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10 Voltage scales of Neuronal Dynam-

ics

We previously learned that neurons use two voltage levels, and at
least one voltage dependent conductance, to shift between the two
levels. The fundamental scale is the thermal scale, or

kBT

e
≈ 25 mV. (10.1)

We now consider this viewpoint in terms of synaptic transmission
and noise immunity. We also consider the smallest scale, that of
thermal noise, and the consequences of noise.

10.1 Separation of subthreshold dendritic inte-
gration and communication

Our final point concerns how a neuron performs logic, which is
to say how it separates the integration of synaptic inputs from the
decision making that leads to the production of an action potential.
We require a band of voltages over which the cell can integrate, that
is summate, synaptic inputs (Figure 1). The range of this band
must clearly be larger than the scale of thermal noise, which we
will discuss later but is less than 0.1 mV, and also large compared
to the activation of the Na+-based action potential.

The threshold for spiking, i.e., the transition from the region of
synaptic integration to the action potential, is not sharp. Activa-
tion of the Na+ channels occurs over the range of the transition of
P open
act (V,∞), where we recall

P open
act (V,∞) =

1

1 + e
− z′e(V−Vbias)

kBT

. (10.2)

Empirically, three gates must concurrently open, as implied by the
mα term in the Hodgkin Huxley equation for dV (t)/dt, with α = 3.
On the other hand, the Na+ only needs to exceed the restoration
current. A conservative estimate is one-half voltage range from the
slope of the opening curve, i.e.,

Range ≡ 1

2

[
d (P open

act (V,∞))α

dV
|V=Vbias

]−1

(10.3)
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Figure 1: The voltage scales for a neuron. Most of the time the cell is in the ranges
defined by the thick black bands for integrating or communicating.
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e
≈ 7 mV.

where we used the nominal value z’ ≈ 4.5. Since all that we need
to have is for the Na+ current exceed all leakage currents, this is
an overestimate.

The range of synaptic integration corresponds to the difference
between the K+ reversal potential, i.e., the lowest voltage for in-
hibitory inputs, and the activation of the Na+-based action poten-
tial, a range of about 1-1/2-times kBT/e ∼ 35 mV (Figure 1). Thus
is about five-times the range of the active the Na-current Others
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may argue that the lowest voltage for the range of synaptic integra-
tion is the reversal potential for Cl−, the dominant inhibitory input
in mammals. In this case the range of integration is about 1-times
kBT/e ∼ 25 mV. Either way, we see that the scale for integration
is always of order kBT/e and is always large compared to the noise
level across the membrane (Figure 1).

How high are the action potentials? We want to isolate the
region of integration from that of communication. The above ar-
guments implies that the gap above threshold should be one- to
two-times kBT/e, which is what is found. Further, we need to
action potential to turn off synaptic release, This depends on acti-
vation an ”N”-type CA2+ current, which had a peak current for a
voltage of +5 mV (Figure 2).

Figure 2: Activation of the voltage-gated calcium current that initiates neurotransmis-
sion.

How large are the post-synaptic potentials that impinge on the
cell? This distribution has been measured by a number of investiga-
tors in pair-electrode measurements, where current is injected into
the presynaptic cell to induce an action potential and measured in
the post-synaptic cell. The typical values are around 0.5 mV or
less, or a very small fraction of kBT/4e. But a small percentage,
maybe 5 %, come in at a few millivolts (Figure 3). Thus coacti-
vation of a small number of inputs thus can, in principle, drive a
neuron to spike (Figure 4). The issue is an open research question
that we will soon cover in terms of the balance of excitatory and
inhibitory currents in cells. This value is larger than the typical
value of postsynaptic inputs.

To recap, the action potential results from an instability in the
conductance (negative conductance), such that the direction of the
membrane current transiently reverses (growth) in response to a
perturbative current. Eventually, the conductance saturates and
recovers to a linear response. In both cases, the cell is leaky and
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Figure 3: Pair-wise measurements of synaptic potentials among layer 5 and 6 neurons in
rat cortex slice. From Deuchars, West and Thomson (1996)

.

the effective time-constant is transiently very short, so that the
width of the action potential is small, less than one millisecond in
some cases.

