presynaptic 
processes. 
 
Fly stocks 
An optogenetic reagent, CsChrimson and the calcium indicator, GCaMP6f, were driven by split-
GAL4 (34, 35) SS00096, which was made by A. Jenett and anatomically characterized by T. 
Wolff in the Rubin lab and generously shared pre-publication. All calcium imaging experiments 
were performed on 4-6 day old female flies expressing fly codon-optimized UAS-GCaMP6f 
(18), the DNA for which was generously shared pre-publication by B. Pfeiffer, A. Wong, D. 
Anderson and G. Rubin. All optogenetic experiments were performed with 4-6 day old female 
flies generated by crossing split-GAL4 SS00096 with a recombinant of UAS-CsChrimson-
mCherry-tag (20) and UAS-GCaMP6f (18).  Flies were randomly picked from their housing 
vials for all experiments.  All flies were raised from the egg stage on standard cornmeal and 
soybean–based medium (36) with 0.2 mM all-trans-retinal (20). 
 
Fly preparation for imaging during head-fixed flight 
Flies were anaesthetized on a cold plate at 4oC before individual tethering. The front legs were 
removed to prevent the fly from pushing the fly-holder during imaging. The fly’s proboscis was 
pressed into its head capsule and immobilized with wax to minimize brain movement. The fly 
was placed in a brass sarcophagus and a UV curable adhesive was used to glue a pin on the back 
of the thorax at an angle perpendicular to the body axis using a micromanipulator. The fly was 
then positioned under a custom-designed stainless steel shim with a pyramidal shape similar to 
those previously used for tethered flying and walking fly experiments (37-39). For purely visual 
experiments, the back of the head capsule was kept nearly vertical to maximize exposure of the 
fly’s eyes to the surrounding LED arena (see below). For optogenetic experiments, the fly’s head 
was tilted upwards to compensate for depth-dependent light scattering by orienting the EB 
optimally with respect to the microscope’s focal plane. UV curable adhesive was used to fix the 
head under the shim. The cuticle at the top of the head was carefully removed using a dissection 
needle and forceps. Fat cells and trachea blocking the light path were removed. The fly holder 
(including the micromanipulator) was then transferred to the two-photon microscope and an LED 
arena was place around the fly (Fig. 1A). 
 
 
Visual stimulation 
Visual arena   
Visual stimuli were presented on a cylindrical LED display (40) spanning 330o in azimuth and 
60o in elevation that was vertically placed. The display was covered with a color filter and a 
diffuser as previously described (16, 37, 38). In all experiments, the horizontal rotational velocity 
of a visual scene was controlled using the difference between the left and right wingbeat 



amplitudes (∆WBA) (41). The wingbeat amplitude of each wing was computed online by 
analyzing images acquired with a camera, using custom built image analysis software written in 
MATLAB, similar to a previously described method (39). The image acquisition rate of the 
camera was 119.2 Hz. The flies’ wingbeat frequency was between 170-230 Hz. Thus, the 
camera’s exposure time allowed it to capture the moving shadow of 1 or 2 wingbeats. For 
closed-loop experiments, the gain was 7.63 o/s for each degree of ∆WBA, i.e. a ∆WBA of 43.26o 
would produce a full pattern rotation in 1 s. Air was puffed at the fly if it stopped flying. The 
fly’s behavior was recorded using a separate camera with a dedicated software. Acquisition of 
each frame was triggered by a TTL signal from the microscope frame trigger. 
  
Visual stimuli for closed-loop flying experiments   
We used three different visual stimuli (fig. S1A); condition 1, a bright vertical bar spanning 60o 
in elevation and 15o in azimuth; condition 2, a pattern containing several objects with unique 
features; condition 3, a dark scene with no bright pattern.  Each of 10 flies was placed at the 
center of the arena and each visual stimulus was presented for 20 s in closed-loop, with 10 
repetitions, for a total of 30 trials. To allow neural activity to adapt to each new pattern, the first 
4 s were discarded and only the last 15 s of each trial were used for further analysis. For each fly, 
condition 2 was presented for 60 s to allow the fly to adjust to a new environment. Then, ten 20 s 
trials of condition 2 were followed with 2 s of darkness between consecutive trials. Then, 60 s of 
condition 1 was again presented to allow the fly adjust to a new scene. Finally, ten 20 s trials of 
condition 1 and ten 20 s trials of condition 3 were alternated. 
 
    In order for the position of the dark “pattern” to be consistent with the other conditions, the 
accumulated wingbeat amplitude difference was measured and used to estimate the body 
orientation of the fly (condition 3), meaning that the dark “pattern” was under closed-loop 
control in the same way as for condition 1 and 2, but without any actual visual stimulus 
displayed. The angular position of the darkness scene was then recorded and used for further 
analysis. 
 
    In instantaneous visual shift experiments (visual jump experiments, Fig. 4, A and B), only 
condition 1 (one bar) and 3 (darkness) were used. In each trial, a bar (condition 1) was presented 
in closed-loop for 5 s, before its position was suddenly changed by either -150o, -120o, -90o, -60o, 
60o, 90o, 120o, or 150o. Closed-loop control of the bar position was then enabled for another 5 s 
(for a total of 10 s for each trial). The eight jump conditions were randomly permutated for each 
repeat, with a total of 8 repeats per fly. Condition 3 (darkness) was inserted after every 4 
jumping conditions. In total, there were 80 trials for each of 10 flies. 
 
    The position of the pattern, wingbeat amplitudes, wingbeat frequency, air-puffing signal, and 
two-photon frame trigger were all simultaneously collected using a custom software written in 
MATLAB that utilized data acquisition hardware. 
 
 
 
Two-photon calcium imaging   
Calcium imaging was performed using a custom built two-photon microscope (42). We used a 
40x objective (NA 1.0, 2.8mm WD) and a GaAsP photomultiplier tube. A chameleon Ultra II 



laser tuned to 930 nm was used as the excitation source with a maximum power of 15 mW at the 
sample. We used the same saline as in previous studies (16) with adjusted calcium concentration 
at 2.0 mM. We imaged the EB from 6-plane volumes (with an additional fly-back blank plane) at 
a rate of 7.8 Hz (256x256 resolution) with an equal spacing of 5 μm between individual scanning 
planes. For the high-powered anatomical scan (Fig. 1D), we used 1μm spacing over 150μm 
depth with 80mW. 
 
 
Two-photon optogenetic stimulation  
Scanning pattern during imaging-only periods   
A single two-photon laser source was used for both imaging and optogenetic stimulation, by 
temporally modulating the laser power (Fig. 2A).  Custom MATLAB software was written to 
modulate the beam profile, in which the laser power was set to 0 mW during forward scanning 
and to its normal power during backward scanning. Compared to recent developments of 
simultaneous two-photon imaging and stimulation (43, 44), this method does not require new 
hardware. The red-shifted channelrhodopsin, CsChrimson, expressed in E-PG neurons with the 
SS00096 driver line, was extremely sensitive to two-photon stimulation. With moderate scanning 
laser power (typically >4.5mW), the difference in dwell time (fig. S2A) from the sinusoidal 
scanning pattern of the resonant galvo mirrors and the different exposure frequencies from 
volume scanning were sufficient to bias activity in the recurrent EB network. To avoid such bias, 
an extremely low laser power (3 mW) was used for calcium imaging during the backward 
scanning phase, resulting in a relatively low signal to noise ratio due to the low two-photon laser 
intensity used for imaging. Without optogenetic stimulation, the mean laser power was 1.5 mW 
(even lines only at 3 mW). 
 
Complications of CsChrimson excitation   
The instantaneous laser power required to shift the bump to a desired EB position by optogenetic 
CsChrimson activation was different across the structure.  Potential sources of non-uniform 
efficiency may include inconsistent CsChrimson expression across neurons, depth-dependent 
laser scattering, different laser dwell times from the resonant galvo mirror, different exposure 
frequencies from volume scanning, and slightly tilted brain position. 80 mW was strong enough 
to create a bump anywhere in the EB, but as little as 15 mW was enough to activate the most 
superficial part of EB. 
 
