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6 Circuits of Phase-Coupled Neuronal Oscillators: Ba-

sics

Rhythmic output is a hallmark of most motor output - almost by design when we think of
locomotion and homeostatic functions like breathing and pumping blood. But neuronal
systems also show rhythmic output - a state that on the surface appears very different
than the random spiking we discussed for balanced networks - during different brain
states. One example occurs during attention, when neurons in cortex have a field potential
and modulated rate at the gamma (roughly 40 Hz) band (Figure 1). We will discuss
how conductance-based neuronal dynamics can be reduced to all the way down to one
dimension per neuron. Then each neuron is represented by a single variable, which will
represent the phase in a limit cycles that can be coupled to all other neurons. This
approach leads to insights, such as space-time waves as the origin of coordinated limb
movement, for networks of neurons with largely rhythmic behavior. It also leads, as will
discuss in the second lecture on this topic, to wave patterns in two and three dimensions
(Figure 2).

Figure 1: Gamma oscillation. Example traces of the local field potential during spontaneous activity and visually driven
activity in primary visual cortex of primate. The power spectra for the two conditions From Jia and Kohn, 2011

.

Our theoretical approach follows primarily from the work of the great Japanese physi-
cist Yoshiki Kuramoto. We consider small networks in which identical or nearly identical
neurons fire rhythmically and are coupled to each other only weakly. In this sense they
effect each others timing but do not effect the shape of each others limit cycle. The
interactions depend sinusoidally on the phase difference between each pair of neurons.
Thus synapses are no longer excitatory or inhibitory. Rather, they are ”synchronizing”
versus ”desynchronizing”, depending on how they change the spike pattern between pair
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Figure 2: Electrical rotating wave in tangental slice of layer 4 from mouse that has inhibited blocked with bicuculine.
From Huang, Troy, Yang, Ma, Laing, Schiff and Wu, 2004

.

of neuronal oscillators. The effect on synchrony depends on the sign of the synapse, the
time-delay of the synapse, and the frequency of the neuronal oscillations.

6.1 Basic formalism

The equation of motion for a general dynamical system

dX⃗

dt
= F (X⃗;µ) (6.1)

where the X⃗ is a vector that contains all the dynamical variables and the µ are parameters.
At steady state

dX⃗ss

dt
= F (X⃗ss;µ) (6.2)

where a closed orbit satisfies
X⃗ss(t+ T ) = X⃗ss(t). (6.3)

We associate a value of ψ with each point along X⃗ss(t). Thus the multidimensional
trajectory is reduced to a single variable. It is useful to extend the definition of ψ off of
the limit cycle, or contour, to all points within a tube around the limit cycle so that ψ is
defined for all X⃗ss in the tube. This will allow us to study perturbations to the original
limit cycle.

Look on a point just off the limit cycle This point will follow the nearly same trajectory
as the closed orbit of the limit cycle and gradually converge back. There will be a phase
difference between a point on the limit cycle and one just off the limit cycle (Figure 3).
This is equivalent to an initial phase difference among the points. This is the main idea: a
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physical perturbation can be transformed into a phase shift along the original limit cycle
if the perturbed point collapses to or forever parallels the original limit cycle.

Figure 3: Weak interactions between two oscillators lead to a phase shift.

.

There are a set of points in the tube that will lead to the same phase shift (Figure 4).

These define a surface of constant phase shifts, that is denoted I(ψ). For all points X⃗ss

on I(ψ) we define the phase through

dψ(X⃗ss)

dt
= ω (6.4)

for the unperturbed system. Equal intervals in phase are proportional to equal intervals
in time in the original system given the choice of a linear dependence between phase and
time; other choices are possible.

So far everything is exact, that is, all calculations are done with respect to the per-
turbed orbit. The difficulty is that the orbits are not necessarily closed. But if we can
make ϵ small enough so that |X⃗(t)− X⃗ss(t)| → 0 as t→ ∞, the perturbation will lead to
a closed path. This results in periodic orbits, so that the independent variable can now
be taken as the phase, ψ = ωt, rather than time, t. Using the chain rule,

dψ

dt
=

∑
i

∂ψ

∂Xss,i

∂Xss,i

∂t
(6.5)

= ∇⃗X⃗ss
ψ · dX⃗ss

dt

= ∇⃗X⃗ss
ψ · F⃗ (X⃗ss).

