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8 Linear recurrent networks: Integra-

tion, line attractors and mono-stability

8.1 Linear recurrent networks and the absence
of multistability

We already learned about the role of neuronal thresholds in the
ability of networks to store multiple patterns. We now back-up and
ask how many stable patterns a linear network can support. This
could be the case for networks of cells whose spike rate is uniformly
and monotonically modulated up and down (Figure 1). It is also
the case for networks of cells without spikes but with solely graded
synaptic release. Let’s see if we can get a general proof of how
many states such networks can support and, if there is something
interesting, derive the design rule that relates the desired output to
the underlying connectivity.

Figure 1: Precerebellar neurons linearly transform input current into a spiking rate. From
Kolkman, McElvain and du Lac, 2011.

To begin, we consider a network with a symmetric weight ma-
trix, W, where as in the past Wi,j is the strength of the input to cell
i from the output of cell j. The neurons now act as linear devices,
i.e., the output of the cell is a linear function of the input and de-
scribed by a single parameter, the gain, G. Since we are working in
the linear regime, we can ignore the difference between cell input,
or potential, and firing rate and write the input to the cell as

ri(t) =
N∑
j=1

Wijrj(t) (8.1)

where N is the number of neurons and we absorb the gain, G, in
the Wi,js.
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8.1.1 Capacity of a linear network

We start with asking a solely mathematical question. How many
states can be stored in a recurrent network with linear interactions?
Our work on the ”ring” model yielded a linear model that supplied
”gain” but led to no storage; that required a nonlinearity. Let’s see
if there is something more.

We make use of a parallel, clocked updating scheme, in which
we explicitly note the time steps, i.e.,

ri(t) =
N∑
j=1

Wijrj(t− 1). (8.2)

In vector notation, this is

~r(t) = W ~r(t− 1). (8.3)

We now iterate, the synchronous equivalent of recurrence, starting
from time t = 0:

~r(1) = W ~r(0) (8.4)

~r(2) = W ~r(1)

~r(3) = W ~r(2)

·
·

~r(n) = W ~r(n− 1).

This becomes
~r(n) = Wn ~r(0). (8.5)

Review of Unitary Transforms

We recall that a matrix W satisfies an eigenvalue equation

W ~µk = λk~µk (8.6)

where k labels labels the eigenvalue with k = 1, ..., N and in-
cludes the case of potential degenerate eigenvectors. The eigen-
values are real numbers when W is a symmetric matrix whose
elements are real. The spectral theorem states that a symmetric
matrix whose elements are real can be diagonalized by a matrix
transformation by a unity transformation that rotates W and
preserves the eigenvalues, i.e.,

W = UΛUT (8.7)
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where U is a unitary matrix defined through UUT = I and
det(U) = 1. Each column in U is one of the eigenvectors ~µk,
i.e.,

U =



· · ·
· · ·
· · ·
~µ1 ~µ2 · · · ~µN
· · ·
· · ·
· · ·


and UT =



· · · ~µ1 · · ·
· · · ~µ2 · · ·
· · · ~µ3 · · ·

·
·
·

· · · ~µN · · ·


and the rotated eigenvectors, UT~µ, are of the form

UT~µ1 =



1
0
0
·
·
·


UT~µ2 =



0
1
0
·
·
·


· ··

since W ~µk = λk~µk implies Λ UT~µk = λkU
T~µk, the UT~µk

are the eigenvectors of the diagonalized (rotated) system. The
diagonal matrix Λ contains the eigenvalues along the diagonal,
such that

Λ =



λ1 0 0 · · ·
0 λ2 0
0 0 λ3

·
·
·



We now return to the iterative expression for ~r(n), i.e.,

~r(n) = Wn ~r(0) (8.8)

=
(
UΛUT

)n
~r(0)

= UΛUTUΛUT · · ·UΛUT ~r(0)

= UΛnUT ~r(0).

But the diagonal matrix Λn, when rank ordered so that λ1 is the
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dominant eigenvalue, becomes

Λn =



λn1 0 0 · · ·
0 λn2 0
0 0 λn3
·
·
·


= λn1



1 0 0 · · ·
0

(
λ2
λ1

)n
0

0 0
(
λ3
λ1

)n
·
·
·


−−−−→n→∞ λn1



1 0 0 · · ·
0 0 0
0 0 0
·
·
·


.