Scanning pattern during imaging and simultaneous optogenetic stimulation 
To activate CsChrimson, the powerbox feature of ScanImage was applied only to the forward 
scanning phase (Fig. 2A).  For a single spot stimulus protocol, the instantaneous laser power was 
increased to 80 mW when the laser passed a small defined area of the imaging field. The length 
of each side of the rectangle-shape stimulated area was 14.6% of the x- and y-axis of the imaging 
area, covering 2.12% of the whole imaging area. The mean laser power for each focal plane was 
0.848 mW (80 mW x 0.0212 x 0.5 (odd lines only)), resulting in a mean scanning power of 
approximately 2.3 mW (1.5 mW + 0.8 mW). 
 
Activation of one position in the EB  
Before the start of optogenetic stimulation, a visual bar was presented to engage the fly in 
closed-loop control and to enhance bump activity.  The visual bar was removed at the onset of 



the optogenetic stimulation of one of eight positions in the EB (Fig. 2C).  The stimulation 
(instantaneous power 80 mW) was maintained for 1.047 s (100 frames) and then stopped.  There 
was no additional visual stimulus to avoid disturbing the optogenetically induced activity bump.  
Imaging was performed at a frame rate of 95.5 Hz, a volume rate of 13.64 Hz (6 imaging planes 
and a fly-back frame), and a resolution of 256x128.   
 
Measuring the behavioral effect of optogenetic bump shifting (fig. S2E)  
The stimulation protocol was the same as Fig. 2C, but with the following differences. The visual 
bar was not removed during stimulation but always presented under the fly’s closed-loop control. 
The temporal gap between consecutive trials were always larger than 7 seconds. The stimulation 
duration was 2.5s. 
 
Laser power vs fluorescence level  
The calcium response to various two-photon (TP) power levels was measured (fig. S2B). For 
calibration, trials in which flies were not flying were used, because responses were more 
stationary. The most superficial part of the EB was used for calibration. The same stimulation 
protocol as described in “Activation of one position” was used.   
 
Simultaneous activation of two positions   
The powerbox feature was used to modulate the laser power at two different positions in the EB 
(fig. S2G). These two positions were selected before the start of each session and fixed for each 
fly, with the criterion that comparable laser powers lead to optogenetic activation in either 
position. Fixed laser power (18.4 mW) was used for one position, and 18 different laser powers 
(evenly divided from 0 to 83 mW, 3 repetitions for each) were used for the other.  Imaging was 
performed at a 54.29 Hz frame rate, a 256x256 resolution, a 7.76 Hz volume rate (6 imaging 
planes plus a fly-back frame), and optogenetic stimulation applied for 100 frames (1.842 s). 
 
Consecutive activation of two positions   
Four narrow, wedge shaped stimulus profiles, each covering 22.5o, were designed to limit 
optogenetic stimulation to one angular wedge-width (17).  Protocol 1 (Fig. 4, E to G): The 
position of the four stimulation profiles, labeled as 1, 2, A and B, are shown in Fig. 4E. Profile 1 
or 2 was first used for ~2-3 s to position the bump. It was then turned off while profile A or B 
was activated for the next ~2-3 s. The transition from the first to the second profile was 
immediate, but the timing of the transition could not be precisely controlled due to technical 
limitations, resulting in varying stimulation durations. The stimulation power for profiles 1 and 2 
was pre-determined before a session at a setting high enough to capture the bump, and was kept 
constant throughout the session. The power for the second profile was manually adjusted for 
every trial to keep it near the threshold required to cause the bump to jump (fig. S4C). For 
example, if a given trial showed a successful jump at a given position, the power was slightly 
lowered for the next trial for that position. If the bump didn’t jump, the power was slightly 
increased for the next trial. Whether the bump jumped or not was subjectively determined during 
the experiment, but quantitatively assessed during subsequent analysis (see below). The number 
of repetitions was not predetermined. Sessions were terminated if flies stopped flying despite 
occasional air puffs, or if 40 or more trials were collected for each pair of profiles, whichever 
came first. To avoid bias, profiles 1 and 2 were always paired for a given 2nd stimulation power 
(fig. S4C). For example, if profile 1 was paired with profile A of 20 mW, then the next trial was 



profile 2 paired with the same profile A using the same power, 20 mW. We noticed that there 
was sometimes a slow fluctuation of the threshold power required for a jump, something that was 
controlled by this pairing strategy. Imaging was performed at a 54.29 Hz frame rate, a 256x256 
resolution, a 7.76 Hz volume rate (6 imaging planes plus a fly-back frame), and optogenetic 
stimulation was applied for 100 frames (1.842 s). Protocol 2 (fig. S4, D and E): The position of 
four profiles, labeled as 1, A, B, and C, are shown in Fig. 4D. The position of profile 1 was first 
stimulated for ~2-3 s to capture the bump. The profile was then turned off while one of three 
remaining profiles was stimulated for the next ~2-3 s.  
 
 
 
Data analysis  
We used MATLAB for data analysis. All errors and error bars shown are standard error of the 
mean (s.e.m.) unless indicated otherwise.  To avoid bias, no statistical methods were used to 
predetermine the power and the sample size.  All experiments (except the single spot optogenetic 
experiment: 13 flies) were performed until data from 10 flies was collected. All standard 
statistical tests were two-tailed tests unless indicated otherwise. 
 
Calculation of fluorescence changes  
The background noise level was predetermined by measuring the oscillatory noise from PMT. 
This level was then subtracted from all imaging data, and the data was half-rectified before 
further analysis. A running maximum intensity projection (MIP) of a volume (7 planes including 
a fly-back frame) at a given time was computed for each pixel. Then, 16 ROIs were manually 
assigned (Fig. 1E), as previously described (16). The number of wedges was selected based on 
the anatomically-characterized number of EB wedges. Next, time series for each ROI were 
obtained by taking the average of the fluorescence signal within the ROI at each point in time. 
For calcium imaging experiments without optogenetics, ∆F/F0 was computed using F0 as the 
mean of the lowest 10% of signals in each ROI. No further temporal smoothing was applied 
unless indicated otherwise.  For optogenetic stimulation experiments, the F was extremely low 
and noisy. Thus, we took the raw F (after MIP), but the signal was temporally smoothed using 
boxcar averaging over 21 planes (equivalent to 3 volumes) to increase SNR. 
 
 
 
Population vector average (PVA) and its amplitude for Fig. 1  
As a simple measure of the bump position and strength, the PVA was computed as the weighted 
average across EB wedges, with the weight determined by the fluorescence level (∆F/F0), and 
the vector determined by the position of each ROI in the EB (Fig. 1F).  The amplitude of the 
PVA was determined as the length of the average vector.  We used brewermap (S. Cobeldick, 
MathWorks file exchange) with color schemes from http://colorbrewer2.org/ to generate color 
maps for all PVA plots except for PVA amplitude, which we display in grayscale (Fig. 1G).  For 
display, either the visual cue position (for trials with a complex visual scene and trials with a 
single visual bar) or the virtual visual scene position (for trials in darkness) was offset by its 
median difference (circular distance) from the PVA.  The offset occasionally changed between 
trials for the same fly as reported in previous work (16). Note that the PVA amplitude varied 
over time. This variability was quantified by first normalizing PVA amplitude by dividing it by 



the mean PVA amplitude for each fly. The standard deviation of the normalized PVA amplitude 
across all trials from all 10 flies was then computed. The standard deviation was 0.4155 for the 
complex scene, 0.3390 for the one-bar scene, and 0.4482 for darkness. Input fluctuation may 
contribute to this variance, but the fluctuation was observed even if the fly was not flying in 
darkness (std = 0.3694), suggesting that input fluctuation alone may not fully explain PVA 
variability. EB network dynamics may be constantly modulated by other factors, including the 
fly’s internal state, perhaps through signals carried by neuromodulators. 
 
