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9 The Biophysics of Action Potentials in ”Point”

Neurons 2

9.1 Review of the Nernst Potential

Consider a cell. It consists of two compartments, labeled ”inside” and ”outside”,
each filled with Na+ and Cl− ions and separated by a thin lipid wall. On the
inside of the cell, the concentration of ions is denoted [Na+]in and [Cl−]in and on
the outside they are denoted [Na+]out and [Cl−]out. To get a feel for the scale of
moles/liter, lets put it into terms relevant for the size of a cell, i.e., ions per cubic
micrometer. In a biological cell, the ion concentration is about 0.15 M, so we have
about 108ions/µm3 in a cell.

We set the cell so that, initially, [Na+]in = [Cl−]in and [Na+]out = [Cl−]out
and the two sides are electrically neutral. Further, we impose [Na+]out > [Na+]in.
Suppose we put a sub-nanometer pore that allows only one kind of ion to pass. To
be concrete, we open up a hole that allows [Na+] ions, but not [Cl−] ions, to pass.
This is a Na+ Na+ selective channel. What follows is:

• Initially, the [Na+] moves down its concentration gradient, driven by diffusion.

• As Na+ ions move across the wall, the solutions in the two compartments
are no longer electrically neutral. Positive charge (from the Na+) leaves the
outside and builds up on the inside. This leads to an electric field across the
wall.

• The electric fields points from the inside to the outside and opposes motion of
additional Na+ ions.

• In time, the electric field caused by the initial movement of ions points from
the inside to the outside. This field is the direction that opposes motion of
additional Na+ ions and will prevent any more Na+ ions from moving. As
this point the system is in equilibrium.

The result is that the concentration difference in Na+ ions between the inside and
outside of the cell leads a difference in electrical potential across the cell. The value
of this potential is found by equating the chemical potential to move an ion across
the membrane, ν, with the electrcal potential by eV = ν, i.e.,

ν =

(
∂F

∂N

)
T,V

= −kBT
∂lnZ

∂N
= −kBT

∂ln ξ
N

N !

∂N
= kBT lnN + constant (9.9)
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where Z is the partition function, ζ is the partititon function per ion and the denom-
inator of N ! accounts for the ways to arrange N identical ions, and we approximated
N !→ nN (Sterling’s formula). Thus

V =
kBT

e
ln

[Na+]out
[Na+]in

(9.10)

We see immediately that V is on the order of kBT
e
≈ 25 mV.

9.2 Review of Nernst-Planck I-V Relation

In the presence of a weak electric field the motion of ions is limited by the collisions
so that the velocity, as opposed to acceleration, is proportional to the force. We
have

~vD(x, t) = µ~E(x, t) (9.11)

= −µ∂V (x, t)

∂x
x̂

where ~vD(x, t) is known as the drift velocity, albeit we take the one-dimensional case
at present, and µ is the mobility. We can now calculate the flux due to the electric
field as

~JD(x, t) = [Ion](x, t) ~vD(x, t) (9.12)

= µ[Ion](x, t) ~E

= −µ[Ion](x, t)
∂ V (x, t)

∂x
x̂.

The total flux includes diffusion down a concentration gradient as well as the
electric force. For simplicity, we drop vector nationa as all movement is along the
x̂-axis. Then

J(x, t) = −D∂[Ion](x, t)

∂x
− µ[Ion](x, t)

∂V (x, t)

∂x
. (9.13)

At equilibrium, J(x, t) = 0. Then∫ V (x)

V (x′)

dV = −D
µ

∫ x

x′

d[Ion](x)

[Ion](x)
(9.14)

and thus

∆V = V (x)− V (x′) = −D
µ
ln

(
[Ion](x)

[Ion](x′)

)
. (9.15)

But we showed that this equilibrium potential is just given by the Nernst formula,
i.e.,

∆V = VNernst = −kBT
ze

ln

(
[Ion](x)

[Ion](x′)

)
(9.16)
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where include the possibility of a polyvalent ion and write ze for the charge. Thus

µ = D
ze

kBT
. (9.17)

We can now put all of the formalism together to get a final equation for the flux in
terms of a single transport coefficient, D, i.e,

J(x, t) = −D
(
∂[Ion](x, t)

∂x
+

ze

kBT
[Ion](x, t)

∂V (x, t)

∂x

)
. (9.18)

We focus on the case of current through a pore of cross sectional area A that
spans a membrane of thickness L. We further assume that the electric field is uniform
(not true, but it allows us to make some uncluttered progress) and that we are in
steady state, so that V (x) = ∆V x

L
. We have an equation for the electrical current,

I, i.e.,

I = −zeJ(x)A (9.19)

= zeDA

(
d[Ion](x)

dx
+

ze

kBT
[Ion](x)

∆V

L

)
.

or

L
d[Ion](x)

dx
+
ze∆V

kBT
[Ion](x) =

IL

zeDA
(9.20)

Which we can solve directly to obtain

I = ze
DA

L

zeV

kBT

[ion]in − [ion]oute
− zeV

kBT

1− e−
zeV
kBT

(9.21)

where we took the voltage to be V = 0 on the outside on the cell and this replace
∆V ← V .

