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From the spectrum of light scattered by a suspension of particles in a fluid one can obtain
quantitative information about the motion of the particles, including an accurate determina-
tion of their diffusion constant. If the incident light source is a laser, and the scattered light

falls on the photosurface of a photomultiplier

tube, then by measuring the spectrum of the

photocurrent one obtains the spectrum of the intensity fluctuations of the scattered light.
The intensity of the scattered light is determined by the instantaneous superposition of the

phases of the waves scattered from each of the

diffusing particles and the intensity fluctuates

because the particles move. For particles of known diameter one can predict the spectral
shape and width from the diffusion equation. We present a calculation of the spectrum of the
field and the spectrum of the intensity of the scattered light and an advanced laboratory
experiment and lecture demonstration by which the intensity spectrum can be studied.

I. INTRODUCTION

It has been demonstrated theoretically! and
experimentally?? that the diffusive motion of a
system of particles may be investigated by
studying the very narrow spectrum of the initially
monochromatic light scattered by the particles. A
number of review papers deseribing this type of
investigation are now becoming available.4?
Specifically, the frequeney spectrum of the
seattered light provides the conditional probability
[P(r,t|0,0)dr] that a particle originally located
at r=0 and {=0 will be found within a volume d*r
around r some time ¢ later. If a particle undergoes
a random walk or Brownian motion, the form of
P(r,1]0,0) is well known and is given by®

P(r,t]0,0) = (45Dt)~32 exp(—r2/4D8) (1)

when the distance r contains many steps in the
random walk.

The temporal evolution of P(r,£]0,0) is
determined by the diffusion constant D for the
wandering particle. If the particle is a sphere
whose diameter (2a) is large compared to molec-
ular dimensions, the Stokes—FHinstein relation
connects the diffusion constant to the viscosity »
of the solvent and the temperature 7 by the
equation’

D=ksT/6wna, (2)

where kz is Boltzmann’s constant. The spectral

shape of the scattered light enables an experi-

mental verification of the form of P(r,¢]0,0)

and a determination of D, the diffusion constant.

The experimental arrangement is shown in
57

Fig. 1. Light from a helium—neon laser producing at
least 1 mW of power is focused onto a cell con-
taining a dilute aqueous solution of monodisperse
(uniform diameter) polystyrene gpheres. Each
lluminated particle will scatter light that falls on
it because its index of refraction is different from
that of the surrounding water. The light seattered
into a small range of angles about some angle © is
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Fre. 1. Block diagram of experimental apparatus. The
laser output is polarized normal to the scattering plane and
focused in the cell (1 X2X5 em) by a lens of focal length
8 cm. The collecting lens has a focal length of about 20 cm.
Vectors ko and k; represent the incident and scattered
wave vectors, respectively.

collected onto the photosurface of an RCA 931
photomultiplier tube (PMT). The photomultiplier
output current is proportional to the intensity of
the light falling on the photocathode. This
intensity, however, is constantly fluctuating
around its average value because the phase of the
field scattered by each particle relative to that of

~
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the other particles changes in time as the particles
move. The temporal fluctuations in the photo-
current output are thus a measure of the random
walking of the particles. In the following section,
we shall show quantitatively how the spectrum of
the scattered light and the spectrum of the
photocurrent reflects the random motion of the
seattering particles. We anticipate here the final
result. If the particles move independently of one
another, and if the conditional probability for the
motion of each is given by Eq. (1), then the
frequency spectrum S;(w) of the intensity of the
scattered light (and hence the frequency spectrum
of the photocurrent) will have the form of a
Lorentzian shaped line whose width T' depends
on D and on the scattering angle © as follows:

Sr(w) = T(8) /[«*+T%B) ], (3)

where
w=2nf, (4)
T(®)=2D (;\4/—7; sin%@)z. (5)

Here A is the wavelength of the incident light,
n is the index of refraction of the solution, and
© is the scattering angle.

