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Background

Light and the interaction of light and matter is governed by the rules of quantum

electrodynamics.  When the photon densities are so too high that electrons are

accelerated to relativistic speeds (as occurs at the highest laboratory laser fields), the

rules of quantum mechanics can be used.  We start here.

QM description: E = h!1.  One- and multi-photon transition cross-sections

"E "t # h.  Uncertainty and lifetimes (h $ Planks constant).

Wave description: ! =  c/%.  Diffraction and interference effects.

"%/% # %/Lcoh or Lcoh  # %2/("%)2.  Spatial coherence effects.

"& "a # %.  Uncertainty between angular spread and size of beam.

Geometric optics: %'0 , so that diffraction is ignored and the resolution angle, %/(size

of system) goes to zero as well.  Light is described by rays.

Paraxial optics: ([)]/(z << ([)]/(r.  Only small angles, so that imaging design is in

terms of straight lines and two parameters, the height of a ray and the slope of the ray.

Matrix method for rays: We start with a notation for specifying optics systems.

z axial location of a ray.

r1 height of a ray at axial location z1.

r1’ slope of a ray at axial location z1, i.e., r’ = (r/(z.

                                                  
1 E = hc/% = 1.24/% eV with % in micrometers, so that blue light is 3 eV, red light is 2 eV.
2 Noting that "% ≈ c "t, Lcoh = %2/(c "t) ≈ (0.8 µm)2/(3x1014 µm/s•1x10-13 s) = 2 µm for 2-photon excitation.
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n1 optical index at axial location z1.

d separation distances along axial axis.

R radius of curvature of a spherical lens.

f focal length (function of n and R at each interface);

we will show that f = R/(n-1) for a thin planoconvex lens.

Formalism to connect rays at two locations.  General idea:

• Two unknowns requires two equations.

  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'  = 

  

� 

Ar1 + B ! r 1
Cr1 + D ! r 1

" 

# 
$ 

% 

& 
'  = 

  

� 

A B

C D

! 

" 
# 

$ 

% 
& •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' $ T•

  

� 

r1
! r 1

" 

# 
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• Represent each interface or transition by an appropriate ABCD, or transfer

matrix.  Then whole optical systems are reduced to a single matrix by multiplying

through matrices for each component.  We recall that matrix algebra involves

T•t = 
  

� 

A B

C D

! 

" 
# 

$ 

% 
& •

  

� 

a b

c d

! 

" 
# 

$ 

% 
&  = 

  

� 

Aa +Bc Ab +Bd

Ca +Dc Cb +Dd

! 

" 
# 

$ 

% 
& .

• Ignore reflections – consider only “forward” propagation, so that amplitudes are

constant.

Just to complete the story, an extension of this formalism also holds for beams with a

Gaussian profile, in which r is replaced by a complex variable that describes the width

and curvature of the bean (see Yariv).

Propagation through space.  We start with a ray that propagates a distance d in

space with constant index.

• The slope will remain unchanged.

• The height will change by the slope times the distance.
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We have 
  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'  = 

  

� 

r1 + d ! r 1
0r1 + ! r 1

" 

# 
$ 

% 

& 
'  = 

  

� 

1 d

0 1

! 

" 
# 

$ 

% 
& •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' , so the matrix for propagating a distance d is

Tprop = 
  

� 

1 d

0 1

! 

" 
# 

$ 

% 
& .

Snells’ Law.  Before we can move on to rays that impinge on an interface, we need to

recall Snell’s law – which describes the angle of the transmitted ray..  A derivation in

terms of minimizing the time to travel between two points is given in appendix A.  We

consider a ray that propagates from a material with index n1 to one with index n2.  The

ray is incident at an angle &1 relative to the normal to the interface.  Snells’ law relates

the exit angle, &2, to the indices and entrance angle by n1 sin&1 = n2 sin&2.

Flat interface.  We move on to an interface with index n1 to the left and n2 to the right.