Thus the system converges to a numerical factor times the dominant
eigenvector of W, i.e.,

~r(n) −−−−→n→∞ λn1



· · ·
· · ·
· · ·
~µ1 ~µ2 · · · ~µN
· · ·
· · ·
· · ·





1 0 0 0 · · ·
0 0 0 0
0 0 0 0
·
·
·
·





· · · ~µ1 · · ·
· · · ~µ2 · · ·
· · · ~µ3 · · ·

·
·
·

· · · ~µN · · ·


~r(0)

which becomes

~r(n) −−−−→n→∞ λn1 [~µ1 ·~r(0)] ~µ1 (8.9)

and thus only a single state is supported in an iterative network
comprised of linear neurons.

The essential issue is neurons that function as linear transduc-
ers can support only a single pattern, or stable state. As such, a
design rule is to pick a desired stable state, which we will call ~ζ,
and compute the weight matrix for our linear network as the outer
product

W = ~ζ ~ζT . (8.10)

While linear networks will not be useful as associative networks
that intrinsically store many patterns, we next show that linear
networks can be useful for the particular problem of making a cir-
cuit that integrates an input. This comes up for the case of motor
systems and was proposed for ocular motor control, first by David
Robinson.

8.2 Stability of gaze and the issue of integration

The eyes can remain stable, in the dark and without input, for
periods of 20 s in humans . This is nearly two orders of magnitude
greater than the time constant of single cells. It is suggestive of a
”sample and hold” circuit, or a very low loss integrator. Similar
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Figure 2: Multiple levels of stable persistent firing in an oculomotor neural integrator
cell in an awake behaving goldfish. Horizontal eye position is measured in the dark. From
Major, Baker, Aksay, Mensh, Seung and Tank 2004

behavior is seen in terms of the sustained direction of travel of
juvenile zebrafish (Figures 2, 3, and 4).

We will look at a circuit mechanism for such stability, although
there are reports of singe cells that function as as integrators of
pulses of current (Figure 5).

8.3 Positive feedback and the single neuron

We start with the case of one cell to learn about the importance
of integration. Our formalism is in terms of the rate of spiking of
the cell. Since we are dealing with linear modeling at this point,
we can associate the spike rate with the underlying potential. As
such, we write differential equations directly in terms of the rate,
which we denote r(t),

τ0
dr(t)

dt
+ r(t) = Iext(t) (8.11)

where Iext(t) is an external input to the cell normalized in term of
rate. This is the same equation for an ”RC” circuit in electronics
and can be readily solved in terms of a convolution over the input,
for which

r(t) = r(0)e−t/τ0 +
∫ t

0

dx

τ0

e−(t−x)/τ0Iext(x). (8.12)
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Figure 3: Movement in the llarval zebrafish in response to moving stripes. From Misha
Ahrens Laboratory

When the input is a constant, i.e., Iext(t) = Iext0 , the rate will
change toward that constant according to

r(t) = r(0)e−t/τ0 + Iext0 (1− e−t/τ0). (8.13)

The problem is that this circuit has no memory of the initial
rate, r(0) or for that matter the rate at any past time, such as just
after a transient input. How can we achieve memory? We consider
the addition of positive feedback through an autapse, where the
strength of the feedback is set by the scalar constant W . Our rate
equation is now

τ0
dr(t)

dt
+ r(t) = Wr(t) + Iext(t) (8.14)

τ0
dr(t)

dt
+ (1 − W ) r(t) = Iext(t)(

τ0

1 − W

)
dr(t)

dt
+ r(t) =

Iext(t)

1 − W

and we see that the time constant is no longer τ0 but τ0
1 −W

. When
W approaches a value of W = 1 from below, that is, from zero,
we see that the effective time constant is very long. In fact, when
W = 1 it is a perfect integrator with

r(t) = r(0) +
∫ t

0

dx

τ0

Iext(x). (8.15)

When the input is a constant step starting at t=0, the output grows
linearly:

r(t) = r(0) +
(
t

τ0

)
Iext0 . (8.16)
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Figure 4: Multiple levels of stable persistent firing in an oculomotor neural integrator cell
in a swimming larval zebrafish. Identified integrator neurons are shown in colored circles.
From Vishwanathan, Daie, Ramirez, Lichtman, Aksay and Seung, 2002.

Thus if the input is present for only a brief time, say T , the output
just shifts from r(t) = r(0) to r(t) = r(0) +

(
T
τ0

)
Iext0 .