It is important to point out that the frequency
spectrum of the scattered electric field, as con-
trasted with the frequency spectrum of the
scattered 7ntensity, is also a Lorentzlan line, but its
center Is located at the incident light frequency
which is ~10%* Hz. Since the spectral width of the
scattered field is ~500 Hz, measurement of its
width would be quite impossible because no filters
of such narrow width are available in the optical-
frequency region. The spectrum of the intensity
of the light is twice as broad as that of the electric
field but is centered at zero frequency. Here
narrow-band electrical filters can easily be
obtained to measure the speetral distribution in
the photocurrent and hence the spectrum of the
intensity of the light. This in turn permits
determination of the diffusion constant of the
particles.

II. CALCULATION OF THE SPECTRUM OF
THE SCATTERED ELECTRIC FIELD AND
THE SPECTRUM OF THE SCATTERED
LIGHT INTENSITY

Let a planewave of the form Eyexp[7 (ko -t —wot) ]
illuminate the solution of particles. Here k; is the
wave vector of the incident light beam and wp is
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the angular frequency of the wave. This field
induces in each of the particles a radiating dipole
moment. The total electric field E (£) at a detector
a distance R from some origin within the region of
illumination is the sum of the fields radiated by
each of the particles, and has the form

(6)

Here Ey is the amplitude of the field scattered by
each of the particles and is independent of the
position of the particle. It is given by

Ey = Eo[ exp (7k;-R) /R (w/¢) (@ —ap) V sin®,
(7

where k. is the wave vector of the seattered wave,
& is the angle between the direction of polarization
of Eq and the direction k, of propagation of the
scattered wave, a —ayis the difference between the
dipole polarizability of the particle and the solvent,
and V is the volume of the scattering particle.
The precise position of the jth particle enters
through the phase factor ¢;(¢). This phase is
2r/\ (where \ is the wavelength of the light)
times the difference in path length between the
particle (j) and a point at the origin 0, as is
indieated in Fig. 2. Thus

6;(t) = (2x/A) (CPD—AOB) =kyr;—k,-r; (8)
$;(t) = (ko—k;) +1;(2). 9

We may conveniently define a scattering vector K
as the difference between theincident and scattered
wave vectors (see Fig. 1):

K =k0 —ks. (10)

The magnitude of this scattering vector is given by

7=1 =

~ N
E(t) = X Ei(t) = XEy exp[ig;(t) —ict].

Ar sini®,
An
whete 0, the scattering angle, is the angle between
k, and k., and = is the index of refraction of the
medium. In terms of the scattering vector K, ¢;(f)
is given by

K =2k, sin}® = (11)

¢; (1) =K-1;(%). (12)

We observe that the phase of the secattering
particle changes only if it moves along the
direction of XK. Motion normal to X does not alter
the phase of the scattered wave. The phase ¢;(t)
changes by 2r when the particle moves a distance
Ar;=27/K along the direction of K.
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Both the scattered electric field E({) and the
intensity of the scattered ight 7(#) =8| E()|* are
random variables because the phase of the wave
seattered by each particle varies randomly in time
as the particle diffuses from point to point. It is
impossible to prediet the detailed temporal varia-
tion of E(t) or of I(f). In fact such information
18 not necessary. The quanfities needed to charae-
terize such a random variable are those like (I (¢) ),
the average intensity, and {I(&)I({++)) and
(E*(©)E(t+7) ); the correlation functions for the
intensity and the field, respectively. The intensity
correlation function is formed by measuring /(%)
and I{{++) for many similarly prepared systems
and ensemble averaging their product. If the
temporal fluctuations in I{¢) are “stationary”
then (7 (£)I(t+7)) is independent of starting time
t and depends only on the difference 7. The
spectrum of such a random process is intimately
related to its correlation function. The Wiener—
Khintchine theorem® provides this relationship.
Thus, if Re(r) =E*(O)E(t+7)) and R;(r)=
(@) I(t-+7)), then the spectrum Sg(w) of the
scattered field and the spectrum Sr(w) of the
seattered intensity are given by

Sp(w) = / " eorRy(r)dr

—0

(13)
and

[ e R () dt.

