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8 Circuits of Phase-Coupled Neuronal Oscillators: Time

delays

We return to coupled oscillators and consider the effect of time delay, such as caused by
propagation along long axons, among the communication between neurons.

8.1 Propagation delays

There are multiple biophysical mechanism that can delay the impact of one cell on another.
The activation of a synapse is one, as are dendritic integration times. These are relatively
fixed and typically of a few milliseconds. The longer delays are likely to result from the
propagation along axons. If understand this, we return to our ”brutalized” model of a
neuron snd estimate the propagation speed to together with related parameters.

8.1.1 Speed and width of the action potential

We are after the speed of the propagating front. We thus solve the cable equations with
the fast onset current, the Na+ current, which dominates the leading edge of the action
potential. We ignore the slower potassium currents and sodium inactivation. In this limit
the I-V relation for the Na+ current can be assumed to follows a cubic dependence of
f(V ), This yields an equation that is roughly valid on the time-scale of the leading edge
of the spike - roughly the first 0.1 ms of the action potential, i.e.,

τ
∂V (x, t)

∂t
− λ2∂

2V (x, t)

∂x2
+
rmGleak

2πa

(
V − V Nernst

leak

)
= Active Currents (8.1)

= −rmGNa+

2πa
f(V )

where λ is the space constant and τ is the time constant of the cell. We recall that in the
absence of active currents, the passive part is simply a cable equation. It supports the
propagation of a pulse, with an exponentially decaying amplitude, whose front propagates
with a speed, denoted µ, given by

u =
λ

2τ
. (8.2)

We next perform a self-consistent analysis to determine the speed of propagation and
the width of the rising edge in the presence of active currents. We can estimate, from the
form of Equation 8.2, that the space constant and the time constant are rescaled as

Λ← λ√
rmGNa+

. (8.3)
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with rmGNa+ >> 1 and

T ← τ

rmGNa+
, (8.4)

respectively, so that that active speed is of order

U ∼ u√
rmGNa+

. (8.5)

This is an increase by about an order of magnitude, and of course active pulses do not
decay.

Box 1. A proper calculation of propagation speed

• We begin with the cable equation with the leakage rolled into the source term, i.e.,

τ
dV

dt
= λ2d

2V

dx2
− rmGNa+

(V − Vrest) (V − Vthresh) (V − Vpeak)

v2o
(8.6)

• Let V (x, t) = V (x− Ut) ≡ V (z), so that

−τU dV

dz
= λ2d

2V

dz2
− rmGNa+

(V − Vrest) (V − Vthresh) (V − Vpeak)

v2o
(8.7)

• We define the width of the front as Λ, which has to be found self consistently. Assume
that V propagates as a front when V is not near Vrest nor V = Vpeak, where

dV
dz = 0.

We thus take

dV

dz
≡ V̇ (8.8)

=
1

Λ

(V − Vrest) (V − Vpeak)

vo

where the slope is negative as the propagating front moves from a region with V ≈
Vpeak to a region with V ≈ Vrest. Then by the chain rule

d2V

dz2
=

d

dz

dV

dz
(8.9)

=

(
d

dV

dV

dz

)
dV

dz

=
dV̇

dV
V̇

with

dV̇

dV
=

(V − Vpeak) + (V − Vrest)

Λvo
(8.10)

=
2V − (Vpeak + Vrest)

Λvo
.

• Take V (z → ±∞) = 0

2



• Substitution gives

−τUV̇ = λ2dV̇

dV
V̇ − rmGNa+Λ

(V − Vthresh)

vo
V̇ (8.11)

and we see that the V̇ terms cancel out. So

−τU = λ2 2V − (Vpeak + Vrest)

Λvo
− rmGNa+Λ

(V − Vthresh)

vo
(8.12)

or

−U τ

Λ
+

λ2

Λ2

(Vpeak + Vrest)

vo
− rmGNa+

Vthresh

vo
=

(
2
λ2

Λ2
− rmGNa+

)
V

vo
. (8.13)

Terms proportional to V and those independent of V must independently sum to zero. Thus

Λ = λ

√
2

rmGNa+
(8.14)

and we see that the space constant, or spatial width of the action potential, is shortened by
a factor of rmGNa+during an action potential, as expected. Further,