Figure 1: The I-V relation for ions is nonlinear. Convention is to ignore this and take I = g (V − VNernst)

.
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In the limit that V >> 0 we see that I → (ze)2[ion]in
DA
L

1
kBT

V and in the

limit In the limit that V << 0 we see that I → (ze)2[ion]out
DA
L

1
kBT

V . Thus in
the limits of large and small voltages Ohm’s Law, i.e., I = GV , is obeyed and the
conductance is greater when the current flows from high concentration of ions to
low concentrations of ions. The I − V relation is often expressed in terms of the
Nernst potential, i.e.,

I = ze
DA

L
[ion]in

zeV

kBT

1− [ion]out
[ion]in

e
− zeV

kBT

1− e−
zeV
kBT

(9.22)

= ze
DA

L
[ion]in

zeV

kBT

1− e−
ze(V−VNerst)

kBT

1− e−
zeV
kBT

and is known as the Nernst-Planck relation. The essential feature is that the I − V
curve is nonlinear for voltage changes on the order of kBT

ze
≈ 25/z mV away from

the reversal potential.
We can pack all of the prefactors together as a single conductance, gion(V ) where

we include the possibility that the pores, or conductances, can be modulated by the
transmembrane voltage through D = D(V, t). We write

I = gion(V, t)

V 1− e−
ze(V−VNerst)

kBT

1− e−
zeV
kBT

 . (9.23)

9.3 A Cell Circuit with Active Currents

Let’s develop the framework for the physics and electrochemistry of the action po-
tential V (t) for a cell with no spatial extent. We start in the most general manner
by adding active currents to the equation for a leaky capacitor,

τ
dV (t)

dt
− V (t) = −RmgNa+(V, t) V

1− e−
e(V−V

Na+)

kBT

1− e−
zeV
kBT

(9.24)

− RmgK+(V, t) V
1− e−

e(V−V
K+)

kBT

1− e−
zeV
kBT

− RmgCl−(V, t) V
1− e−

e(V−V
Cl− )

kBT

1− e−
zeV
kBT

+ Iext(t)

where τ is the time constant of the passive membrane, Rm is the resistance of the
membrane, and Iext(t) includes all external inputs. The sign convention is that
positive current flows out.

For changes in potential that are on the order of kBT
ze

away from the reversal
potential, the current is typically approximated by a linear relation using the high
concentration. For sodium, this relation is

Iion(t) ≈ gion(V, t) [V (t)− Vion] . (9.25)

This approximation is on the one hand unwarranted, but simplifies the equations
into a circuit formulation.
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τ
V. (t)

dt
− V (t) = RmgNa+(V, t) [V (t)− VNa+ ] (9.26)

− RmgK+(V, t) [V (t)− VK+ ]− Rmgleak [V (t)− Vleak] + RmI
ext(t).

Figure 2: A circuit model for the conductance-based equations of Hodgkin-Huxley equations

.

9.4 Functional Form of the Conductances

The business end is the form of the conductances gion(V, t), although in the labora-
tory one measures the current which is proportional to the product gion(V, t)[(V, t)−
Vion]. The expectation is that the conductance is in the form of a a maximum con-
ductance, ḡ, times voltage and time dependent terms for the activation, i.e., the
opening of channels designated by Pactivate(V, t), and the inactivations, i.e., the clos-
ing of channels designated by Pinactivate(V, t). This allows for transient behavior
by the sequential flow and stopage of currents. Recall that all probabilities vary
between 0 and 1 Thus

gIon(V, t) ≡ ḡIon × Pactivate(V, t)× Pinactivate(V, t). (9.27)

In general, the activation and inactivation terms are governed by a first order
equation that describes their dynamics. We have

P open
act (V, t) + P closed

act (V, t) = 1 (9.28)

and

dP open
act (V, t)

dt
= kopen(V )P closed

act (V, t)− kclosed(V )P open
act (V, t) (9.29)

= − [kopen(V ) + kclosed(V )]P open
act (V, t) + kopen(V ) (9.30)

= − [kopen(V ) + kclosed(V )]× [P open
act (V, t)− P open

act (V,∞)]

where P open
act (V,∞) is the steady value of the activation. Thus

dPact(V, t)

dt
= −kobs (Pact(V, t)− Pact(V,∞)) . (9.31)
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where kobs(V ) = kopen(V ) + kclosed(V ). There are two inherently voltage dependent
terms, the steady state value and the observed time constant. We consider the
steady-state behavior and kinetics of a two-state system as a means to understand
and parameterize the basic physics of these terms . The idea is that a thermal
average or a population of two-state systems is a reasonable portrayal of ionic cur-
rents. In fact, the decomposition of macroscopic currents in terms of channels is a
justification for this view.