<

Si(w) = (14)

The spectrum of the electric field as given in

Eq. (13) is what one would obtain from a conven-

tional optical spectrometer such as a diffraction

grating or a Fabry-Perot interferometer. The

spectrum of the infensity fluctuations Si(w) as
Incident

wave front
~Particie |

Scattered
wavefront

Fic. 2. Geometry for calculation of the phase of light scat-
tered from particle j. The path length from an incident to a
scattered wave front is CPD for light scattered by particle
and A0 B for a particle at the origin 0.
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F1e. 3. Photocurrent power spectrum for a suspension of
polystyrene spheres of diameter 0.234 u at a scattering
angle ©=90°. The dashed line represents the shot noise.
Using the Stokes—Einstein relation [Eq. (2)7 one obtains
DK2/7 =223 Hz, in good agreement with the experimental
points. The spectrum analyzer bandwidth is 10 Ha.

given in Eq. (14) is proportional to the spectrum
of the photocurrent fluctuations that are produced
in the anode of a phototube when the cathode is
illuminated with the scattered light. The photo-
eurrent is proportional in part to the intensity of
the incident light.

Let us now calculate the correlation funetion for
the scattered electric field and for the intensity of
the seattered light, as a comparison of the in-
formation contained in each is instructive. From
Eq. (6) we see that

Ry(r)=E*(O)E{+7))
= | By |* exp(—icwar)
X (22 22 exp{—ile(t) —¢;(t+7)]}).  (15)
kg
If the particles move in such a way that the kth
particle motion is uncorrelated with that of the

jth particle, only terms for which k=7 enter the
double sum after ensemble averaging. For k=7,°

(exp i —il¢x(t) —o;(t-+7) 1} ) = {exp[ —igr(£) 1)
X {exp[+7¢;(t) 1) =0.

Furthermore, since each particle is equivalent to
each of the others, the resulting sum over k is N
times the ensemble average of the phase factor
difference [¢(t) —¢(t+7) ] for a single particle.
Thus,

Re(r) =N | Ey |* exp (—iwor)

X {exp{ —iK-[x(t) —r(t+7)1}) (16)
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\Appclrem source as
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point

Fre. 4. Typical configuration of an illuminated region and
the resulting coherence area. If the observation point is
moved from 0 to 0/, the relative phase of the waves
scattered from points ¢ and b changes by ~m=.

where we used
¢ (1) =K-x (7). (17)

This ensemble average represents an integral of
exp(iK-Ar) over the conditional probability
distribution P(Ar, 7|0,0) describing the prob-
ability that a particle located at position r at time
zero will be found at position r+Ar at time 7 later.
Thus since 1 (+7) —r(f) = Ar, we have

{exp{ —iK-[x(t) —r(t-+7) 1})

- / AP (Ar, 7| 0,0) exp((K-Ar). (18)
The probability distribution P (Ar, 7 | 0, 0) is well
known for the random walk problem and is given
by Eq. (1). On substituting from Eq. (1) into
Eq. (18) we find at once that

Rg(r) =N | Ey |* exp(—itwer —DK?* fr]). (19)

It is possible to understand simply why the
correlation function for the scattered field falls to
zero when 7 substantially exceeds the correlation
time 7,=1/DK2 Any superposition of the phases
of the seattered waves will change to a new un-
correlated superposition of phases after the elapse
of sufficient time so that the phase of each particle
has changed by ~m. In order to change phase by
= the particle must move a distance =/K along
the direction of K. In the case of three-dimensional
random walk, however, the mean square distance
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moved in time { in a particular direction {call it the
X direction) is given by®

(AX?)=6DL. (20)

If this mean square distance is chosen to be
(w/K)?, we see that the time required for a loss of
correlation in the superposition of scattered
phases is

o~ (37%) (1/DK?), (21)

which is consistent with the rigorous result as
expressed in the correlation function in Eq. (19).

The quantity DK? measures the spectral width
of the seattered light. This is seen by calculating
the spectrum. of the light using Egs. (19) and
(13). This gives

Sg(w) =2N | By [H{DE/[(0—wo)*+ (DK T}
(22)

Thus the spectrum of the scattered light is a
Lorentzian shaped line centered around the
incident light frequeney. Tts half-width at half-
helght (Af) 1/2 is

(Af)12=DK?/2x. (23)

A numerical calculation for the spectral width for
scattering angle ©®=90°, A=6328 A, and spheres
of radius ¢=630 A in water gives DK?2/2n=
200 Haz.