 
Calculation of the number of bumps  
For each frame, a bump was defined as any contiguous set of ROIs with ∆F/F0 greater than a 
threshold value (defined to be the mean + 1 s.d.; Fig. 1I). We considered two additional methods 
of identifying bumps, including (i) a mean threshold method, in which the mean ∆F/F0 over the 
entire trial and across ROIs was used as a threshold (mean method, fig. S1C, top), and (ii) a 
Bayesian sampling method (Bayesian, fig. S1C second row). Under the Bayesian sampling 
method, the fluorescence level (∆F/F0) was fit at each time point using a mixture of von Mises 
functions.  Two assumptions were imposed during fitting: 1) Temporal coupling, which ensures 
that consecutive time points are likely to have similar fits, thereby reducing abnormal 
discontinuities in bump position, and 2) Sparseness, which imposes a cost for larger numbers of 
bumps, thereby reducing overfitting.  We never found more than 2 bumps after fitting.  The 
number of bumps for each trial was calculated as the mean of the number of bumps over time.  
See the Supplementary Text for more details of the Bayesian sampling method. 
 
Calculation of the width of a bump 
For the calculation of the width of the bump (full width at half-maximum, or FWHM), we first 
excluded every time point with either zero bumps or more than one bump. Then, for each time 
point, the bump width was calculated as the angular distance between two points at which the 
amplitude was half of its peak value.  This was calculated from either raw data (Fig. 1J), or from 
the fit obtained from the Bayesian sampling method (fig. S1C third row). 
 
Standard deviation of difference 
PVA was offset to best match the orientation of the visual scene. Then, the standard deviation of 
the difference between PVA and the visual scene was calculated (fig. S1C bottom). 
 
 
Correlation analysis 
‘Unwrapped’ time series were first computed as a cumulative sum of all angular displacements 
(Fig. 1K).  Pearson’s correlation coefficients were then computed between two entire 
‘unwrapped’ time series. 
 
 
Offset between the estimated bump position and the pattern position 
For a given trial, the offset between the absolute (to the experimenter) scene position and the 
PVA estimate was calculated as the median circular distance between the two positions.  We 
then computed the angular average of this offset over all trials for each fly. Note that the visual 
arena, covering 330o, was mapped to 360o, as was the position of the scene.  In Fig. 1L, the error 



bar represents the circular s.d. (45) of offsets across trials. Data for the darkness condition was 
excluded as there was no significant correlation between the PVA and the estimated scene 
position. 
 
Analysis of bump jump vs. flow 
The dynamics of the activity bump in response to discontinuous movement of the visual stimulus 
(i.e., an abrupt visual input shift) were categorized as either jump or flow.  Trials in which the fly 
did not fly during the visual stimulus displacement (defined from 0.5s before to 2s after the 
visual stimulus displacement) were excluded from further analysis.  Then, each trial was 
analyzed using a Bayesian sampling method to fit data (see the Supplementary Text). Using this 
fit, the initial bump position was calculated as the circular mean of the bump positions between 
0.5s before and at the moment of the visual jump. If the bump positions of the next 4 consecutive 
time points were within 45o of the current one, the bump was considered to be continuous, 
meaning that the activity in the current and the following 4 time points was considered to be part 
of the same, continuous bump.  If this condition was met for the 2.5s after the visual stimulus 
jump, the trial was determined to exhibit a ‘bump flow’.  If this condition was not met, it was 
determined that a new bump was detected. However, to conclude that this newly detected bump 
had exhibited a jump, the new bump was traced backward in time toward the moment of the 
visual stimulus jump using the same continuity checking method (within 45o threshold for 4 
consecutive time points). If the new bump was created after the visual stimulus jump, then the 
trial was determined to exhibit a ‘bump jump’. Otherwise, the trial was discarded as a noisy trial. 
 
 
 
Analysis of single spot optogenetic stimulation 
To precisely determine the ROIs that were optogenetically stimulated, the same ROIs defined for 
images from even-line scans (imaging lines, Fig. 2C) were applied to images from odd-line scans 
(stimulation lines).  Because the baseline fluorescence of odd line scans is nearly zero, any ROIs 
with mean F (fluorescence level) higher than mean + 3 s.d of baseline were determined to be 
affected by optogenetic stimulation.  The number of ROIs affected by optogenetic stimulation 
varied from 2 to 4 depending on the position of the stimulation.  The mean F (raw fluorescence 
level, not ∆F/F0 because of the extremely low baseline F0) from even-line scans, i.e. imaging 
lines, of these ROIs was calculated over time.  The F of an existing bump before stimulation was 
estimated as the average of the maximum four ROIs outside the stimulated region immediately 
before the stimulation onset.  The number 4 was selected because the bump width defined by 
FWHM is between 3 (67.5o) and 4 (90o) ROIs (Fig.1).   Trials in which the existing bump 
overlapped with stimulated ROIs were excluded from further analyses.  For Fig. 2F, we 
computed the ratio of Fs between the last 0.475 s (50 frames) before and the last 0.475 s during 
optogenetic stimulation.  We separately computed this ratio using ROIs of the existing bump, 
and using ROIs of the stimulated area.  Because the distribution of the ratio is naturally skewed, 
we used a nonparametric statistical test (Wilcoxon rank-sum test).  The same analyses were 
performed for control flies (fig. S2D), whose genotype was the same as those flies used in Fig. 1.  
Finally, all trials were sorted by the absolute distance (Fig. 2G) between the center of an existing 
bump (the position of the ROI with maximum F before stimulation) and the center of the 
optogenetic stimulation (the position of the ROI with max F in images from odd-line scans). 
Then the same ratio calculated for Fig. 2F was used to plot Fig. 2G.  



 
 
 
Analysis of behavioral effect of optogenetic bump shifts (fig. S2E)  
To detect behavioral effects in optogenetic bump shifting experiments, trials with extensive 
turning before stimulation were excluded — specifically, trials with circular variance of scene 
orientation greater than 0.2 for 5 s before the initiation of optogenetic stimulation. Trials were 
also excluded if the fly stopped flying during this 5 s period or the 2.5 s period of stimulation. , 
Trials with an unsuccessful bump jump (as determined by the Bayesian sampling method, see 
above) were excluded. 47 trials were collected from 10 flies. Control trials were collected from 
the same flies. At the end of each optogenetic stimulation, the first 8-second segment with 
circular variance less than 0.2 was selected as a control trial, if it existed. If a new optogenetic 
stimulation began in the next 3s, it was excluded. The end of this 8-second segment was aligned 
to 0 s in fig. S2E. 98 control trials were collected from 10 flies. The mean turning amounts 
between 1 and 2.5 s after the initiation of optogenetic stimulation were used for statistical tests. 
For the x-axis of the bottom right plot in fig. S2E, the difference of mean bump positions (-1.5 – 
0 s vs 1 – 1.5 s) was calculated from an application of the Bayesian sampling method. For the y-
axis of the same plot, the visual bar position was used instead.  
 
 
 
Analysis of two-spot simultaneous stimulation in Fig. 2  
The ROI time courses in two simultaneously stimulated areas were compared across different 
power levels. The mean F profiles were normalized by the maximum F for each fly and 
combined to produce fig. S2G. 
 