For sake of argument, lets say that the activation sensor works by having a dipole
interact with the transmembrane potential. Dipole is of the form ~p = q~d and the
dipole experiences a torque from the electric field in the membrane that results in
an energy

Energy = −~p · ~E = qd cosθ
∂V

∂x
≈
(
q
dcosθ

L

)
V (9.32)

≡ z′e V

where θ is the angle between the dipole and the normal to the membrane, and we
have lumped all factors into the charge z′e.

The steady state extent of activation to inactivation is given by the usual Boltz-
mann relation

P open
act (V,∞)

P closed
act (V,∞)

= e
z′e(V−Vbias)

kBT (9.33)

where Vbias is the internal potential drop across the activation sensor. Thus

P open
act (V,∞) =

1

1 + e
− z′e(V−Vbias)

kBT

(9.34)

and

P closed
act (V,∞) =

e
z′e(V−Vbias)

kBT

1 + e
− z′e(V−Vbias)

kBT

(9.35)

P open
act (V,∞) is in the form of the logisitic function.

We now come to the issue of the observed rate constant or the channel. In
general, from a classical view point, the rate is determined by the time it takes for
the dipole sensors to rearrange themselves in the activated versus inactivated state.
The rate-constants kopen(V ) and kclosed(V ), in the absence of an applied electric field,
i.e., V = 0, are of the form

kopen(0) = νe
−∆Go
kBT (9.36)

where ν is an attempt frequency to jump over the barrier and ∆Go is a barrier
height. Then

kclosed(0) = νe
−∆Go−z′eVbias

kBT (9.37)

= kopen(0)e
−z′eVbias

kBT
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where ν is a molecular attempt frequency and clearly kinact(0) < kact(0) With
the addition of an electric field, the activation barrier is modified. The simplest
assumption is that the energy of the closed state is raise as much as that of the open
state is lowered. Thus

kopen(V ) = kopen(0)e
−z′eV
2kBT (9.38)

and

kclosed(V ) = kopen(0)e
−z′eVbias

kBT e
z′eV
2kBT . (9.39)

Thus

kobs(V ) = kopen(V ) + kclosed(V ) (9.40)

= kopen(0)

(
e
−z′eV
2kBT + e

−z′eVbias
kBT e

z′eV
2kBT

)
= kopen(0)e

−z′eVbias
2kBT

(
e
−z′e(V−Vbias)

2kBT + e
z′e(V−Vbias)

2kBT

)
= k′open(0) cosh

(
z′e(V − Vbias)

2kBT

)
.

This functional form has the shape of a bowl with a minimum at V = Vbias. Thus
the larger the magnitude of the voltage change, the faster the rate of the shorter the
opening time.

The bottom line is that the above forms for P open
act (V,∞) and kobs(0) provide a

formulation of the ionic basis for the action potentials. This framework includes the
observation that the peak of the time constants and the midpoint of the activation
functions occur at the same potential. As we shall see this is usually - but not always
- obeyed.

An Aside: Multiple Voltage Sensors. Real channels often have multiple
voltage seniors as noted earlier. Ideally, these give rise to active currents that
are proportion to P open

act (V, t) to a power. What is the consequence of this?
The first question concerns the steady state value [P open

act (V,∞)]N . We wish
to find the value of V where the slope, d[P open

act (V,∞)]N/dV is greatest, which
means calculating V for which d2[Pact(V,∞)]N/dV 2=0 and pluging this value
back into the equation for the slope.

First, a preliminary.

dP open
act (V,∞)

dV
=

d

(
1

1+e
− z′e(V−Vbias)

kBT

)
dV

(9.41)

=
z′e

kBT

e
− z′e

kBT(
1 + e

− z′e(V−Vbias)

kBT

)2

=
z′e

kBT
P open
act (V,∞) (1− P open

act (V,∞)) .
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Then the derivative of [P open
act (V,∞)]N is

d[P open
act (V,∞)]N

dV
= N [P open

act (V,∞)]N−1
dP open

act (V,∞)

dV
(9.42)

= N
z′e

kBT
[Pact(V,∞)]N [1− P open

act (V,∞)]

and the second derivative of PN
act(V,∞) is

d2PN
act(V,∞)

dV 2
= N

(
z′e

kBT

)2

[P open
act (V,∞)]N [1− P open

act (V,∞)] [N − (N + 1)P open
act (V,∞)]

(9.43)
which has a zero at the finite voltage of

V = Vbias +
kBT

z′e
logN. (9.44)

Thus there is a shift in the inflection point of the opening probability as a weak
function of N .