• In the paraxial approximation, r’ = tan& = sin&, so that Snells’ law becomes

n1 r’1 = n2 r’2.

• Since r1 = r2 at the interface, 
  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'  = 

  

� 

r1 + 0 ! r 1
0r1 + n1

n2
! r 1

" 

# 
$ 

% 

& 
'  = 

  

� 

1 0

0 n1

n2

! 

" 
# 

$ 

% 
& •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' 

Thus the matrix for propagating across the interface is

Tflat = 
  

� 

1 0

0 n1

n2

! 

" 
# 

$ 

% 
& .

Example: Propagation through a slab of thickness d.  This gives us a first nontrivial

example to compute the propagation of a ray.  We start on the right and consider the

interface from n1 to n2 and then back to n1 again.
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The relationship between the input and the output is:

  

� 

r4

! r 4

" 

# 
$ 

% 

& 
'    =   Tflat• Tprop• Tflat•

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
'    =   

  

� 

1 0

0 n2

n1

! 

" 
# 

$ 

% 
& •

  

� 

1 d

0 1

! 

" 
# 

$ 

% 
& •

  

� 

1 0

0 n1

n2

! 

" 
# 

$ 

% 
& •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
'    =   

  

� 

1 d n1

n2

0 1

! 

" 
# 

$ 

% 
& •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' 

Note the ordering of the transfer matrices – which is right to left!  The final matrix,

  

� 

1 d n1

n2

0 1

! 

" 
# 

$ 

% 
& , looks just like the free propagator, except that the distance is normalized by

n1/n2.
3  The position is displaced, but the entrance and exit angles remain unchanged.

Spherical Interface.  We now come to propagation through a curved interface, which is

the first step in understanding a lens.  We derive the transfer matrix in a general way.

The beam enters and leaves the interface at height

• r1 = r2 $ r.

All angles are all taken to be small

                                                  
3 This rescaling is also a statement that the wavelength of light changes with the index.
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• The normal to the surface makes an angle asin(r/R) ≈ r/R.

• The slopes are small, so that atan(r1’) ≈ r1’ and atan(r2’) ≈ r2’.

• From Snells’ law at small angles, n1&1 ≈ n2 &2   or   n1 (r’1 + r/R) = n2 [r/R – (- r’2)].

• Thus r’2 =   (n1/n2 - 1)(r/R)  +  (n1/n2)r’1 so that 
  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'   =  

  

� 

1 0
n1!n2

n2

1
R

n1

n2

" 

# 
$ 

% 

& 
' •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' 

Tcurved = 
  

� 

1 0
n1!n2

n2

1
R

n1

n2

" 

# 
$ 

% 

& 
' .

In the limit that R '* we recover our result for the flat surface.

Lens.  The most general lens involves a change in index through a curved surface of

radius R1, propagation through the lens material, and exit through a second curved

surface of radius R2.  We save this general case for Appendix B, and consider the

special but useful case of a thin lens that is curved on the left side with radius of

curvature R1 and on the right side with radius of curvature R2.  From the above result,

• The indices at the entrance side and exit side are identical, i.e., n1, while the

index in the lens is n2.

• 
  

� 

r3
! r 3

" 

# 
$ 

% 

& 
'   =  

  

� 

1 0
n2 !n1

n1

1
R2

n2

n1

" 

# 
$ 

% 

& 
' •

  

� 

1 0
n1!n2

n2

1
R1

n1

n2

" 

# 
$ 

% 

& 
' •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
'   =  

  

� 

1 0

! n2 -n1

n1

1
R1
! 1

R2
( ) 1

" 

# 
$ 

% 

& 
' •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' .

• We define the focal length, denoted f, is defined through

  

� 

1
f

= n2 -n1

n1

1
R1

! 1
R2

" 
# 
$ 

% 
& 
' 

where R is positive for a convex surface (of particular relevance in microscopy) and

negative for a concave surface.  For a symmetric biconvex lens, R2 = - R1.  For a

planoconvex lanes, R2 '*.