We add a perturbation to the motion by

F⃗ (X⃗ss) → F⃗ (X⃗ss) + ϵP⃗ (X⃗ss, X⃗ ′
ss) (6.6)

where ϵ is small in the sense that the shape of the original trajectory in unchanged as
ϵ→ 0 and X⃗ ′

ss contains all the variables that define the perturbation, e.g, the trajectory
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Figure 4: Details of perturbations as a phase shift. Consider a surface, denoted G, normal to and in the neighborhood
of C. Let P be a point on G and Q be the point on C, the limit cycle, that passes through the same surface. We posit that
as the trajectories evolve, the point P will approach the closed orbit defined by C. There will be a phase difference between
P and Q. This is equivalent to an initial phase difference among the points. From Kuramoto 1984

.

of a neighboring oscillator and the interaction between the two oscillating systems. Then

dψ

dt
= ω + ϵ∇⃗X⃗ss(ψ)

ψ · P⃗
[
X⃗ss(ψ), X⃗ ′

ss(ψ
′)
]

(6.7)

≡ ω + ϵZ⃗(ψ) · P⃗ (ψ, ψ′).

The term Z⃗(ψ) depends only on the limit cycle of the oscillator and defines the sensitivity
of the phase to perturbation. It clearly varies along the limit cycle and is sometimes
called a ”phase-dependent sensitivity”. It may be calculated directly by evaluating the
trajectory of points inside a tube around the original limit cycle, or more expeditiously

using a trick due to Bowtell, in which the perturbed system is rewritten in the form dX⃗ss

dt

= A(t)X⃗ss, with A(t) = A(t+T ), which can be shown to have only one periodic solution.

A cute way to find the periodic solution is to solve the adjoint problem, dY⃗
dt

= AT (t)Y⃗ ,
for which all of the solutions decay except for the periodic one. From this one backs
out Z⃗(ψ). The cool thing in that the oscillator is seen to rotate freely (ω term) with
phase-shifts and frequency shifts that are determined solely by the perturbations. The
term P⃗ (ψ, ψ′), which can be calculated from the perturbation, allows these perturbations
to be interactions with neighbors.

Let’s look at the nature of the perturbation term. The idea is that this is small, so
that the shift in frequency on one cycle is small. We consider

ψ = δψ + ωt. (6.8)
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Then the relative motion is given by

dδψ

dt
= ϵZ⃗(ψ) · P⃗ (ψ, ψ′) (6.9)

= ϵZ⃗(δψ + ωt) · P⃗ (δψ + ωt, δψ′ + ωt).

This expression may be further simplified. To the extent that the change in ψ is small
over one cycle, i.e., dδψ

dt
<< ω, we can average the perturbation over a full cycle. We write

dδψ

dt
= Γ(δψ, δψ′) (6.10)

where
Γ(δψ, δψ′) =

ϵ

2π

∫ π

−π
dθ Z⃗(δψ + θ) · P⃗ (δψ + θ, δψ′ + θ). (6.11)

The above result can be generalized to the case where the internal parameters, i.e., the
X⃗ss’s are a bit different between oscillators, so that the underlying oscillations are slightly
different frequency. We then have

dδψ

dt
= Γ(δψ, δψ′) + δω. (6.12)

6.1.1 Relation to measurements on neurons

We return to the general expression

Γ(δψ, δψ′) =
ϵ

2π

∫ π

−π
dθ Z⃗(δψ + θ) · P⃗ (δψ + θ, δψ′ + θ) (6.13)

where we identity δψ as the phase shift of the postsynaptic cell and δψ′ as the phase shift
of the presynaptic cell. The perturbation may be written (Figure 5)