 
Analysis of drift in Fig. 3 
To determine whether the bump stays at (or equivalently drifts from) or jumps away from the 
optogenetically stimulated position after the end of stimulation, the Bayesian sampling method 
(Supplementary Text) was applied to each trial in single spot optogenetic stimulation 
experiments (Fig. 2C).  If the number of bumps in a given trial was larger than 1 for the first 10 
frames after the end of stimulation, then it was determined either to be too noisy due to low SNR, 
or to be an unsuccessful bump shift by optogenetic stimulation.  Both cases were excluded from 
further analysis.  Trials with zero bumps at any time point between 0 and 1.5s after the end of 
stimulation were also determined to be noisy and excluded from analysis.  If there was only one 
bump for 1.5 seconds after the end of stimulation, the bump was determined to have stayed at or 
drifted from the stimulated position in that trial.  If the number of bumps was greater than 1, then 
the bump was determined to have changed its position abruptly.  We calculated the proportion of 
bumps that drifted (Fig. 3D inset).  The time course of bump position over time (Fig. 3B) was 
calculated as follows. The time course of each ROI was smoothed using a boxcar moving 
average method (21-frames or 3-volume span) to suppress the noise. Then, the PVA estimate 
was calculated at each time point (Fig. 3B top left). The PVA was shifted relative to the 
stimulation site, which was the mean PVA of the stimulated site from odd-line scans during the 
second half of the stimulation period (Fig. 3B bottom left). Finally, we computed the absolute 
value of this shifted PVA, and its mean value across trials (Fig. 3B top right). To generate the 



drift distribution in Fig. 3C, we discretized the 3 s duration after the end of two-photon 
stimulation into 0.5 s bins, and we calculated the mean PVA for each bin. The difference of 
PVAs between consecutive bins was collected across all trials and flies, and histograms were 
generated. For flies with CsChrimson, the slow off-kinetics of CsChrimson held the bump 
position closer to the stimulated area for approximately 0.5 s after the cease of stimulation. Thus, 
a separate histogram was generated by comparing the PVA of this period to the PVA for the last 
0.5 s of the stimulation period. 
 
 
 
Estimation of laser power threshold necessary to make the bump jump  
The goal of this analysis was to measure the power needed to make the bump jump from the 
initial position to a new position (Fig. 4E). Thus, we excluded all trials with non-jumping bumps 
between two consecutive optogenetic stimuli. To this end, the Bayesian sampling method 
(Supplementary Text) was used for the period between 0.5s before the start and 0.5s before the 
end of the second stimulus. If the bump flowed or stayed at the 1st stimulation position, the trials 
were excluded from further analysis.  Then, the Bayesian sampling method was applied for the 
period between 0.5s before and 1.5s after the end of the second stimulus. If the number of bumps 
was not 1 (noisy) or the fly did not fly during that period (the bump may not be stable), the trial 
was excluded from further analysis.  Trials with a clear jumping bump were used to estimate the 
threshold laser power for a jump.  For a given pair of stimulation positions (e.g., profiles 1 and 
A), the number of trials with a successful bump jump had to be greater than 2 to be included in 
the data. The mean of the minimum 2 laser powers was determined as the estimate of the 
threshold power necessary to make the bump jump (Fig. 4F).  
 
 
Estimation of input power using normalized bump amplitude  
Greater input power or laser power induces a larger bump amplitude during stimulation. Thus, 
input power can be estimated by comparing the amplitude of the stimulated bump to the 
amplitude of the normal bump in the absence of input (Fig. 4, D and G, fig. S4, B, E, G and I).  
The bump amplitude during stimulation was determined as the average bump amplitude during 
the last 0.5 s of the 2nd stimulation. To normalize this amplitude, the reference bump amplitude 
without the stimulus (i.e., in darkness) seems sufficient.  However, GCaMP expression level may 
be different across ROIs, meaning the ‘observed’ bump amplitude may be different across 
positions in EB even if the ‘effective’ bump amplitude is the same. Thus, the reference bump 
amplitude was obtained from the same ROI of the 2nd stimulation in darkness.  To this end, the 
mean bump amplitude during the period between 1s and 1.5 s after the end of 2nd stimulation was 
used to normalize the bump amplitude during the stimulation. Trials in which the bump drifted 
away more than 30o after the end of the 2nd stimulus were excluded from this analysis.  Finally, 
the normalized bump amplitudes from trials with minimum power were averaged for each profile 
pair (1-A, 2-A, 1-B, 2-B for protocol 1 in Fig. 4G, and 1-A, 1-B, and 1-C for protocol 2 in fig. 
S4E).  
 
 
Simulation of models 
For the models with extreme connectivity profiles (Fig. 4D), the parameters were first selected to 
generate a bump of zero-to-zero width of 90o. For the globally-connected model, which had two 



parameters, one parameter was determined to fix the width of the bump, and the other parameter 
was swept to try and fit the optogenetic results.  This sweep failed to fit the physiological results 
for any value. The model parameters for Fig. 4D were J0 = -8, J1=6 (see Supplementary Text for 
parameters). In the local model, the model parameters for Fig. 4D were α= 3, β=20, D=0.1 (see 
Supplementary Text for parameters). The input to the model was assumed to have the shape of a 
von Mises (VM) function. We then observed the model’s behavior while varying the width, 
power (estimated from the normalized bump amplitude), and instantaneous visual shift. Tracking 
the activity maxima, responses were grouped into three categories: No response (the maxima 
remained at the initial position), flow (the maxima varied continuously), and jump 
(discontinuous positional switch of maxima over time) (Fig. 4D, gray, red, green respectively).  
Input phase diagrams were obtained for various instantaneous visual shift distances. 
 