The good news is that we built an integrator - which is a memory
circuit - with linear components and positive feedback. The bad
news is that W needs to have a value very close to W = 1
for the feedback to appreciably extend the time constant. Thus
an extension from τ0 = 100 ms to τ = 10 s, as in the Robinson
experiments on the stability of eye position, requires W = 0.99. A
little variability that causes W to creep up to W = 1.01 will lead
to an unstable system.

8.4 Stability in a rate based linear network

We learned that a single neuron can function as an integrator. Can
we achieve the same behavior in a recurrent linear network, noting
that very many neurons are present in biological integrators (Figure
6)? There will be only a single attractor, since linear networks only
support one stable state, and we wish to make this the integrator
mode. Thus we expect that the path forward will be to transform
the set of N coupled linear variables into N uncoupled systems. One
of these will be the integrator mode and will must have the largest
eigenvalue. Let’s see what other constraints arise.

We start with

τ0
dri(t)

dt
+ ri(t) =

N∑
j=1

Wi,j rj(t) + Iexti (t). (8.17)
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Figure 5: Graded persistent activity in a single cell in entorhinal cortex. Top: Repetitive
stimulation with a 4-s depolarizing step gives rise to five distinct increases (traces 1 to 6) of
stable discharge. Bottom: Repetitive application of 6-s hyperpolarizing steps gives rise to
discrete decreases of stable discharge. From Egorov, Hamam, Fransen, Hasselmo and Alonso,
2002

In vector notion, this becomes

τ0
d~r(t)

dt
+ ~r(t) = W~r(t) + ~Iext(t) (8.18)

and in equilibrium, for which ~r(t) ≡ ~r0,

0 = (I−W) ~r0 − ~Iext0 (8.19)

or
~r0 = (I−W)−1 ~Iext0 (8.20)

Is this a stable solution? To address this, we consider a perturbation
about ~r0 and write

~r(t) = ~r0 + δ~r(t) (8.21)

Thus

0 + τ0
dδ~r(t)

dt
+ ~r0 + δ~r(t) = W~r0 + Wδ~r(t) + ~Iext0 (8.22)

so that the variability about the equilibrium satifies

τ0
dδ~r(t)

dt
= − (I−W) δ~r(t). (8.23)

Let us solve this in terms of the eignevectors of W rather than in
terms of the individual δri(t). In general,

W~µi = λi~µi (8.24)

where the ~µi are eigenvectors and the λi are the eigenvalues. Then

δ~r(t) =
N∑
i

[δ~r(t)]i ~µi (8.25)
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Figure 6: Ultrastructural features of integrator neurons with either ipsilaterally (top)
or contralateral (bottom) axons. From Vishwanathan, Daie, Ramirez, Lichtman, Aksay and
Seung, 2017.

where the expansion coefficients are defined by the overlaps

[δ~r(t)]i ≡ δ~r(t) · ~µi. (8.26)

Then

N∑
i=1

(
τ0
d [δ~r(t)]i

dt
+ (1− λi) [δ~r(t)]i

)
~µi = 0 (8.27)

so that except for the trivial cases ~µi = 0 we have(
τ0

1− λi

)
d [δ~r(t)]i

dt
+ [δ~r(t)]i = 0 (8.28)

for each term. The system is stable if λi ≤ 1 ∀i. The largest
eigenvector, taken without loss of generality as λ1, is the integration
mode if it has the largest possible eigenvalue λ1 = 1. The other
modes will decay away, and suggest the need for λi << 1 for i 6= 1.

We now return to the full system and write down a general
solution for ~r(t) in terms of the eigenmodes. Let

~r(t) =
N∑
i

[~r(t)]i ~µi (8.29)
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and

~Iext(t) =
N∑
i

[
~Iext(t)

]
i
~µi (8.30)

where [~r(t)]i ≡ ~r(t) · ~µi and
[
~Iext(t)

]
i
≡ ~Iext(t) · ~µi are time depen-

dent expansion coefficients. Then the original equation of motion

τ0
d~r(t)

dt
+ ~r(t) −W~r(t) − ~Iext(t) = 0 (8.31)

can be written in terms of a differential equation for each eigen-
mode, i.e.,

N∑
i

(
τ0
d [~r(t)]i
dt

+ [~r(t)]i − λi [~r(t)]i −
[
~Iext(t)

]
i

)
~µi = 0

(8.32)
for which each of the individual terms must go to zero. Thus the
effective time constant for the ith mode is

τeffective
i =

τ0

1− λi
. (8.33)

We can immediately write down the solution for the coefficients for
each mode as

[~r(t)]i = [~r(0)]i e
−t(1−λi)/τ0 +

∫ t

0

dx

τ0

e−(t−x)(1−λi)/τ0
[
~Iext(x)

]
i
.

