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7 Circuits of Phase-Coupled Neuronal Oscillators: Ap-

plications

We return to coupled oscillators and consider a number of ”realistic” scenarios in interac-
tions that lead to the phase-locking among neurons. The first is the use of synaptic-like
interactions. The second is the effect of frequency differences, with particular reference
to wave generation. Finally, we consider an asymmetric system.

7.1 Classic example: Two oscillators with ”low-pass”, synaptic-
like, coupling.

Data on the coupling of inhibitory neurons posed a challenge. Pairs of mutually inhibitory
neurons locked in anti-phase at low frequencies but locked in phase at frequencies at high
frequencies (Figure 1). In-phase locking with inhibition seems counterintuitive, but the
interactions among oscillators are in the form of phase locking with a shift, and the shift
depends on the timing of the interaction relative to the oscillation frequency.

Figure 1: A pair of PV inhibitory neurons. Data from Connors

.

The solution to this conundrum, proposed independently by Ermentrout and Hansel,
is consider two oscillators that interact by a synapse with a non-instantaneous rise time.

Recall the correlation integral for Γ̃(δψ′− δψ) was found by subtracting the two equa-
tions of motion for the phase to get the difference, i.e.,

d(δψ − δψ′)

dt
= [Γ(δψ′ − δψ)− Γ(δψ − δψ′)] (7.1)

≡ Γ̃(δψ′ − δψ)

≡ −Γ̃(δψ − δψ′).
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The correlation integral is

Γ(δψ′ − δψ) =
ϵ

2π

∫ π

−π
dθ R⃗ (θ − (δψ′ − δψ)) · S⃗(θ) (7.2)

=
ϵ

2π

∫ π

−π
dθ S⃗ (θ − (δψ − δψ′)) · R⃗(θ)

(7.3)

Rather than choose a realistic and analytically untractable cell model, let’s try some
analytical methods and choose a form of S⃗(δψ) that has variable spike rate along the limit
cycle. The simplest choice is

S(t) = sinωt (7.4)

so

S(θ) = sin θ (7.5)

=
eiθ − e−iθ

2i

. The interaction is given by an ”α” function, i.e.,

R(t ≥ 0) =
gsyn
cm

t

τ
e−t/τ (7.6)

so

R(θ) =


0 if θ < 0
gsyn
cm

(
θ
ωτ

)
e−θ/ωτ if θ ≥ 0

gsyn
cm

[
(
θ
ωτ

)
e−θ/ωτ +

(
θ−2π
ωτ

)
e−(θ−2π)/ωτ ] if θ ≥ 2π

etc.

(7.7)

We plug in and simplify the integral by assuming, to be confirmed self-consistently,
that we are concerned only with values ωτ << 2π, so that only the first term in R(θ)
(equation 7.7) will contribute. This means that the tail of the exponential will have well
decayed over the time scale of one cycle. The upper limit can be moved from 2π to ∞ so
that

Γ(δψ′ − δψ) =
gsyn
cm

ϵ

2π
ωτ

∫ ∞

0
d

(
θ

ωτ

)
sin

[
ωτ

(
θ

ωτ

)
− (δψ − δψ′)

](
θ

ωτ

)
e−θ/ωτ

=
gsyn
cm

ϵ

2π
ωτ

1

2i

(
e−i(δψ−δψ

′)
∫ ∞

0
x dx eiωτxe−x − ei(δψ−δψ

′)
∫ ∞

0
x dx e−iωτxe−x

)

=
gsyn
cm

ϵ

2π
ωτ

1

2i

(
e−i(δψ−δψ

′)

(1− iωτ)2
− ei(δψ−δψ

′)

(1 + iωτ)2

)∫ ∞

0
x dx e−x

=
gsyn
cm

ϵ

2π

ωτ

[1 + (ωτ)2]2

([
(ωτ)2 − 1

]
sin(δψ − δψ′) + 2ωτ cos(δψ − δψ′)

)
and thus the odd part of the interaction, relevant for pairwise interactions, is

Γ̃(δψ − δψ′) =
gsyn
cm

ϵ

π

ωτ [1− (ωτ)2]

[1 + (ωτ)2]2
sin(δψ − δψ′) (7.8)
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so that the restoring force is

dΓ̃(δψ − δψ)

d(δψ − δψ)

∣∣∣∣∣
δψ−δψ′=0

=
gsyn
cm

ϵ

π

ωτ [1− (ωτ)2]

[1 + (ωτ)2]2
(7.9)

Recall that the ”restoring force” dΓ̃(δψ−δψ′)
d(δψ−δψ′)

∣∣∣
(δψ−δψ′)=0

determines the stability:

• dΓ̃(δψ−δψ′)
d(δψ−δψ′)

∣∣∣
(δψ−δψ′)=0

> 0 implies stability at δψ − δψ′ = 0, i.e., synchrony, for exci-

tatory connections (gsyn > 0) only for low frequencies, i.e., ω < 1/τ .