 
Reproduction of the probability function for a jump 
The visual input to the network is not likely to be perfectly identical over trials, suggesting the 
variance or noise in the input may underlie the non-step-like bump ratio plot across abrupt visual 
shift distances (Fig. 4C). Using the input-response phase diagrams, we investigated the effect of 
this potential variance of input. We explored two dimensions: width and strength. First, we 
assumed a simple Gaussian distribution along these two dimensions. Combinations of different 
means and standard deviations of a two-dimensional Gaussian function were tested. Two areas 
(jump and flow) of each abrupt shift distance were weighted-summed with a given Gaussian 
distribution function. Inputs with no effect (gray area of Fig. 4D) were excluded from further 
analysis. The weighted sum of values that resulted in jump and flow were compared to reproduce 
the jump probability plot. If the difference of the jump probability at each input shift distance 
between the model and the physiology was less than 0.1, it was determined to be included as a 
viable parameter set.  There were many viable parameter sets: The particular example shown in 
the fig. S4B had the following parameters: input width of mean 86 and s.d. 50, input strength of 
mean 1.1 and s.d. 0.13. We repeated the same procedure for the global model and we were not 
able to find a parameter set that reproduced the plot in Fig. 4C. Note that, under different 
assumptions, such as slow quasistatic input dynamics, more generous criteria for viable 
parameter sets, or a log-normal rather than Gaussian distribution, we were able to reproduce the 
jump probability plot with the global model as well.  
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Fig. S1  
(A) Three visual patterns used in the study. (B) Neural response to a single bar. The convention 
is the same as in Fig. 1G. (C) Population statistics obtained using different methods. Top row, 
number of bumps (mean method, see Materials and methods). Second row, number of bumps 
(Bayesian sampling method, see Materials and methods). Third row, FWHM (Bayesian sampling 
method, see Materials and methods). Bottom row: standard deviation of difference between PVA 
and heading (or scene orientation) (D) Left panel, average bump amplitude in different 
environments. At each time point, the ∆F/F0 of the two ROIs with the maximum ∆F/F0 were 
averaged. This value was then averaged across all time points of all trials for each of the dark 
and one-bar visual conditions for each fly. Right panel, ratio of bump amplitude between dark 
and one-bar conditions shown at left. The bump amplitude for the one-bar condition of each trial 
was compared to the mean bump amplitudes from all dark trials. Vertical bars, s.e.m for each fly 
from 10 trials. Overall population mean = 1.6, s.e.m = 0.105 (n = 10 flies). 
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Fig. S2 
(A) Because the resonant galvo mirrors follow a sinusoidal trajectory, the laser exposure to the 
sample is spatially inhomogeneous. Shown is the two-photon laser dwell time at each pixel 
relative to the minimum. (B) Dose-response curve. Left panel, an example curve from a fly. 19 
levels of laser power evenly divided in a 0 - 83 mW range were used to stimulate the most 
superficial part of the EB. Each power level was repeated three times. Black dots, single trial. 
Data points were excluded from the analysis if the fly was flying, or if the stimulation 
overlapped with an existing activity bump. Black line, average. Right panel, population curve. 
Grey lines, dose-response curve of each fly, normalized by natural F, which is defined as the 
mean of the highest 1% of F in an ROI, which, in turn, had the maximum mean F in darkness for 
50 seconds performed before the experiment. Discontinuous lines represent rejected data points. 
(C) The same as Fig. 2D, but CsChrimson was not expressed in E-PG neurons. See Movie S2. 
The small drop after initiation of the optogenetic stimulation (t = 0 s) is because of noise induced 
by the blue light from the vertical stripe in the LED arena, which leaked into the photomultiplier 
tube (PMT) but was turned off at t = 0 s. (D) The same as Fig. 2E, but CsChrimson was not 
expressed in E-PG neurons. Wilcoxon ranksum test, p = 0.112. (E) Effect of optogenetic 
stimulation on the fly’s stripe fixation behavior. Left, absolute value of fly’s turning amount 
when optogenetic stimulation was applied (red, n = 47 trials from 10 flies) versus not applied 
(black, n = 98 trials from 10 flies). Gray box, period of optogenetic stimulation. Only trials with 
stable fixation for 5 s before optogenetic stimulation were analyzed. Flies showed significant 
turning compared to control conditions. Thick lines with shade: Mean ± sem, (Wilcoxon 
ranksum test: p=0.00018052 for 1 s < t < 2.5 s). Right, relationship between the amount of bump 
shift (PVA) and fly’s turning. Markers with the same shape and color are from the same fly. 
Note that the variance of turning increases with the distance of the bump shift. Dashed lines: 
identity and inverse identity lines. (F) Extended time plot of mean F of 4 ROIs with maximum 
∆F/F0 (red), or minimum ∆F/F0 (blue). ROIs at each time point may vary as the bump may drift. 
Top left, with CsChrimson (40 trials from a fly). Top right, without CsChrimson (40 trials from a 
fly). Grey boxes, stimulation period. Thick colored lines, mean. Shaded area, s.e.m. Bottom row, 
population data. Bottom left, from 13 flies with CsChrimson. Orange lines, mean F of maximum 
4 ROIs across all trials from each fly. Thick red line and shaded area, population average and 
s.e.m. Cyan lines, mean F of minimum 4 ROIs. Thick blue line and shaded area, population 
average and s.e.m. Bottom right, from 10 flies without CsChrimson. Same convention. The 
higher fluorescence before stimulation (t<0) compared to the fluorescence after stimulation (t>1) 
in all 4 panels is because of noise induced by the blue light from the vertical stripe in the LED 
arena, which leaked into the PMT but was turned off at t = 0 s. (G1) Competition between two 
groups of optogenetically stimulated neurons. Top, a single fly example. Circles, individual 
trials. One red and one blue circle are paired, though the pairs are not indicated for visual clarity. 
Blue dots and line, fluorescence level of ROIs stimulated by a fixed laser power (18.4 mW). Red 
dots and line, fluorescence level of the other ROIs stimulated by various laser powers (x-axis). 
Bottom, snapshots of competition with different power levels. Left red rectangle in each 
snapshot, position of fixed power stimulation. Right yellow or red rectangle, position of 
stimulation with varying laser powers. (G2) Population average. Thin cyan lines, fluorescence 
level from individual flies measured from the position with fixed laser power. Thick blue line 
and shade, mean and s.e.m. of population. Thin orange lines, fluorescence level from individual 
flies measured from the position with varying laser power. Thick red line and shade, mean ± 
s.e.m. of population.  
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Fig. S3 
Here we describe simple models of persistent localized activity. In order to simplify the 
modeling, we consider rate models for the neurons composing the neuronal populations and 
assume first order ODEs for their temporal evolution. We also assume rotational symmetry along 

a circle for the neurons:  𝜏𝜏𝜕𝜕𝑡𝑡𝑓𝑓𝑛𝑛(𝑡𝑡) = −𝑓𝑓𝑛𝑛(𝑡𝑡) + 𝜙𝜙 � ∑
𝑁𝑁−1

𝑚𝑚=0
𝐾𝐾𝑚𝑚𝑓𝑓𝑛𝑛−𝑚𝑚(𝑡𝑡)�  , where 𝑓𝑓𝑛𝑛 are the firing 

rates, 𝑛𝑛 runs over the neurons, the functions 𝜙𝜙𝑛𝑛 describe the interaction between these neurons, 
and the indices have implicit periodic boundary conditions. The non-linearity 𝜙𝜙, and the 
convolution kernel 𝐾𝐾 further constrain the dynamics. These terms correspond to cell autonomous 
neural operation and effective recurrent connectivity respectively. We explored three different 
connectivity structures, limit cases that each have distinct dynamical properties. (A) Winner take 
all (WTA): 𝐾𝐾1 =. . . = 𝐾𝐾𝑁𝑁−1 . This network produces a persistent winner, but without any special 
relationship between nearest neighbors. Thus, spontaneous state transitions induced by noise 
produce spatially discontinuous jumps of activity (e, top row). Circles in the schematized 
networks represent active neurons. Yellow, high activity. Black, sub-threshold potential. Red 
lines, excitatory connections.  Blue lines, inhibitory connections.   Line thickness, synaptic 
weight. (B) Ring attractor with global cosine interaction: 𝐾𝐾𝑛𝑛 varies in a smooth fashion with 𝑛𝑛. 
Conventions for the schematized networks are the same as in A. We call this model a ‘global 
model’ for simplicity. (C) Ring attractor with uniform inhibition. Conventions for the 
schematized networks are the same as in A. The blue-colored neuron at the center of the diagram 
depicts a postulated inhibitory neuron, whose activity is proportional to the summated activity of 
all neurons. (D) Ring attractor with strictly local excitation and uniform inhibition: 𝐾𝐾2 =. . . =
𝐾𝐾𝑁𝑁−2. We focus on this nearest neighbor model rather than the model in B for mathematical 
tractability. See Supplementary Text for mathematical formulation. In this study, we refer to this 
model as a ‘local model’ for simplicity. Conventions for the schematized networks are the same 
as in C. (E) Dynamics predicted by the different models. Unlike WTA networks (top, see A), 
ring attractor networks (bottom, see B to D) feature interactions between neighbors, which lead 
to smooth noise-induced transitions of activity (i.e., drift) between neighboring units.  
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Fig. S4 
(A) Quantitative differences between the predictions of two extreme models. Top row, local 
model (fig. S3D). Input-response phase diagrams (Fig. 4D) are overlaid. The input strength 
required to transition from flow to jump decreases over input shift distances at all input widths. 
Red dot, predicted threshold input strength to induce the bump to jump with narrow input width 
of 22.5o. Note that this strength did not vary with all input shift distances from 90o to 150o. Top 
right, the cartoon visualizes the relationship between the threshold input strength, input shift, and 
bump amplitude for the local model. For example, when a narrow input was applied at 90o 
distance from the initial bump position with input strength at threshold for bump jump, the bump 
amplitude will be less than 2 for the local model. The strength can be inferred by taking relative 
bump amplitude compared to the one without input (Materials and methods). Importantly, for 
local model, this inferred strength should be the same for all input shift distances. The length of 
red arrows indicates the input power required to generate spikes. Bottom row, a global model 
(fig. S3B). Overlaid input-response phase diagram. The blue arrow illustrates clear inversion of 
the threshold input strength required for the bump to jump with an input shift distance at around 
90o input width. Red dots and a red arrow, increasing threshold input strength required to induce 
a bump in response to different input shift distances from 60o to 150o. Bottom right, the model 
predicts that the jump of the activity bump requires strong input (>2) and it increases with the 
input shift distance, unlike the local model. (B) An example of simulated input variance that can 
reproduce the jump probability observed in physiological experiments (Fig. 4C). Input phase 
diagrams (left panel) were multiplied point-by-point across four input shift distances with a 
probability distribution function of input (the center panel). Right panel, reproduction of the 
jump probability. (C) Example execution of the sequential optogenetic stimulation protocol. To 
estimate the stimulation strength necessary to make the bump jump from various distances (1, 2) 
to a fixed position (B), and to avoid bias between two distances (1, 2), laser powers were paired 
for both distances (Materials and methods). (D) Schematic of an experiment to probe the 
threshold input strength for a jump at three distances. (E) Input strength, estimated by 
normalized bump amplitude. Convention is the same as Fig. 4G, but for three distances using the 
protocol in D. See Materials and methods. Wilcoxon ranksum test between π/2 and 3π/4, p = 
0.57. Between π/2 and π, p = 0.84. Between 3π/4 and π, p = 0.2. (F) Parameter phase diagram for 
the local model (fig. S3D). See the Supplementary Text for a mathematical formulation. The 
“marginal” area represents a region of parameter space that ensures a unique persistent bump 
even without input. The “homogeneous” area represents states where the steady state profile of 
E-PG population activity is flat. The “unstable” area represents states in which the population 
activity diverges in time. Colored dots represent the input strength required for the bump jump at 
distance. Yellow dots represent very high threshold. Dark dots represent low threshold. 
Physiological and optogenetic data showing threshold less than 2 suggest that the connectivity of 
E-PG neurons, if locally connected, is far from the yellow area. Note that for the yellow dots 
near the boundary, the input strength needed to move the bump can be analytically computed to 
be approximately 6. α, recurrent excitation coefficient. β, global inhibition coefficient. D, 
diffusion coefficient. See Supplementary Text for more details. (G) Bump profile in the presence 
of input in a local model. Black line: a bump profile without input. Red line: a bump profile with 
a weak narrow input placed at a displacement of 180o from the existing bump. Note that there are 
two bumps. Green line: a bump profile with a narrow, supra-threshold input strength. Note that 
the original bump (black) disappeared, and only one bump remains. Blue line: a bump profile 
after the input is removed after jump. See the Supplementary Text for more details. (H) 