U =
λ

τ

√
rmGNa+

2

[
(Vpeak − Vthresh)− (Vthresh − Vrest)

vo

]
(8.15)

and we see that the speed is increased by a factor of rmGNa+ compared to λ/τ , as expected,
as well as modulated by electrophysiological parameters, which could not be ”guessed” at
the onset of our calculation. Self consistency requires Vpeak > Vthresh and Vthresh > Vrest.
Experimental reality enforces (Vpeak > Vthresh) > (Vthresh > Vrest), with the expectation
that [· · ·] is of O(1).

When we put in numbers, we get speeds U ≈ 1 mm/ms. The largest changes in a rhythm
takes place over a quarter of a cycle. This for a 40 Hz gamma rhythm this corresponds to a
time of 6 ms or a distance of about 6 mm. This is more than the width of one hemisphere
for a mouse brain; not so much for a primate.

8.2 Two oscillators with propagation delays.

Let’s see what time delays in signal propagation do to synchronization of neuronal signals.
We again take

Γ(δψ − δψ′) ≡ −Γ0 sin(δψ − δψ′). (8.16)

Then

dδψ(t)

dt
= Γ0 sin(δψ

′(t− τD)− δψ(t)) (8.17)

dδψ′(t)

dt
= Γ0 sin(δψ(t− τD)− δψ′(t)).
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We assume a solution of the form

δψ(t) = ϕ(t) + α/2 (8.18)

δψ′(t) = ϕ(t)− α/2

where α is a phase shift. The equation for δψ(t) yields

dδψ(t)

dt
= Γ0 sin [ϕ(t− τD)− α/2− ϕ(t)− α/2] (8.19)

= Γ0 sin [ϕ(t− τD)− ϕ(t)− α]
= Γ0 sin [ϕ(t− τD)− ϕ(t)] cosα − Γ0 cos [ϕ(t− τD)− ϕ(t)] sinα

while that for δψ′(t) yields

dδψ′(t)

dt
= Γ0 sin [ϕ(t− τD) + α/2− ϕ(t) + α/2] (8.20)

= Γ0 sin [ϕ(t− τD)− ϕ(t) + α]

= Γ0 sin [ϕ(t− τD)− ϕ(t)] cosα + Γ0 cos [ϕ(t)− ϕ(t− τD)] sinα

The difference at equilibrium yields

d(δψ(t)− δψ′(t))

dt
= −2Γ0 cos [ϕ(t− τD)− ϕ(t)] sinα. (8.21)

At phase locking this becomes

0 = cos [ϕ(t− τD)− ϕ(t)] sinα (8.22)

Except for the case sinα = 0, we have phase locking for ϕ(t)− ϕ(t− τD) = constant, so
that

ϕ(t) = Ωt (8.23)

satisfies
dδψ(t)

dt
=
dδψ′(t)

dt
= Ω (8.24)

where Ω is the shift in frequency from intrinsic frequency ω., i.e.,

dψ(t)

dt
=
dψ′(t)

dt
= ω + Ω (8.25)

Then
0 = cos [ΩτD] sinα, (8.26)

which is consistent with a fixed shift in phase of α = 0, ± π. The sum at equilibrium
yields

d(δψ(t) + δψ′(t))

dt
= 2Γ0 sin [ϕ(t− τD)− ϕ(t)] cosα

= 2Γ0 sin (ΩτD) cosα. (8.27)
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When phase locking occurs this becomes

Ω = Γ0 sin [ΩτD] cosα, (8.28)

which must be satisfied for potential values of Ω and α.
We need one more relation to constrain Ω and α; we achieve this by looking at the

stability of δψ(t)− δψ′(t). Expanding Equation 8.21 in a Taylor series with respect to α
yields

d(δψ(t)− δψ′(t))

dt
= 0 − 2Γ0 cos [ϕ(t− τD)− ϕ(t)] |ϕ=Ωt

d sinα

dα
|α=0,±π ∆α + · · ·(8.29)

= −2Γ0 cos [τDΩ] cosα|α=0,±π ∆α

and implies, to keep the sign of the RHS negative (see part 1 of oscillator series),