• dΓ̃(δψ−δψ′)
d(δψ−δψ′)

∣∣∣
(δψ−δψ′)=0

> 0 implies stability at δψ − δψ′ = 0, i.e., synchrony, for in-

hibitory connections (gsyn < 0) only for high frequencies, i.e., ω > 1/τ .

• The result for inhibition is in agreement with the pairwise measurements of Connors
(Figure 1). The situation is reversed at δψ− δψ′ = ±π, also in agreement with data
(Figure 1). This result is also in agreement with the networks measurements of
Jeffreys (Figure 2). At high frequency the entire network is synchronous, while
at low frequency the oscillations cease (Figure 2), which we assume results from
frustration between asynchronous

All of the action occurs near ωτ = 1, so the approximation ωτ << 2π is justified.

Figure 2: Hippocampal slice in which all excitatory connections are blocked. The frequency is manipulated with various
pharmaceutical agents. Data from Whittington, Traub and Jefferys 1995

.
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A final point is that phase-locking is accompanied by a shift in frequency, found from
the ”even” part of Γ(δψ− δψ′), i.e., the cosine term in Equation 7.8. For the present case
the shift is

∆ω =
gsyn
cm

ϵ

2π

(ωτ)2

[1 + (ωτ)2]2
. (7.10)

The sign of the shift depends on that of gsyn but is independent of ωτ . The magnitude of
the shift peaks at ωτ = 1.

7.2 Two oscillators with different intrinsic frequencies.

We take
Γ(θ) ≡ −Γ0 sin(θ). (7.11)

Then a system with two coupled neuronal oscillators with different intrinsic frequencies
can be expressed as

dδψ

dt
= δω + Γ0 sin(δψ

′ − δψ) (7.12)

and
dδψ′

dt
= δω′ + Γ0 sin(δψ − δψ′). (7.13)

Subtracting these gives

d (δψ − δψ′)

dt
= (δω − δω′) + Γ0 sin(δψ

′ − δψ)− Γ0 sin(δψ − δψ′)

= (δω − δω′)− 2Γ0 sin(δψ − δψ′). (7.14)

The system will phase lock, for which dδψ
dt

= dδψ′

dt
, so long as the interaction strength, i.e.,

Γ̃ = 2Γ0 sin(δψ − δψ′) (7.15)

balances the difference in frequencies, i.e.,

2Γ0 sin(δψ
′ − δψ) = δω′ − δω. (7.16)

This requires
2Γ0

|δω − δω′|
> 1 (7.17)

and the phase shift between the peak activity in the two neurons is just

δψ − δψ′ = sin−1

(
δω − δω′

2Γ0

)
. (7.18)

The oscillator with the higher intrinsic frequency leads. The frequency under phase lock,
found by adding the equations, is

ωobserved = ω +
δω + δω′

2
. (7.19)

δψ − δψ′ and ωobserved are the two quantities that are measured in the laboratory.

4



Box 1. Quasiperiodic motion when locking does not occur
Outside of the phase locked region one must integrate the equations of motion, i.e.,∫ δψ−δψ′

o

dx

(δω − δω′)− 2Γ0 sinx
=

∫ t

0
dt′. (7.20)

which, from tabulated integrals, is

δψ − δψ′ = −2 tan−1

2Γ0 +
√
(δω − δω′)2 − 4Γ2

0 tan

(√
(δω−δω′)2−4Γ2

0
2 t

)
δω′ − δω

 . (7.21)

The system undergoes quasiperiodic motion as the phase difference evolves with a period of

Tδψ−δψ′ =
2π√

(δω − δω′)2 − 4Γ2
0

(7.22)

and, near locking, maintain a near constant phase difference of π/2 until the two oscillators
rapidly slip once every period.

Box 2. Chain of oscillators with δω ∝ ∆x

dδψx
dt

= δωx +
∑
x ̸=x′

Γ(δψx − δψx′) (7.23)

with
δωx ∝ x+ constant. (7.24)

When the system locks, there can be many strings of oscillators, each with the same frequency
(Figure 3). For strong enough interaction, all oscillators lock at the same frequency, but a
gradient of phase shifts with ∆ψx

dx given by a monotonic function of x, like ∆ψx

dx ∝ constant,
i.e., the phase shift appears as a traveling wave. The data on electrical waves from Limax
olfaction shows traveling waves and a gradient of intrinsic frequencies.