Schematic of generating connectivity profiles using two von Mises (VM) functions. Two VM 
functions have the same center, but different width and amplitude. The summed function will 
have an additional bias parameter, for a total of 5 free parameters. (I) Input strength (normalized 
bump amplitude) for a jump of distance π across different connectivity widths. The connectivity 
width is defined as the distance between the two inflection points of the summed connectivity 
profile. Red rectangle, experimentally constrained space. See the Supplementary Text for more 
details. 



MOVIES S1 – S11 
 
 
Movie S1 Activity bump shifts its position in response to two-photon optogenetic 
stimulation. Top, images from simultaneous optogenetic stimulation and two-photon calcium 
imaging were divided into an imaging part (even lines, top left, smoothed with a Gaussian filter), 
and stimulation part (odd lines, top right, raw). Yellow rectangle, the position of optogenetic 
stimulation. Rectangle becomes red during stimulation (Fig. 2, A to C). Bottom left, behavioral 
recording of a tethered flying fly during the experiment, showing the vertical bar under closed-
loop control. Bottom right, a color plot of F (not ∆F/F0). Red dashed horizontal lines, start and 
end of optogenetic stimulation. 
 
Movie S2 Activity bump is not affected by two-photon stimulation without CsChrimson 
expressed in E-PG neurons.  
Same convention as for Movie S1. 
 
Movie S3 to S5 Mutual suppression between E-PG neurons during simultaneous 
stimulation of E-PG neurons in two parts of EB.  
Same convention as for Movie S1. Top left, two powerboxes were simultaneously stimulated. 
The power of the left box was fixed (18.4mW), while that of the right box varied (3, 0mW; 4, 
9.2mW; 5, 46mW). The video is slowed down to highlight mutual suppression. 
 
Movie S6 Activity bump may drift after optogenetic stimulation.  
See Fig. 3. Same convention as for Movie S1. 
 
Movie S7 Activity bump may flow in response to a sudden position change of a vertical bar.  
Top left, raw two-photon imaging of calcium dynamics with GCaMP6f. Bottom left, behavioral 
recording of a tethered flying fly in closed loop control of a vertical bar. Right, color plot of 
∆F/F0. Red dashed horizontal line, time of jump. 
 
Movie S8 Annotated bump flow.  
The same data as Movie S7, but only showing data around the time of the abrupt visual shift. 
Slowed down 10 times. 
 
Movie S9 Activity bump may jump in response to abrupt shift of a stripe.  
Same convention as for Movie S7. 
 
Movie S10 An example trial of sequential optogenetic stimulation spaced 180o apart.  
See Fig. 4E and Materials and methods. Same convention as for Movie S1. 
 
Movie S11 An example trial of sequential optogenetic stimulation spaced 135o apart.  
See fig. S4, D and E and Materials and methods. Same convention as for Movie S1. 
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1 Attractor models

The persistent activity observed on the E-PG neurons is the result of the inter-
actions of many neurons within a recurrent circuit. Anatomical studies provide
valuable informations on the structure of this circuit (17 ). But much less is
known at the level of functional interactions. We wish to study in silico, the dy-
namical properties of several classes of recurrent circuits in order to understand
the key components underlying the activity of the E-PG neurons. In order to
simplify the modeling, we consider rate models for the N neurons composing
the E-PG neuron population and assume first order ODEs for their temporal
evolution:

τ∂tfn(t) = −fn(t) + φn(f1(t), . . . , fN (t)) (1)

where the index n runs over the N neurons. The E-PG neurons are positioned
around the ring shape structure of the ellipsoid body (EB) and we did not notice
any significant property of the dynamics depending on the absolute position on
the circuit. Hence, we will assume rotation symmetry along the ring. This
means the dynamical equation (1) can be rewritten:

τ∂tfn(t) = −fn(t) + φ

(
N−1∑
m=0

Kmfn−m(t)

)
(2)

where the indices have implicit boundary conditions. Since the dynamics have
stationary states and neither clockwise nor anti-clockwise rotations seems to be
favored, we can assume that K is mirror symmetric: Kn = K−n.

Under these general assumptions, two elements further constraint the dy-
namics: the non-linearity function or f − I curve φ, and the convolution kernel
K. These terms corresponding to cell autonomous neural operation and effective
recurrent connectivity respectively.

We are going to explore three different connectivity structures:

• winner take all (WTA) K1 = · · · = KN−1

• nearest neighbor interaction (local model) K2 = · · · = KN−2

• global interaction (global model) Kn varies in a smoothly with n.

These three different limit cases have distinct dynamical properties that we
shall explore. The goal is to understand the functional connectivity structure
of the E-PG neuron network.

2 Stationary states

We first study the shape of the stationary states of the three previous cases.
We know that the persistent activity observed in EB takes the form of a single
continuous bump of activity. We first see how this activity can be accounted

2



for by the models. We consider unless otherwise specified that the f − I curve
is threshold linear:

φ(I) = (I + 1)Θ(I + 1) = [I + 1]+ (3)

where Θ is the Heaviside function. This hypothesis mainly assumes neuron
activity are not saturating in the normal range of activity (see fig. S1D).

Winner take all stationary states The stationary states f0
h verify:

f0
n = φ((K0 −K1)f

0
n +K1S) (4)

where S =
∑N−1

n=0 f0
n. The homogeneous state exists and is stable when

(N − 1)K1 < 1−K0 (5)

K1 > K0 − 1 (6)

The marginal state whereby only one neuron is active exists and is stable when

K0 < 1 (7)

K1 < K0 − 1 (8)

Note that although we know several E-PG neurons are active to form the bump
of activity, at this stage it could be that this activity is a result of an underlying
WTA that feeds the E-PG neurons in a feed-forward manner.

Local model stationary states It is possible to solve the stationary states
and stability conditions for the local model. We will first describe this solution.
In a second part, we will take the continuous limit and show that the local model
can constitute a continuous attractor displaying finite width bump stationary
states.