Let us now calculate the correlation function
for the intensity fluctuations. Using Eq. (6) and
I(t)=8|E(%)[%, we see that

Re(r) ={IOI(t+)) = EQ) [ EE+)

(24)
or
Ri(r) = | Y ¢
X(EE S X explilén(t) ~4:() ]
X expliln(t+r) ~i(t+0) ). (25)

The statistical independence of the particle
positions insures that any term with indices myjkl
will be zero if one index is different from the other
three. Thus, only terms in which the indices mjkl
contain at least pairs of equal indices are nonzero.’
There are N2 terms for which m =J and k=1, each
of which is equal to unity. We also have (N?—N)
terms for which m=I[ and j=k, but m#j. Each
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such term has the form
(exp{iln(t) — ¢ (t+7) ]}
X exp{ —i[¢2(t) — e (i-+7)]}).

Finally we have terms for which m=Fk and 7=,
but m=7, and these give zero on ensemble
averaging over the starting phases. Hence, if we
neglect N eompared to N? we seen that the in-
tensity correlation function is given by

Ri(r)=N*| By ['g*
X A+Lexp{d e (t) =1 (t-+7) 1}
X exp{ =il (1) = (t+7)]})).  (27)

Since each particle is independent of the others, we
may write this in the equivalent form

Ri(7) =N, | By ['g?
X 1+ [{exp{—Lo () = @+7) I1).  (28)

Thus the correlation function for the intensity
fluctuation consists of a + independent part
corresponding to the fime-averaged part of the
intensity, and a second part which is essentially
the square of the correlation function for the
electric field. The oscillating part [exp (fwr)] of
the field correlation function disappears in the
intensity correlation function because the in-
tensity depends only on the field amplitude.
Using the fact that

(exp{ —i[¢ (1) —d(t+7) 1} )= (exp[iK-Ar(r) )
= exp(—DK? |7 ]),
(29)
as we saw on obtaining Eq. (19), we find that
Ri(r)=N*| B¢ '#°[1+ exp(—2DK*)| = []. (30)

The spectrum of the intensity fluctuations can
be obtained using Eqs. (30) and (14), and the
symmetry of Ry(+) around r=0. Thus,

8r(w) =N?| B 6278 ()
+{2(2DK*) /[w*+ (2DK?)*1}).  (31)

We observe at once that the spectrum of the
intensity fluetuations (apart from the de com-
ponent centered at w=0) consisis of a Lorentzian
line whose center is at zero frequency and whose
width is twice the width of the spectrum for the
electric field. Since the intensity fluctuation spec-~

(26)
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trum, or the spectrum of the photocurrent, is
located around de where narrow electrical filters
are available, one can easily measure the photo-
eurrent spectrum even if it is a few Hertz wide. A
measurement of this photocurrent spectral width
provides the diffusion constant in acecordance with
the relation

(A f)12=DK*/=. (32)

Here (A f)1p2 18 the half-width at half-height of the
spectrum of the intensity fluctuations. In effect
the squaring action of the photocathode shifts the
optical information downwards in frequency from
its original value at the optical frequency (~10%
cps) to a value centered at de where one can
conveniently analyze the spectral shape and
width. This method of spectroscopy is the analog,
in the optical-frequency regime, of the well-known
erystal set used to receive radio signals. In the
radio-wave case, the information is also contained
in a narrow range of signal frequencies centered
around a high carrier frequency. The crystal is a
square-law device which removes the high-
frequency carrier and passes the signal frequencies
centered now near de.

III, SPECTRUM OF THE PHOTOCURRENT
AND THE SIGNAL-TO-NOISE RATIO

We now proceed to obtain the correlation fune-
tion and the spectrum of the photocurrent when
the PMT is illuminated by the scattered light.
Sinee it will be shown in Sec. IV that the infensity
fluctuations are spatially correlated over only a
certain area called the coherence area A., let us
assume that the photosurface is illuminated over
just this area A.. The rate of emission of photo-
electrons [7(t) ] from the photocathode is propor-
tional to the rate of arrival of photons in this area,
ie., n(t) = (nAd./hw)l(t)=ol(t), where y is the
quantum efficiency and 7w is the photon energy.
Each photoelectron produces at the anode a
photopulse of duration ~10~° sec which carries a
charge (fe, where G is the gain of the photo-
multiplier and e is the electronic charge. The
average photocurrent (7} is thus