Tthin_lens  =  
  

� 

1 0

! 1
f 1

" 

# 
$ 

% 

& 
' .

Imaging (at last!).  We now consider three classic configurations of lenses.

Space-lens-space.  A ray starts a distance d1 from a thin lens and is observed a

distance d2 away.
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Thus  
  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'   =  

  

� 

1 d2

0 1

! 

" 
# 

$ 

% 
& •

  

� 

1 0

! 1
f 1

" 

# 
$ 

% 

& 
' •

  

� 

1 d1

0 1

! 

" 
# 

$ 

% 
& •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
'   =  

  

� 

1! d2

f d1 + d2 - d1d2

f

! 1
f 1! d1

f

" 

# 
$ 

% 

& 
' •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' 

Ts-l-s = 
  

� 

1! d2

f d1 + d2 - d1d2

f

! 1
f 1! d1

f

" 

# 
$ 

% 

& 
' .

• Imaging condition.  This corresponds to a final height, r2, that is independent of

initial slope, i.e., r’1, so that all rays that leave r1 converge at r2.  Thus the “B” term

of the transfer matrix must be zero, i.e., d1 + d2 – (d1d2)/f = 0.  This leads to the

famous lens formula

  

� 

1
d1

+
1
d2

= 1
f

• Magnification.   When the imaging condition is satisfied, the “A” term

corresponds to magnification, i.e., r2  =  [1-(d2/f)]r1  =  -(d2/d1)r1 where the minus

sign means the image in inverted.

  

� 

r2
r1

= !d2

d1

• Real vs. Virtual.  Note that for the case of d, < f, the lens formula implies that d2

< 0 and thus the sign of the magnification is now positive.  Therefore, an upright

image is formed to the left of the lens.  There is no image to project on a screen.

However, the upright image can form the object for another lens.

• Ray tracing rules.  The imaging condition leads to a transfer matrix that can be

written in three equivalent forms:

Ts-l-s  '  
  

� 

! f
d1! f 0

! 1
f ! d1! f

f

" 

# 
$ 

% 

& 
'   =  

  

� 

! d2 ! f
f 0

! 1
f ! f

d2 ! f

" 

# 
$ $ 

% 

& 
' '   =  

  

� 

! d2

d1
0

! 1
d1

+ 1
d2

( ) ! d1

d2

" 

# 
$ $ 

% 

& 
' ' .

Each of these forms leads to one of three ray-tracing rules:
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1. Consider a horizontal ray from the “object”, i.e., r’1 = 0:

  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'   =  

  

� 

! d2 ! f
f 0

! 1
f ! f

d2 ! f

" 

# 
$ $ 

% 

& 
' ' •

  

� 

r1
0

! 

" 
# 
$ 

% 
&   =  

  

� 

! d2 ! f
f r1

! 1
f r1

" 

# 
$ 

% 

& 
' .

The output ray will cross the axis at d2 = f, the right focal point of the lens,

and is imaged at

  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'   =  

  

� 

! d2 ! f
f r1

! 1
f r1

" 

# 
$ 

% 

& 
'   =  

  

� 

! d2

d1
r1

! 1
f r1

" 

# 
$ 

% 

& 
' .

2. Consider a ray from the “object” to the center of the lens, i.e., r’1 = -r1/d1:

  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'   =  

  

� 

! d2

d1
0

! 1
d1

+ 1
d2

( ) ! d1

d2

" 

# 
$ $ 

% 

& 
' ' •

  

� 

r1
- r1

d1

! 

" 
# 

$ 

% 
&   =  

  

� 

! d2

d1
r1

! r1
d1

" 

# 
$ $ 

% 

& 
' ' .

The output ray has a slope that is unchanged.

3. Consider a ray from the “object” that passes through the left focal point,

i.e., r’1 = -r1/(d1-f)

  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'   =  

  

� 

! f
d1! f 0

! 1
f ! d1! f

f

" 

# 
$ 

% 

& 
' •

  

� 

r1
- r1

d1 -f

! 