In the discrete case, stationary states can be written as branches of cosine.
We rewrite the dynamical equation as follows:

τ∂tfn = −fn +

[
αfn +D(fn−1 + fn+1 − 2fn)− β

N−1∑
m=0

fm + 1

]
+

(9)

The uniform state verifies:

f0
k =

1

1− α+Nβ
(10)

It exists and is stable when:

1− α+ βN > 0 (11)

1− α+ 2D(1− cos 2π/N) > 0 (12)

3



When the local excitation α and wide inhibition β are strong enough, a
localized bump of activity forms. This bump has the shape of a branch of
cosine. As an example, we will consider a bump vanishing at 0 in which activity
spans M neurons. In that case, the bump can be written as:

f0
n = A(sin(ωn− φ) + sinφ) (13)

The stationary state condition imposes:

2 sinω/2 =

√
α− 1

D
(14)

A(α− 1) sinφ = βS − 1 (15)

DA(sin(ω − φ) + sin(φ)) < βS − 1 (16)

sin((M + 1)ω − φ) = − sinφ (17)

where S is the total activity. The inequality (16) which imposes a negative
input current for the neuron n = 0 can be shown after some algebra using the
other stationary conditions to be equivalent to:

2π/ω − 1 < M + 1 < 2π/ω (18)

hence M is uniquely defined and the bump has a width a close as possible to the
period of the cosine 2π/ω. Finally, one can compute S and find the amplitude
A:

tanφ =
sin(M + 1)ω

cos(M + 1)ω − 1
(19)

S/A =
sinω cosφ

1− cosω
+ (M + 1) sinφ (20)

1/A = (1− α) sinφ+ β

(
sinω cosφ

1− cosω
+ (M + 1) sinφ

)
(21)

This state exists when:

2(1− cos 2π/N) <
α− 1

D
< 4 (22)

1/A > 0 (23)

We also performed the linear stability analysis around the bump stationary
state. The eigenmodes (except one) are sines and cosines centered on the max-
imum of the stationary bump. We showed that when the bump exists with the
previous conditions, it is linearly stable. Moreover, the stationary states with
multiple bumps are unstable.

Finally, it is possible to take the continuous limit N → +∞ to that discrete
model. In that case, the system constitutes a continuous attractor model. The
evolution equation for neurons labeled by a continuous variable θ between 0 and
2π with periodic boundary condition can be written as follows:

∂tf(θ, t) = −f(θ, t) +

[
αf(θ, t) +D∂θθf(θ, t)− β

∫ 2π

0

f(θ, t)dθ + 1

]
+

(24)
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Taking the continuous limit of the discrete model, or solving the above equations,
we show that the stationary states can be written:

f0(x) = A(1 + cosωx) (25)

with

ω =

√
α− 1

D
(26)

1/A = 1− α+ 2πβ/ω (27)

and the existence now writes:

α > 1 +D (28)

1/A > 0 (29)

The phase diagram for the continuous limit is shown on fig. S4F.

Global model stationary states It is generally difficult to extract station-
ary states in the general Ki case. But a stereotypical case has been studied in
great detail (11, 26 ). The Ben-Yishai model treats the continuous limit case
where K(θ) = J0 + J1 cos(θ). The phase diagram has been studied in great
detail. The stationary states in the marginal phase are branches of cosine:

f0(θ) = Θ(A1 cos(θ − θ0)−A0) (30)

We see from the previous paragraphs that the stationary states are not very
discriminant regarding the shape of the activity bump. In order to character-
ize each model, we need to study their dynamical properties and in particular
response to time varying inputs.

3 Bump diffusion without input

In the absence of tuned input, the bump of activity evolves under the influence
of noise. In order to study the influence of noise, we add a gaussian white noise
to the input current of the neurons. The evolution equation can now be written:

τ∂tfn(t) = −fn(t) +

[
N−1∑
m=0

Kmfn−m(t) + ση(t)

]
+

(31)

where η(t) is a white noise: < η(t) >= 0 and < η(t)η(t′) >= δ(t− t′).
For the winner take all model, increasing the amplitude of the noise leads

to an abrupt transition for most of the parameters. At low noise, the winner
is very stable as expected. However there is a level of noise above which there
is not clear winner and all the neurons are noisy. Just below this threshold,
it takes again an exponentially long time to observe transitions. This is only
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at the boundary of the marginal phase (when β is as low as possible) that the
situation changes. In that case, the time to observe transitions is not too high
(fig. S3E top).

For continuous attractor (both local and global), weak noise induces a dif-
fusion of the bump position (fig. S3E bottom).

4 Dynamics in the presence of localized input

In this section, we study the activity of the network in the presence of a localized
input:

∂tf(θ, t) = −f(θ, t) + [K ∗ f(θ, t) + 1 + Iδ(θ)]+ (32)

4.1 Local model

In the continuous limit, the localized input induces a discontinuity in the slope
of the activity profile.

In such a situation, a bump of persistent activity can be sustained at a
position different from the localized input (fig. S4G, red profile). And at the
position of the input, a weaker bump of activity with a discontinuous slope is
present. As we will see, this situation arises when the input is weaker than a
threshold depending on the parameter of the model. When the input is stronger
than this threshold, the first bump disappear and a bump of high amplitude arise
at the position of the input (fig. S4G, green profile).

We have analytically studied this phenomenon both for the discrete version
and for the continuous limit. It is more easily formulated for the continuous
version though, and we detail the analytical treatment below only for that case.

We study the two bump solutions to the following equation:

f(θ, t) =

[
αf(θ, t) +D∂θθf(θ, t)− β

∫ 2π

0

f(θ, t)dθ + 1 + Iδ(θ)

]
+

(33)

The first bump, which does not overlap with the input can be written:

f1(θ) = A(cos(ωθ + φ1) + 1) (34)

and has its activity between θ = φ1 − π/ω and θ = φ1 + π/ω
The second bump can be written:

f2(θ) = A(cos(|ωθ|+ φ) + 1) (35)

and has its activity between θ = (π − φ)/ω and θ = −(π − φ)/ω
Notice that the prefactor A is the same for both bumps because the curva-

tures of the bumps of activity must be equal when the activities reach zero.

The total activity S =
∫ 2π

0
f(θ, t)dθ has the following expression:

S = 2A(2π − φ− sinφ)/ω (36)
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Integrating the equation (33) around θ = 0, one obtains:

I = 2ADω sinφ (37)

The stationary equation at the points where the activity reaches zero gives:

A(1− α+ 2β(2π − φ− sinφ)/ω) = 1 (38)

One can then obtain the input I as a function of the phase φ:

I =
sinφ

(2π − φ0 − sinφ0)β/(α− 1)− ω/2
(39)

This input is maximum for a phase φ0 verifying:

2π − φ+ tanφ =
(α− 1)ω

2β
(40)

For the profile to be stable, one can show that the phase has to verify π/2 <
φ0 < φ < π. The maximum input I0 able to sustain two bumps verifies:

I0 =
α− 1

β(1− 1/ cosφ0)
(41)

In order to understand the behavior of the bump amplitude with and without
input, we consider the domain of the phase space close to the bifurcation to the
marginal phase. In that region, 1 − α + 2πβ/ω is small and we pose: 1 − α +
2πβ/ω = ε. We then have:

φ̃3
0 ≡ (π − φ0)

3 =
3εω

2β
(42)

I0 =
α− 1

2β
(1− φ̃2

0/4) (43)

If we now consider there is only one bump in the presence of the input I0,
the activity profile can be written as:

fs(θ) = As(cos(|ωθ|+ φs) + 1) (44)

The ratio of the maximum activity with and without input has the following
expression:

R = As(cosφs + 1)ε (45)

When the input strength is I0, one obtains:

R ≈ 6 (46)

which closely corresponds to yellow dots in fig. S4F.
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4.2 Global interaction model

The amplitude of localized input current being infinite in the continuous limit,
one can write:

∂tf(θ, t) = −f(θ, t) + [K ∗ f(θ, t) + 1]+ + Iδ(θ) (47)

We are effectively in the case of the cosine input studied previously (26 ).
If the input is applied quasi-stationarily, we are in the case of the weak input
limit, and according to (26 ), the original bump should flow toward the position
of the input.