7.3 Unidirectional coupling: One oscillator drives another.

A common situation, and our last example, is that of one oscillator attempting to entrain
another. Here the coupling is unidirectional. Let the external drive have frequency ωD
and coupling strength ΓD with a phase ψ′(t) defined by

dψ′(t)

dt
= ωD (7.25)

Then a simple formalism for the phase of the driven oscillator, with intrinsic frequency
ωo, is of the form

dψ(t)

dt
= ω + ΓD sin (ψ′(t)− ψ(t)) (7.26)

5



Figure 3: Parcellation in one dimensional lattice of weakly coupled oscillators. From Ermentrout and Kopell, 1984

.

= ω + ΓD sin (ωDt+ ψo − ψ(t))

where ψo is a phase shift. In steady state

dψ(t)

dt
= ωD. (7.27)

Substituting in gives a phase shift of

ψ − ψo = sin−1
(
ωD − ω

ΓD

)
. (7.28)

We see that locking can occur only for ω − Γ < ωD < ω + Γ and that the faster
oscillator is phase advanced.

Box 3 .Phase-coupled oscillators are not driven harmonic oscillators
The behavior of driven phase-coupled oscillators behavior is quite different from that for

a linear (harmonic) oscillator governed by the equation

d2x(t)

dt2
+ ω2

o x(t) + β
dx(t)

dt
= A cos (ωDt) , (7.29)

where β is a loss term. This has the well know steady-state solution

x(t) =
A√

(ω2
D − ω2

o)
2 + β2ω2

D

cosψ(t), (7.30)

with
ψ(t) = ωDt− ψ1 (7.31)
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Figure 4: The olfactory system of the mollusc Limax maximus. From Delaney, Gelperin, Fee, Flores, Gervais, Tank and
Kleinfeld, 1994

.

and phase shift

ψ1 = tan−1

(
βωD

ω2
D − ω2

o

)
. (7.32)

Here, the maximum phase-shift swings over a maximum range of ψ1 = 0 to ψ1 = π as the
drive frequency is swept from ωD = 0 to ωD → ∞. Amplitude issues aside, the range is the
same as the nonlinear oscillator but the dynamics are quite different.

Box 3. Case of quasiperiodic motion of driven oscillators When the inter-
action is too weak for locking, there is a time-varying phase shift between the drive and the
driven oscillator. We write

ψ(t) = x(t) + ωDt (7.33)

so that Equation 7.27 becomes

dx(t)

dt
= ωo − ΓD sin(x) (7.34)

and can be directly integrated to give (using tables)

x(t) = 4π tan−1

ΓD +
√
(ωD − ωo)2 − Γ2

D tan

(√
(ωD−ωo)2−Γ2

D
4π t

)
ωD − ωo

 . (7.35)

The system undergoes quasiperiodic motion as the phase difference evolves with a radian
frequency of

Ω =

√
(ωD − ωo)2 − Γ2

D

2π
. (7.36)

Near locking, the drive maintains a near constant phase difference of π/2 until the two
oscillators rapidly slip by nearly 2π once every period of 2π/Ω.
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Figure 5: Propagating waves in the olfactory lobe of the mollusc Limax maximus. From Delaney, Gelperin, Fee, Flores,
Gervais, Tank and Kleinfeld, 1994

.

7.3.1 Neurons driving pial arterioles.

We consider the example of neuronal local field potentials, with a roughly 0.1 Hz oscilla-
tion, that unidirectionally drive pial oscillators with a similar frequency (Figure 6); the
phase shift is roughly π/5 radians.

Years back, Weiner proposed that locking could entrain a fraction of a population of
driven oscillators within a range of frequencies close to the driven frequency, but did not
lock oscillators too far away in frequency. This ”burns a hole”, as analyzed by Kuromto
(Figure 7). This prediction is now qualitatively seen between neurons and pial oscillators,
where locking can occur up to 0.2 Hz (Figure 8).
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Figure 6: The local field potential and pial arteriole diameter measured in mouse cortex. Note the correlation that
indicated locking with a slight phase shift. From Mateo, Knutsen, Tsai, Shih and Kleinfeld, 2017

Figure 7: Cartoon from Kuromoto, 1984

.
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Figure 8: Locking of pial vessels in vibrissa cortex to driven vibrissa input from 0.02 to 0.5 Hz . From Broggini and
Kleinfeld, unpublished

.
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