P⃗ (δψ + θ, δψ′ + θ) =
gsyn
cm

S⃗(δψ′ + θ)
(
V Nernst
syn − V (δψ + θ)

)
(6.14)

where S⃗(δψ′ + θ) is the presynaptic activation, so

Γ(δψ, δψ′) =
ϵ

2π

∫ π

−π
dθ Z⃗(δψ + θ)

(
V Nernst
syn − V (δψ + θ)

)
· gsyn
cm

S⃗(δψ′ + θ). (6.15)

The interaction factors into post- and presynaptic terms, i.e.,

Γ(δψ, δψ′) =
ϵ

2π

∫ π

−π
dθ R⃗(δψ + θ) · S⃗(δψ′ + θ) (6.16)

where we collected the postsynaptic response as

R⃗(δψ + θ) =
gsyn
cm

Z⃗(δψ + θ)
(
V Nernst
syn − V (δψ + θ)

)
. (6.17)

The interaction depends only on the phase difference, i.e.,

Γ(δψ, δψ′) =
ϵ

2π

∫ π

−π
dθ R⃗ (θ − (δψ′ − δψ)) · S⃗(θ) (6.18)

= Γ(δψ′ − δψ)

The contributions may be found from experiment since the interaction of neuronal oscil-
lators is given by the correlation between the presynaptic spikes and the post-synaptic
potentials (Figure 5).
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Figure 5: The phase sensitivity function for perturbation in voltage. Data from Reyes and Fetz, 1993. Analysis from
Ermentrout and Kleinfeld 2000

.

6.2 Stability of phase shifts among two oscillators.

Let’s look at a pair of neurons when the interaction is a function of phase difference of
the a pair of oscillators (Equation 6.18). The system of two oscillators obeys

dδψ

dt
= Γ(δψ′ − δψ) (6.19)

and
dδψ′

dt
= Γ(δψ − δψ′). (6.20)

We subtract the two equations of motion for the phase to get the difference, i.e.,

d(δψ − δψ′)

dt
= [Γ(δψ′ − δψ)− Γ(δψ − δψ′)] (6.21)

≡ Γ̃(δψ′ − δψ)

≡ −Γ̃(δψ − δψ′).
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By way of analysis,

• The term Γ̃(δψ − δψ′) is an odd function with a period of 2π and with zeros at
δψ − δψ′ = 0, ±π and possibly other places.

• The zeros correspond to potential phase locking.

• We can determine the stability of each of these zeros by expanding Γ̃(δψ − δψ′)
around each zero with a small perturbation to the phase, denoted ∆. That is

d(δψ − δψ′)

dt
= − dΓ̃(δψ − δψ′)

d(δψ − δψ′)

∣∣∣∣∣
Γ̃(δψ−δψ′)=0

∆ (6.22)

• The stability depends on the sign of the slope of

dΓ̃(δψ − δψ′)

d(δψ − δψ′)

∣∣∣∣∣
Γ̃(δψ−δψ′)=0

which corresponds to a ”restoring force”. We want d(δψ−δψ′)
dt

to be negative when ∆
is positive, and vice versa.

• dΓ̃(δψ−δψ′)
d(δψ−δψ′)

∣∣∣
(δψ−δψ′)=0

> 0 implies stability.

• dΓ̃(δψ−δψ′)
d(δψ−δψ′)

∣∣∣
(δψ−δψ′)=0

< 0 implies instability.

This is illustrated for the case of Γ̃(x) = sinx, for which dΓ̃(x)
dx

= cosx is positive at x0 =
0 so the system is stable at this point (Figure 6).

.

Figure 6: Stability analysis

.

We return to the interaction between two neurons, with a model of a motor neuron
used to calculate Z⃗(θ). Ee find that there are two points close to but not at the origin
that are stable (Figure 7). The phase difference can, in the presence of variability, jump
between these phase shifts.
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Figure 7: Pairwise interaction is revealed by the phase shifts between two reciprocally connected neurons. Data from
Reyes and Fetz, 1993. Analysis from Ermentrout and Kleinfeld, 2000

.
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