α =

{
0 if cosΩτD ≥ 0
±π if cos ΩτD < 0

(8.30)

or equivalently, with Equation 8.28, specifies that

ΩτD
ΓoτD

=

{
+sin(ΩτD) if cosΩτD ≥ 0
− sin(ΩτD) if cosΩτD < 0

(8.31)

and we immediately see that

Ω =

{
0 if ΓoτD < 1
One or more values if ΓoτD > 1

(8.32)

Thus small delays imply phase shifts of Ω = 0. For ΓoτD > 1, these equations must be
solved graphically (Figure 1) or numerically.

8.2.1 Case of α = 0

Here ΩτD must lie in the ranges 0 < ΩτD < π/2, 3π/2 < ΩτD < 5π/2, 7π/2 < ΩτD <
9π/2, etc. The graphical solution, illustrated in Figure 1, is found for the interception of
a line with positive slope of 1/ΓoτD with the positive part of a sine curve, or a line with
negative slope of −1/ΓoτD with the negative part of a sine curve.

A little algebra shows that when ΓoτD is barely larger than 1, the frequency shift Ω is
arbitrarily small, i.e.,

Ω ≃ Γo

√
6(ΓoτD − 1) (8.33)

Increasing values of ΓoτD lead to more solutions, i.e., multiple values of Ω for the same
τD and Γo. A little more algebra shows that when ΓoτD → ∞, the potential frequency
shifts are

Ω =
2n

τD

(
π

ΓoτD

)
for n = 0, 1, 2, ... (8.34)
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Figure 1: Graphical determination of the locking frequencies for two mutually coupled oscillators. Dots are stable
equilibria. Black lines are for excitatory synapses (ΓoτD > 0 and red lines are for inhibitory synapses ΓoτD < 0).

8.2.2 Case of α = ±π

Here ΩτD must lie in the ranges π/2 < ΩτD < 3π/2, 5π/2 < ΩτD < 7π/2, etc. This case
follows that for α = 0, except as we are now looking for the interception of a line with a
negated sine curve (Figure 1).

As above, a little algebra shows that when ΓoτD →∞, the potential frequency shifts
are

Ω =
2n+ 1

τD

(
π

ΓoτD

)
for n = 0, 1, 2, ... (8.35)

8.2.3 Summary on delays

• The frequency of oscillations are unshifted for small values of delay, i.e., ΓoτD < 1.

• The phase is similarly unshifted for small values of delay, i.e., ΓoτD < 1.

• There are frequency shifts for ΓoτD > 1.

• The synchronous state is stable only for τD < π/(2Ω) mod 2π. The first switch in
phase first occurs for a delay of a quarter of a cycle.
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• There are gaps in the spectrum for Ω.

• Large time delays can lead to multiple oscillation frequencies.

The evidence for the effect of delay of shifting frequencies and phase is fairly equivocal
at present, but see Figure 2. Nonetheless, this is likely to become a major experimental
issue as simultaneous recording across the brain becomes prevalent.

Figure 2: Correlated activity in across two regions in parietal association cortex in cat, i.e., areas 7 and 5, during a
forced choice discrimination task in which the animal was trained to respond to a change in the orientation of a grating.
(1) the onset of the grating stimulus, (2) pressing a level once the grating is perceived, (3) releasing the lever in response to
a rotation of the grating, and (4) a period of food reward Note the presence of a phase shift, **, that originates soon after
the cat makes a behavioral choice, and a further flip of π radians (*) during the reward period. From Roelfsema, Engel,
Konig and Singer, 1997.

.