(8.34)
For the special case of λ1 = 1 and Re{λi} < 1 for i > 1,

the dominate mode is also a stable mode, with a firing pattern
proportional to ~µ1, that fulfills our goal and acts as an integrator,
i.e.,

[~r(t)]1 = [~r(0)]1 +
∫ t

0

dx

τ0

[
~Iext(x)

]
1
. (8.35)

Thus motion along mode ~µ1 is driven by the integrated input, with
a weight given by the projection. The system is stable when the
projected input goes to zero. Motion along other modes will decay
away over time as e−(1−λi)t/τ0 , as the eigenvalues λi are less than 1,
possibly negative, for i = 2, 3, ... (Figure 7).

8.4.1 Designing the connection matrix

How do we make a connection matrix, W? Our constraint is on
the eigenvalues, i.e.,

Λ =



1 0 0 · · ·
0 λ2 0
0 0 λ3

·
·
·


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Figure 7: Energy landscape for the line attractor. The first mode in the integration
mode, i.e., the line along the valley. All other modes decay in and the system returns to the
first mode. From Seung, 1996

where 1 >> λ2 > λ3 > · · · λN ≥ 0. As a concrete example, we take
a system with two neurons, i.e.,

Λ =

(
1 0
0 λ

)

with 1 >> λ ≥ 0 and U as the rotation matrix

U =


· ·
· ·
~µ1 ~µ2

· ·
· ·

 =

(
cos η sin η
−sin η cos η

)
.

with 0 < η < π/2. Then

W = UΛUT =

(
cos η sin η
−sin η cos η

)(
1 0
0 λ

)(
cos η −sin η
sin η cos η

)

=

 1− (1− λ)sin2 η −
(

1−λ
2

)
sin 2η

−
(

1−λ
2

)
sin 2η 1− (1− λ)cos2 η

 ,

which is in the form of two neurons that have excitatory self-
feedback, as in the single-cell integrator, but mutual inhibition.
There are an infinity of such networks since η is a continuous vari-
able, but the signs of the synaptic connections are fixed. As a
simple realization, let’s take η = π/4, for which

W =
1− λ

2

(
+1 −1
−1 +1

)
.
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In this special case the two neurons are connected by reciprocal
inhibition and further enjoy self-excitation (Figure 8). The inte-
grating mode is

Figure 8: Two cell integrator model

~µ1 =
1√
2

(
+1
−1

)

and the decaying mode is

~µ2 =
1√
2

(
+1
+1

)
.

Thus only the differential part of the external input will affect the
steady state output of the network.

8.4.2 Relation to eye position

As a last step, we relate the neuronal output to eye position. We
assume that eye position, denoted Θ(t), is proportional to a single
firing pattern, which makes good sense when that pattern is stable
and all others rapidly decay. In fact, this concept makes good sense
for any motor act that requires extended stability, such as posture.
With reference to angular position, we write

Θ(t) = G ~r(t) · ~µ1 + Θ0 (8.36)

= G [~r(t)]1 + Θ0

= G
∫ t

0
dx

[
~Iext(x)

]
1

+ G
[
~Iext0

]
1

+ Θ0

for the amplitude along ~µ1, where we restore the gain G and denote
θ0 as the baseline position of the eye. The key is that the eye
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position now follows the integration of the input, or drive, signal
(Figure 9).

Figure 9: Simulation of line-attractor model with parameters optimized for the goldfish.
From Major, Baker, Aksay, Mensh, Seung and Tank 2004

This model is called a line attractor. The stable output is pro-
portional to a single vector, ~µ1, but the continuum of points along
that vector forms a line in the N-dimensional space of firing rates of
the different cells. Changes to [~r(t)]1 that result from inputs along
the direction of ~µ1 are along the line. Inputs that are orthogonal
to this line have eigenvalues closer to 0 than 1 and rapidly decay
so the system returns to the line (Figure 7).

Figure 10: Simulation of line-attractor model with parameters optimized for the goldfish
with removal (”death”) of one neuron to illustrate sensitivity of stability. From Major, Baker,
Aksay, Mensh, Seung and Tank 2004

Experimental tests in which a neuron is removed lead to loss of
the integartion mode and are supportive of the model but nonethe-
less equivocal at this time (Figure 10).
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