(@) =Ge(n) = GealI). (33)

The correlation function for the temporal fluctua-
tions of the photoeurrent contains two parts. The
first describes the temporal correlation in the
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F1a. 5. Drawing of the experimental apparatus.

fluctuations of the light intensity I (¢). The second,
the shot part, describes the fact that the photo-
current is made up of pulses. Both these effects
lead to the following form for the photocurrent
correlation functions-¢:

Ri(r) = @@)i(t+7))
= @P[R:(7)/ I ]+Get)p(r). (34)

Here p(7) is the correlation function for a photo-
pulse. It is generally very much narrower than
Ri(7). In fact p(r)~0 for | r| >10"0sec. Its
integral over 7 is unity. Thus for all frequencies
below ~5X 108 eps we may replace p(r) by é(7),
the Dirac delta function. The spectrum of the
photocurrent is obtained by using the Wiener—
Khintchine theorem. Carrying out this Fourier
transformation using Eq. (30) for E;(r) and
Eq. (31) for its Fourier transform, along with the
fact that (I)*=N | By |?8, we find

Si(w) = ()%(2m (w) +{2(2DK?) /[«*+ (2DK*)*]})
+Geld). (35)

The spectrum of the photocurrent contains: a de
component [275(w) ], the intensity fluctuation
spectrum, and a frequency-independent “white”
noise spectrum produced by the “shot’’ or pulselike
nature of the photocurrent. In general the fre-
queney response of the amplifiers in the spectrum
analyzer are not entirely independent of frequency.
This can produce an apparent slow frequency
dependence in the shot part of the spectrum. This
effect can be measured and corrected for by

measuring the photocurrent spectrum while the
photomultiplier is illuminated with constant
intensity light as discussed in Sec. V.

We may form a preliminary estimate of the
strength of the intensity fluctuation speetrum by
comparing it, the signal, with the shot part of the
spectrum. Putting aside the de contribution of the
light to the photocurrent spectrum, and desig-
nating as (8/N) ., the ratio of the signal spectral
power density at @ =0 to the shot spectral power
density, we find, using the notation 1/7,=DK?2
that

(S/N)pro= (i7/Go i) = (i)r..  (36)
Equation (36) indicates that the signal power
spectral density is comparable with the shot power
spectral density when at least one photopulse is
produced by the light in one coherence area during
one correlation time 7,. Here 7. is the correlation
time for the fluetuation in the electric field. This
relationship was first obtained by Forrester!! and
studied by Bergé ef al.?

The ratio given in Eq. (36) is, in itself, not a
useful measure of the detectibility of the signal.
Uncertainty in the detectibility of the signal is a
result of fluctuations in the output of the spectrum
analyzer which records the spectrum of the
photocurrent. These fluctuations arise because the
measurement of the power spectral density is made
in a finite time. The power spectral density com-
puted in the Wiener—Khintchine theorem is that
which would be obtained if the measurements were
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made with an infinite final averaging time.
Experimentally the spectrum analyzers have two
filters: a predetection filter of width (Af)pre, and a
final time averaging filter of width (A f)pest- The
frequency width of the latter is the reciprocal of
the averaging time used to determine the mean
power passing through the predetection filter. As
we shall show in the Appendix, the mean-square
fluctuation in the output meter reading of the
spectrum of the photocurrent, is given by

(noise)®=S(f) (Af)vost (Af)pres  (37)

where f=w/27. The measure of the detectibility of
the signal which we shall use is the ratio of the
power in the signal (near f=0) to the rms fluctua-
tion in the spectrum analyzer output. Calling this
the signal-to-noise ratio, we have

S Si(O)sigA fpre

N [(8:(0) )etgt (S:(0) Yonor (A Foostd fipwe) 2
(38)

S _ (S/N)pre . A fore e
N T (SN m) <Afpm> - (39

Since A fpost~I/T, where T is the time of measure-
ment, the signal-to-noise ratio is proportional to
the square root of this measuring time. When the
predetection-signal-to-noise ratio is small com-
pared to unity, the ratio (S/N)ue 18 & most
important factor in increaging the detectibility of
the signal. If, however, (8/N)ur is much greater
than unity, the signal-to-noise ratio is completely
independent of the predetection-signal-to-noise
ratio and depends only on the ratio of the post and
predetection bandwidths.t This limit is often en-
countered in the study of light scattered from large
macromolecules or latex spheres [ (8/N)pe~40
for the data of Fig. 3.7