The slope at the inflection becomes

d[P open
act (V,∞)]N

dV
=

(
N

1 +N

)N+1
z′e

kBT
(9.45)

which increases from

d[P open
act (V,∞)]N

dV
|N=1 =

1

4

z′e

kBT
(9.46)

to the 4/e = 1.47-times larger asymptotic value of

d[P open
act (V,∞)]N

dV
|N→∞ =

1

e

z′e

kBT
. (9.47)

Essentially, the transition from closed to open takes place over the range kBT/z
′e

4

to kBT/z
′e

e
, or 6 mV to 9 mV for z′ = 1.The slope becomes steeper as the dipole

moment increase, i.e., the slope is linear in the increase in z′. As z′ → ∞, the
activation curve P open

act (V,∞) tends to a step function.
Another effect of multiple voltage sensors is on the time dependence of chan-

nel opening, whose onset is delayed and steeper for large values of N . To get a
sense of this, consider the approach to steady-state for [P open

act (V, t)]N ; at short
times the leading term is of order (kobst)

N , which increase slower than kobst.
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9.5 Experimental Self-Consistency of the Hodgkin-Huxley
Model

From a formal point of view, the transmembrane voltage, V (x, t) and the activation
parameters for each current, P open

act (V, t), form the state variables for the the system.
For the Hodgkin-Huxley model there are four state variables total, while for models
of thalamic relay neurons the number of state variables is (presently) 13.

The actual decomposition of currents is done by blocking the membrane conduc-
tances to all but one channel and using a voltage clamp to measure Im versus V .
The block is done by pharmacological means or by ion substitution. Currently, the
measurements are best done by measuring ”tail” currents to avoid the contributions
of leakage currents. In any case, one arrives at measured currents for each ion that
can be used to parameterize P open

act (V, x,∞) and τobs(V, x) for that ion.
The Hodgkin-Huxley equations are functions of 4 variables.

• V (x, t) ← the transmembrane potential

• m(V, t) ← the activation function (Pact(V, t)) for Na+ current

• h(V, t) ← the inactivation function (a separate function, P ′inact(V, t) = 1 −
P ′act(V, t)) for Na+ current

• n(V, t) ← the activation function (P ′′act(V, t)) for K+ current

The exact fitting parameters are in standard texts and we will not show them. The
functional dependencies on V that we expect are clearly seen.

The dynamic equations are

τ
dV (x, t)

dt
= −rmgNa+m3(V )h(V ) (V − VNa+) (9.48)

− rmgKa+n4(V ) (V − VK+)− rmgleak (V − Vl) + rmI
ext(t).

which has 7 independent biophysical parameters, i.e., τ , rm, gNa+ , gK+ , gleak, VNa+ ,
VK+ , and Vleak as well as 12 (or more in principle) fitting parameters as exponents
on the activation and inactivation functions.

dh(V, t)

dt
=
h∞(V )− h(V, t)

τh(V )
(9.49)

dm(V, t)

dt
=
m∞(V )−m(V, t)

τm(V )
(9.50)

dn(V, t)

dt
=
n∞(V )− n(V, t)

τn(V )
(9.51)

where n∞(V ) ≡ n(V, t→∞) and the parameterization for each rate expression has
three fitting parameters, i.e., z′, Vb, τobs(0), for a total of 9 parameters.

These circuit equations, derived from current clamp data, were used to predict
the shape of the action potential (in both the space clamped and non-space clamped
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Figure 3: The parameters experimentally derived for the Hodgkin Huxley equation, from data. From Hodgkin
and Huxley1952.

.

Figure 4: Computtation shows the form of the currents throuhtout the action potential.

.

case) and later the speed of propagation. The results showed self consistency about
the ionic currents and the voltage changes and the propagation speed.

To recap, the action potential results from an instability in the conductance
(negative conductance), such that the direction of the membrane current transiently
reverses (growth) in response to a perturbative current. Eventually, the conductance
saturates and recovers to a linear response. In both cases, the cell is leaky and the
effective time-constant is transiently very short, so that the width of the action
potential is small, less than one millisecond. Further, the current flow is localized
so that the voltage disturbance propagates as a wave.
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