10.2 Synaptic interaction

Synaptic activation, which we will not discuss in detail, depends
on a chemical cascade that is initiated by the activation of a high-
threshold voltage gated (N-type) Ca2+ current (Figure 5). This
current peaks at intracellular potentials of about + 5 mV, signifi-
cantly less than VNa+ . Thus there is headroom of order of 2kBT/e
∼ 50 mV that separates the turn-on of the action potential from
the turn-on of synaptic transmission, so that dendritic integration
per se cannot lead to synaptic release, or communication, until the
threshold for spiking is crossed. Further, the shape of the action po-
tential will impact the total flux through the high-threshold voltage
gated Ca2+ current to influence synaptic release.

10.3 Thermal Fluctuations

Now that we know the scale of the voltages, we next consider the
size of the intrinsic fluctuations in the membrane voltage. Ion flow
across the membrane is defined by a net conductance, G, across the
cell. This leads to a fluctuation in the potential (Figure 6), known
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Figure 4: Synaptic transmission at two levels of [Ca2+]external. Top level is presynaptic
potential, the middle is presynaptic [Ca2+]intracellular, and the bottom is postsynaptic cur-
rent (bar = 46 pA). The data is taken at 18C; the time delay is shorter (0.5 ms versus 2 ms)
at T = 25C. From Sabatini and Regehr 1996

as the Johnson noise, of size

δV =

√
4kBT∆f

G
(10.4)

=

√
kBT

C

where we used

∆f =
∫ ∞

0
df

1

1 + (2πf(C/G))2
(10.5)

=
G

4C
.

This noise has the same spectral power density at all frequencies.
This is different that other sources of noise, like 1/f noise, that has
origins in processes occurring of a variety of energy scales (Figure
7).

Another way to derive the equation for the thermal noise is to
use the equipartition theorem to equate the fluctuating energy in
the membrane to the thermal energy, i.e.,

1

2
CδV 2 =

1

2
kBT (10.6)

The capacitance is given by C = εm (area/thickness), so that
for a thin dielectric sphere of thickness L and radius a, C = εm

4πa2

L
.

Thus

δV =

√√√√(kBT
e

)(
L

εm

)
e

4πa2
(10.7)
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Figure 5: Electron micrograph of a synapse and scheme of the SNARE/SM protein fusion
scheme that regulates Ca2+ driven neurotransmission. Scheme from Sudhof, 2013

Figure 6: Johnson noise and Gaussian amplitude distribution

.
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For most all cells, the ratio εm
L

is

cm ≡ εm
L

(10.8)

≈ 0.9x10−14 F

µm2

and
e

cm
= 1.8× 10−2 mV

µm2
(10.9)

so that

δV ≈ 190µV

a (in µm)
. (10.10)
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Figure 7: Johnson noise and 1/f noise

.

For a cell of radius a = 10µm,

δV ≈ 20µV. (10.11)

The important result is that the membrane noise level
for cells is much less, by three orders of magnitude, than
the thermal voltage kBT/e.

Only at the smallest structure, the synaptic vesicle, or synap-
tosome, with outer radius a ≈ 30 to 50 nm, is the noise level likely
to approach the thermal voltage. Let’s thus look at the fluctua-
tion in the number of ions across the cell. In synaptic vesicles, the
membrane potential ∆V is set by a hydrogen ion, or pH gradient.
Then

∆V =
kBT

e
ln

[H+]out
[H+]in

(10.12)

=
kBT

e
(pHin − pHout) .

Typically, pHin ≈ 5 and pHout ≈ 7.5. The variance in the trans-
membrane voltage in terms of ion concentration is

δV =

∣∣∣∣∣ ∂∆V

∂[H+]in
δ[H+]in

∣∣∣∣∣ (10.13)

=
kBT

e

∣∣∣∣∣δ[H+]in
[H+]in

∣∣∣∣∣
We equate noise level this with the expression for Johnson noise to
get

δ[H+]in
[H+]in

=
e

kBT

√
kBT

C
(10.14)

=

√(
e

kBT
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1

cm

e

4πa2
.
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An interesting number is the value of the radius a for which the

fluctuations in ion concentration are of order unity, i.e., δ[H+]in
[H+]in

≈ 1.
We call this acrit, where

acrit =

√
1

4π

(
e

kBT

)
e

cm
(10.15)

≈ 7nm (10.16)

This corresponds to an inner diameter of 15 nm. The walls add
about another 10 nm for a total outer diameter of ≈ 25 nm, which
is a bit less than the observed outer diameter of vesicles (Figure 8).
Not too bad as a limiting estimate of the smallest ”cell”.

Figure 8: Synapse loaded with vesicles

.
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