As a final point we may consider how the photo-
current spectrum and the signal-to-noise ratio
would be altered if say m different areas of co-
herence fall on the surface of the phototube. In
such a case the de term of the photocurrent
spectrum is multiplied by m?, and the shot term
is multiplied by m. The signal part is also multi-
plied by m since the fluctuations between coherence
areas are uncorrelated. Thus, since both the signal
and shot parts of the spectrum are linearly propor-
tional to m there is no change in either the pre-
detection-signal-to-noise or the postdetection-
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Fra. 6. Low input independence preamplifier. Trim R; for
zero offset; € for flat response with the photomultiplier
used.

signal-to-noise ratic over that which we obtained
above for a single coherence area.

IV. DEMONSTRATION

The qualitative features of these intensity
fluctuations are observable in a demonstration
that requires only a laser, a lens, the sample, and a
white card, arranged as in Fig. 1. For large
spheres (diameter ~1 x) in sufficient concentra-
tion, a pattern of bright twinkling spots, con-
tinually in motion, appears about the direct beam
from the laser. Inspection of the spots shows that
{a) the coherence area, i.e., the area, at a fixed
time, over which the intensity does not change
appreciably (the average spot size) increases for
smaller scattering angles; and (b) the time varia-
tion of the intensity over a coherence area becomes
slower for smaller scattering angles.

The first effect (a), which has been investigated
by Bergé and Volochine, results from the fact
that at a fixed time the optical path from a given
particle to the observation point changes relative
to that of the other particles as the observation
point is moved, introducing changes in the phase
relations of the scattered waves. As the observa-
tion point is moved the intensity will remain
nearly constant as long as the relative phase
changes are small («<x). Referring to Fig. 4, for a
source of apparent dimension d; along some
direction, this condition will be satisfied for
observation points separated in that direction by
a distance a; <AR/di, AR/d; being the translation
of the observation point necessary to produce a
relative phase change of ~x for particles at the
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Fia. 7. (a) Block diagram of spectrum analyzer. (b) Schematic diagram of spectrum analyzer. Adjust B, for minimum
carrier leakage. Adjust R;, R4, and R; for minimum distortion at input to filter with 1-V rms at local oscillator input
and 0.5 V p-p square wave at signal input. Resistance values are in ohms, capacitance values in pF, except in the filter
where capacitance values are in uF. If unavailable, the RCA 40460 may be replaced by RCA 3N138 or 3N153.

extremities of the source. The apparent length
(di) of the illuminated region decreases with
scattering angle as one approaches the forward
direction and this results in the increase in size of
the spots.

The second effect (b) is a direct manifestation
of the dependence of the correlation time r,=
1/DK? on the scattering angle. According to
Eq. (11) and our discussion following Eq. (19),
we see that the correlation time increases as the
reciprocal of sin?1®, where © is the scattering
angle. This is because for the smaller scattering
angles the diffusing particles must move a longer
distance before they lose their phase relations
relative to one another. The characteristic
twinkling time is just the correlation time for the

intensity fluctuation and this varies as 1/DK?2,
where K= (47/)\) sini®. The slowing down is a
direct measure of the K? dependence for the
correlation rate.

With a 1-mW helium-neon laser and 1-y-diam
spheres, this demonstration may be shown in a
reasonably dark room to a small number of
students. With a higher-power laser, the card may
be moved further from the seattering cell and
shown to a larger group.