8.3 Two oscillators with frequency differences and propagation
delays.

Let’s now see what combined frequency differences and time delays in signal propagation
do to synchronization of neuronal signals. The procedure is similar to that above, with a
bit more algebra. We take

dδψ(t)

dt
= δω + Γ0 sin(δψ

′(t− τD)− δψ(t)) (8.36)

dδψ′(t)

dt
= δω′ + Γ0 sin(δψ(t− τD)− δψ′(t))

where the frequencies δω and δω′ are in general different. We again assume a solution of
the form

δψ(t) = ϕ(t) + α/2 (8.37)

δψ′(t) = ϕ(t)− α/2

where α is a phase shift. The equation for δψ(t) yields

dδψ(t)

dt
= δω + Γ0 sin [ϕ(t) + α/2− ϕ(t− τD) + α/2] (8.38)

= δω + Γ0 sin [ϕ(t)− ϕ(t− τD)] cosα + Γ0 cos [ϕ(t)− ϕ(t− τD)] sinα
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while that for δψ′(t) yields

dδψ′(t)

dt
= δω′ + Γ0 sin [ϕ(t)− α/2− ϕ(t− τD)− α/2] (8.39)

= δω′ + Γ0 sin [ϕ(t)− ϕ(t− τD)] cosα − Γ0 cos [ϕ(t)− ϕ(t− τD)] sinα

Thus the difference of the phase evolution yields

0 = δω − δω′ + 2Γ0 cos [ϕ(t)− ϕ(t− τD)] sinα (8.40)

or

cos [ϕ(t)− ϕ(t− τD)] =
δω − δω′

2Γ0 sinα
. (8.41)

As in the case of solely delays, we have phase locking for ϕ(t) = Ωt, so that the difference
yields

0 = δω − δω′ − Γ0 cosΩτD sinα. (8.42)

Further, the sum yields

2Ω = δω + δω′ − 2Γ0 sinΩτDcosα. (8.43)

or

Ω =
δω + δω′

2
− Γ0 sinΩτD cosα. (8.44)

We now have two equations and two unknowns. We rearrange these to solve for cosα,
yielding

cosα =
1

cosΩτD

√√√√cos2ΩτD −
(
δω + δω′

2Γ0

)2

. (8.45)

which has the correct limit of cosα = 0 for δω = δω′. We then form an expression solely
in terms of the frequency shift Ω and known quantities. Valid values of Ω correspond to
solutions of the trancendental equation

δω + δω′

2Γ0

= tanΩτD

√√√√cos2ΩτD −
(
δω + δω′

2Γ0

)2

. (8.46)

The numerical solution of this equation is shown for values of τD and Γ0 (Figure 3). As
in the above case of solely time delays, the number of solutions increases with τD and Γ0.

The stability of the solutions can be examined by expansion around the equilibrium,
as shown by Schuster and Wagoner (Progress of Theoretical Physics, 1989). The stable
solutions flip between shifts of 0 and π as the frequency increases (Figure 4).

8.4 Rotating waves in two dimensions

The extension of weakly coupled oscillators to lattices has proven to be largely analytically
intractable. One interesting result is that the lattice will only synchronize for a coupling
constant Γ0 that scales as the size of the system. Nonetheless, waves and especially rotat-
ing waves are observed in experiment (Figures 5, 6, 7, and 8) and apparently metastable
patterns are observed in numerical examples.
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Figure 3: Zeros of Equation 8.46 for the total frequency shif, found from the zeros of F in F = δω+δω′

2
−

Γ0 tanΩτD

√
cos2 ΩτD −

(
δω+δω′

2Γ0

)2
. From Schuster and Wagoner, 1989

.

Figure 4: The synchronization frequency Ω and the phase shift α between the neuronal oscillators. From Schuster and
Wagoner, 1989

.

Figure 5: Measurement of oscillations across visual cortex in turtle in response to a looming stimulus. Note the peak
response at 18 Hz. From Prechtl, Cohen, Pesaran, Mitra and Kleinfeld, 1997

.
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Figure 6: The spatiotemporal dynamics for the modulation of the 18 Hz rhythm in turtle visual cortex. Note the epoch
of a rotating wave. From Prechtl, Cohen, Pesaran, Mitra and Kleinfeld, 1997

.

Figure 7: Images of two evoked waves and six spontaneous waves from the same field of view in the same animal. The
evoked response showed a clear compression of activity at the V1/V2 border (*) in the middle of the imaging field. From
Xu, Huang, Takagaki and Wu, 2007

.

10



Figure 8: The present of traveling waves at the alpha rhythm frequency in human temporal cortex. From Muler,
Piantoni, Koller, Cash, Halgren and Sejnowski, 1989

.
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