5 Input phase diagram

For the local and global model, we explored the dynamics of the bump in present
of shifted input position.

We initialize the state of the system so that the center of the bump is po-
sitioned at the origin of the angular positions. In a second phase, an input of
a given width w and amplitude a is abruptly applied. We then look for the
changes in the activity profiles. The situations might arise:

• if the input is too localized and its amplitude is not high enough, neurons
do no reach the firing threshold and no change in activity is observed.

• if the input is wide enough, the active neurons receive a gradient of input
and the bump moves progressively toward the center of the applied input.

• finally, if the input is strong enough, the activity will be dominated by the
input and a new bump will develop at the center of the input. This will
generate a jump of the bump from its initial position to the new position.

6 Numerical exploration of the parameters

So far, we compared two limit cases of the connectivity: the so-called local
model whereby the neurons outside the bump have all the same potential and
the global model whereby this potential varies smoothly and decreasing as a
function of the distance from the bump.

We would like to explore a larger set of models encompassing the two previ-
ous limit scenarios. In order to do that, we consider that the connectivity is a
sum of two von Mises functions (fig. S4H):

K(θ) = a1f(θ|0, κ1)− a2f(θ|0, κ2) + C (48)

where f(θ|µ, κ) is the von Mises probability density function of parameter µ, κ
(µ gives the center of the distribution and κ the concentration of the probability
around µ) at the position θ. The global model is recovered when κ1, κ2 → 0
and the local model is obtain when κ1, κ2 → +∞.
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It means the attractor model is defined by 5 parameters (κ1, κ2, a1, a2 and
C). We chose to sample this space uniformly.

The width is defined as the position of the first inflection point of the con-
nectivity function.

We study the ratio of amplitude of the bump with and without input in more
general convolution kernels. We consider kernels of sum of Von Mises functions:

This gives 5 parameters to explore. On top of that, we vary the width of
the input:

I(θ) = I1V (θ;κI) +OI (49)

The simulation result indicates strong dependence of the ratio of the bump
amplitude on the connectivity width (fig. S4I).

7 Inference of bump configurations

The population vector average PVA describes the position and amplitude of
a single bump of activity on a circle. As soon as several bumps coexist, as
it is the case for the jump and flow experiment assays, one need to rely on
other quantification means to describe the activity configurations. Since the
calcium measurements are inherently noisy, we chose to rely on a Bayesian
inference framework. We first describe the likelihood function which describe
the probability of bump configurations. Then we present the sampling method
which allows us to infer the configurations given the calcium intensities.

7.1 Likelihood function and posterior distribution

We consider a trial dataset composed of intensities for each time point t and
ROI r: It,r. We suppose that the signal is a superposition of several bumps
modeled as von Mises functions. Moreover, we suppose that the noise is gaussian
and uncorrelated both in time and position (see below for an account of time
dependence of the calcium signal). This gives the following expression for the
intensities:

It,r =

Nt∑
i=1

af (θr |µ, κ) + ηt,r (50)

where f(x|µ, κ) is the von Mises probability density function of parameter µ, κ
(µ gives the center of the distribution and κ the concentration of the probability
around µ) at the position x. ηt,r is an uncorrelated white noise of variance σ.
Nt is the number of bumps at time t. Notice that the width of the bumps are
approximatively: 1/

√
κ.

This means that the probability to observe the measured signal It,r knowing
the bump parameters can be written as follows:

p(It,r|Nt, µ, a) =
1

N

T∏
t=1

R∏
r=1

exp

−

(
It,r −

∑Nt

i=1 af (θr |µ, κ)
)2

2σ2

 (51)
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where N is a normalization constant.
Since the signal intensities are known, but not the parameters of the bumps,

one needs to ”invert” the previous probability. This is done by applying the
Bayes rule:

p(Nt, µ, a|It,r ) =
p(It,r |Nt , µ, a) p(Nt , µ, a)

p(It,r )
(52)

The denominator is only a normalization constant since it does not depend on
the parameters we are looking for.

We still have to determine the prior: p(Nt, µ, a). In order to keep a non-
informative prior on the bump amplitudes, we are going to take an improper
prior (ie non normalized probability):

p(Nt, µ, a) ∝ e−α
∑T

t=1 Nt

∏
Θ(a) (53)

where Θ is the Heaviside function. α constraints the number of bumps in the
system and introduces a sparsity bias. We used α = 4.

Here, we can make a connection with the statistical physics of gas. Formally,
the bumps in our system play the role of particles and they interact through
the measurements: particles will compete for places where the signal intensities
are high. Notice that in our system, the number of bumps, or particles, is not
fixed: this is the situation of the grand-canonical ensemble in statistical physics.
As we wrote, α is equivalent to the opposite of the chemical potential of the
system. This equivalence will be useful for the sampling method (see below).

We can now write the log of the posterior, up to an additive constant as:

L = log p(It,r|Nt, µ, a) + log p(Nt , µ, a) (54)

= −
∑
t,r

(
It,r −

∑Nt

i=1 af (θr |µ, κ)
)2

2σ2
− α

T∑
t=1

Nt (55)

The last equation implicitly assumes that the bump amplitudes are positive.

7.2 Sampling

One way to infer the position of the bumps is to look for the most probable
configuration. This entails the maximization of log-posterior probability L from
eq. (55). This function is not convex and gradient descent methods would fail
to reliably maximize it. We then rely on a sampling method with the help of
the Metropolis algorithm.

Making again the connection with the physics of gas, we are trying to sim-
ulate the grand-canonical ensemble by a Monte Carlo method.

A state is defined by a set of Nt, µ, κ and a. The state transitions should
allow to reach any one of these states from any other (ergodicity). We define
three kinds of transitions at any time t:

10



• Creation or deletion of bumps For creation, a position is chosen at
random between 0 and 2π. The bump is initialized with an amplitude
2 and κ = 2.5. This bump is then added to the list of bumps already
present at this time t. For deletion, a bump is chosen at random and
simply removed from the list of bumps.

• Change of position A random number with normal distribution of stan-
dard deviation σµ = 0.5 is chosen and added to the position of one of the
bumps.

• Change of amplitude A random number with normal distribution of
standard deviation 1 is drawn and added to the amplitude of one of the
bumps.

Choosing the transition probabilities appropriately is important. They should
verify the detailed balance equations in order for the algorithm to converge to-
ward the right distribution. But they should also be carefully chosen to maxi-
mize the convergence speed. In fact, the transition probabilities do not exactly
verify the detailed balance equations but we have not noticed any significant
biases in the inferred bumps.

Creation transitions were chosen with probability 0.01. Deletion were chosen
Nt times more often (to compensated for the entropic factor (46 )). We create
bumps with amplitude from a given distribution but we delete them irrespective
of their amplitudes, which is a potential source of bias. However, this should be
very negligible since the amplitude will diffuse fast toward a value minimizing
the energy of the bump.

Change of positions are chosen with probability 0.5 and amplitude changes
are chosen in the other cases.

We then apply the Metropolis algorithm: we choose a move; if the it increases
the likelihood, we accept it, if it does not, we accept it only with probability:

exp(β∆L) (56)

where β is the inverse temperature of the system. β is chosen high (β = 5),
so that the temperature is low and at any time point close to convergence, the
state is close to the maximum likelihood.

7.3 Neighbor coupling

The observed calcium signal is correlated in time, so that we expect a priori
the bump states to be also correlated in time as well. We incorporated this
information in the prior.

We add another term to eq. (55):

L′ = L+ Jc
∑
t

Nt∑
i=1

Nt+1∑
j=1

exp

(
− (µi,t − µj,t+1)

2

2σ2
c

)
(57)

where σc is chose to be 0.5 (half a ROI) and Jc is the intensity of coupling (we
chose Jc = 1.8).
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