V. EXPERIMENT

The laboratory experiment consists of physically
realizing the various components illustrated in
Fig. 1 and described in our theoretical analysis. It
enables one to measure the photocurrent spec-



BROWNIAN

MOTION USING LIGHTS CATTERING 583

Predetection Square law Post detection
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Fi1a. 8. Model spectrum analyzer showing the effect of the primary components.

trum S;{w), and to determine the half-width at
half-height and the shape of the signal part of the
photocurrent spectrum as shown in Fig. 3. The
spectrum is obtained by passing the fluctuating
photocurrent through an audio spectrum analyzer.
This spectrum analyzer is simply a tunable pre-
detection filter of passband A f,,. followed by a
linear detector and a final time averaging filter of
passband A fo:=I/T. The square of the de
output of the final filler, when the spectrum
analyzer is set at a frequeney f, is proportional to
the average ac power in the photocurrent around f
within the band pass of the predetection filter
[‘thus proportional to S;{ f) *A fore]- A drawing of
the experimental apparatus is shown in Fig. 5.

The following apparatus is needed for the
experiment.

(a) Laser. A helium—neon laser providing 1 mW
or more is required. It must be free of audio
frequency amplitude modulation, including 60 and
120 Hz. This is sometimes produced by ac filament
currents or unregulated discharge supplies. The
suitability of a laser should be checked by allowing
a small portion of the output beam to fall on the
photosurface, and then measuring the intensity
fluctuation spectrum of the laser itself. This should
be frequency independent.

(b) Sample. Samples are prepared by diluting
the concentrated suspensions with distilled water,

free from large particles. Coneentrated agueous
suspensions of monodisperse polystyrene spheres
are available from the Dow Chemical Co.,
Diagnostic Products Dept., Indianapolis, Ind.
Filters available from the Millipore Corp. (Bed-
ford, Mass.) are convenient for cleaning the solvent
although this is generally not necessary at the high
concentrations used here. The samples are held in
glass photometric cells available from Lux
Scientific Instrument Co. (Canal St. Station,
New York, N.Y.).

(¢) Photomultiplier. Any photomultiplier will
do, the higher the gain the better. The RCA 931
was chosen because of easy availability and low
cost. A variable, ripple-free, de high-voltage
supply (500-1500 V) is required for the PMT.
Its voltage must be variable so that the de photo-
current level can be adjusted.

(d) Preamplifier. Care must be taken to avoid
excessive shunt capacitance across the PMT load
resistor because this will roll off the PMT response
at high frequencies in the audio range. This
problem is avoided if the PMT drives a low im-~
pedance load. The preamplifier circuit (see Fig. 6)
provides a flat response to 50 KHz and costs
about $25 to construct.

(e) Speetrum analyzer. Any audio frequency
spectrum analyzer of bandwidth 3-50 Hz and an
operating range of 10 Hz—20 KHz will do. Because
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these instruments are generally expensive, we
have designed (see Fig. 7) circuits suitable for an
advanced laboratory experiment which can be
built for less than $200, not counting the cost of a
variable frequency, low distortion audio oseillator
and a 3=12-V regulated de power supply. A block
diagram of the speetrum analyzer is shown in
Fig. 7(a). First, the input signal is multiplied by
the local oscillator signal in the mixer. Frequency
components in the input signal near the local
oscillator frequency appear near de at the output
of the mixer. The signal is then filtered by a low-
pass predetection filter, amplified, and detected
by a full wave “linear” detector. Since the output
fluctuations depend upon the filter bandwidth, the
detector output (postdetection) time constant is
adjustable to provide for easier meter reading
(data are taken by averaging many independent
meter readings). To avoid at the output of the
mixer the appearance of frequency components of
the input signal near harmonies of the local
oscillator frequenecy, it is esgential that a low-
distortion local oscillator be used and that the
mixer output be accurately the product of the
input signal and the local oscillator signal. To
achieve this we have used an analog multiplier
cireuit* that gives the desired product to about
0.1%.

