Electrophysiology on the Leech

Hirudo Verbana (medicinal leech)

Brandon Stevenson

Francisco Madamba

Example of P Cell

Time (Seconds)

Receptors thought to play a role in learning

Glutamate receptors and synaptic plasticity

Voglis and Tavernarakis, 2006

STDP in Mammals

STDP in leech

Dan and Poo, 2005

Grey and Burrell, 2010

Hurdo verbana

Ventral Face of Leech Ganglion

(Gu, 1990)

How to sort out between the 400 different ganglions?

- 1) Whether the cell fires tonically or not.
- 2) The characteristic resting membrane potential (RMP) and the characteristic action potential (AP) of the cell which includes AP amplitude, duration, and frequency.

Sample traces from the sensory cells demonstrating the differences in action potentials Plan

1) Single cell electrophysiology

Todd, 2010

Application of STDP

Time (Seconds)

Long-Term Depression

Time (Seconds)

How does our data compare?

Bi and Poo, 1998

Difficulties

- 1) Insufficient Time:
 - 1) Rig set up
 - 2) Ganglion dissection
 - 3) Matlab usage
- 2) Equipment
 - 1) Noise
- 3) Exact quantification of variables:
 - 1) Time
 - 2) Hyperpolarization
- 4) Reliable Spikes:
 - 1) Not always getting spikes
 - 1) Had to change extent of hyerpolarization