The equipment is set up as shown in Fig. 1 with
the incident polarization normal to the scattering
plane. The concentration should be adjusted as
high as possible, while keeping the laser beam in
the sample more intense than the halo about the
beam produced by rescattering of scattered light.
Due to the angular acceptance of the collection
optics and the angular divergence of the focused
incident beam, scattered light with a distribution
of scattering angles over some range A© will be
collected by the PMT. The measured spectrum
then is a superposition of Lorentzians with a
distribution of half-widths. It can be shown,
however, that for even with rather broad dis-
tributions of half-widths the observed spectrum
will be a Lorentzian to a high degree of accuraey.®®
Since according to Eq. (5) the linewidth T'(®) isa
nonlinear function of ®, the average observed line-
width may not be that corresponding to the
average scattering angle, especially in the forward
direction where T" «=©2. However, by choosing AQ
such that AT/T<0.1 these effects ean be made
negligible. Differentiating Eq. (5) we find that for
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AT/T<0.1, A®<0.1 tani®. Thus for ©=90°,
A® <0.1 rad =5°. To produce large areas of spatial
coherence in the scattered field (thereby increasing
the seattered power per coherence area and thus
the predetection-signal-to-noise ratio according to
the remarks of Sec. III) the beam should be
focused in the cell. We note here that ko in the
derivation is that in the scattering medium and
must be calculated using the index of refraction
(n) of the sample (Ko)campie =" (Ko)vae- Als0, the
refraction of the scattered light at the cell wall
must be accounted for when determining the
scattering angle.

The frequency response of the electronic system
may be determined by measuring the spectrum of
the shot noise, obtained by illuminating the PMT
with constant-intensity light. A flashlight lamp
powered by a stable battery source serves well here.
To obtain the largest shot noise power one should
use a combination of the largest permissible PMT
voltage (1500 V for the 931) and the least light
intensity which produces the desired photocurrent
(~100 pxA). To measure a fluctuation spectrum,
however, a large signal-to-shot ratio (S/N) . is
desirable. This is accomplished by wusing the
combination of largest scattered intensity and
lowest PMT voltage which produces the desired
photocurrent. With no input to the spectrum
analyzer, the output meter, due to carrier leakage,
will read slightly up scale at low frequencies. Thig
must be subtracted from the meter readings of any
spectrum measured.

Data analysis proceeds as follows. If the detector
on the spectrum analyzer is linear, as in the one
above, the output must be squared to obtain the
spectrum. To correct the squared output spectrum
for the frequency response of the spectrum-
analyzer electronics, this spectrum may be
divided by the square of the shot spectrum. ¥or a
square-law detector the output of the spectrum
analyzer directly gives the power spectrum. A
spectrum such as Fig. 3 is then obtained. Figure 3
shows the measured photocurrent power spectrum
for a suspension of polystyrene spheres of diameter
0.234 1 as a scattering ®=90°. The dashed line
represents the shot spectrum.

APPENDIX

We demonstrate here in a correct, but qualita-
tive way the validity of Eq. (37) for the mean-
square amplitude of the noise fluctuation in the
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output meter of g spectrum analyzer.1¢.1” In Fig. 8
we indicate the primary components of the
spectrum analyzer, and illustrate their effect by
plotting speetral power densities and typical
voltage at the indicated points.

Suppose that the predetection filter is held fixed
at some frequency fo. The output of this filter will
contain all the frequencies between foy—3A fpr < <
JSob3A fe that are in the photocurrent fluctua-
tions. The squarelaw device squares these
frequency components and has as its output three
characteristic spectral components.

The first is a de component ({y)) which has the
magnitude S:( fo) A foro and is the speectral power
that we wish to determine. The second component
consists of frequencies near 2f which we shall
neglect because they are not passed by the final
postdetection filter. The third component consists
of “‘self-beat’”’ notes between all the spectral com-
ponents in the range fo—3A fore</<fo 54 fore
These notes are distributed in a spectrum which
is the convolution of the rectangular predetection
filter with itself and produce the amplitude
variation of the oscillatory part of y({). This
spectral density has a maximum at zero frequency
where it is S8 f) A forey and it falls linearly to zero
at a frequency equal to A f.

The final filter of width (A f) post transmits all of
the de long-time mean signal, ie., S:(fo)Ape
This appears on the meter as (2), the signal level.
The final filter transmits only frequencies between
zero and (A [f)pes; Of the self-beat spectrum
coming out of the square-law detector. Thus,
the mean-square power in these seclf-beat notes
is [S2( fo) A fpost JA fore- This is the mean-square
fluctuation in the output of the recording meter:
N2=S82(fo) A fpostA fore- In operation if f is held
fixed, the output meter, which can change only in
times of the order of T'~1/(Af)post, Will wander
back and forth around the signal S;( fo) A fore. The
total mean-square needle excursion after many
periods T is given by the equation above for N2.
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