" 
# 

$ 

% 
&   =  

  

� 

! d2

d1
r1

0

" 

# 
$ 

% 

& 
' .

The output ray has a slope that is now zero.

These three rays will converge at a common point, d2 = (fd1)/(d1-f), as given by the

imaging condition.

Lens-space-lens.  A ray enters one thin lens, travels a distance d, and then exits

through a second thin lens.
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Thus 
  

� 

r2
! r 2

" 

# 
$ 

% 

& 
'   =  

  

� 

1 0

! 1
f 2

1

" 

# 
$ 

% 

& 
' •

  

� 

1 d

0 1

! 

" 
# 

$ 

% 
& •

  

� 

1 0

! 1
f1

1

" 

# 
$ 

% 

& 
' •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
'   =  

  

� 

1! d
f1

d
d-f1 -f2

f1f2
1! d

f2

" 

# 
$ 

% 

& 
' •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' 

Tl-s-l = 
  

� 

1! d
f1

d
d-f1 -f2

f1f2
1! d

f2

" 

# 
$ 

% 

& 
' .

• Back-to-back lenses.  We let d'0 and the transfer matrix becomes

Tl-s-l ' 
  

� 

1 0

! f1+ f2
f1f2

1
" 

# 
$ 

% 

& 
' 

Thus the composite lens has an effective focal length equal to the geometric mean of

the focal length of the two lenses, i.e., 
  

� 

1
feffective

= 1
f1

+
1
f2

.

• Beam expander.  This corresponds to the case of collimated output, for which

the slope r’2 is independent of r1.  Thus the “C” term in Tl-s-l must be equal to zero,

i.e., 
  

� 

d - f
1

- f
2

= 0.  This leads to the famous telescope formula:

  

� 

d = f
1

+ f
2

which can be used to change the height of parallel light by 
  

� 

r2
r1

= f2
f1

. The transfer

matrix becomes:

Tl-s-l ' 

  

� 

! f 2

f1
f1 + f2

0 ! f1
f2

" 

# 
$ $ 

% 

& 
' ' .
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Imager/Scanner. The above analysis provides an introduction to scanning.  This

corresponds to a secession of 7 matrices that are put together in the sequence from a

scan mirror to a sample:

Scan Mirror '

       Space   ' Scan Lens '  Space ' Tube Lens ' Space ' Objective4 ' Space' Sample

  

� 

r4

! r 4

" 

# 
$ 

% 

& 
'   =  

  

� 

1 d4

0 1

! 

" 
# 

$ 

% 
&  • 

  

� 

1 0

! 1
f 3

1

" 

# 
$ 

% 

& 
'  • 

  

� 

1 d3

0 1

! 

" 
# 

$ 

% 
& •

  

� 

1 0

! 1
f 2

1

" 

# 
$ 

% 

& 
'  • 

  

� 

1 d2

0 1

! 

" 
# 

$ 

% 
&  • 

  

� 

1 0

! 1
f1

1

" 

# 
$ 

% 

& 
'  • 

  

� 

1 d1

0 1

! 

" 
# 

$ 

% 
&  • 

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' 

To simply greatly, we consider the particular (and relevant) case of d1 = f1, d2 = f1 + f2, d3

= f2, and d4 = f3, so that the above sequence reduces to:

  

� 

r4

! r 4

" 

# 
$ 

% 

& 
' =  

  

� 

1 f3
0 1

! 

" 
# 

$ 

% 
& •

  

� 

1 0

! 1
f 3

1

" 

# 
$ 

% 

& 
' •

  

� 

1 f2
0 1

! 

" 
# 

$ 

% 
& •

  

� 

1 0

! 1
f 2

1

" 

# 
$ 

% 

& 
' •

  

� 

1 f1 + f2
0 1

! 

" 
# 

$ 

% 
& •

  

� 

1 0

! 1
f1

1

" 

# 
$ 

% 

& 
' •

  

� 

1 f1
0 1

! 

" 
# 

$ 

% 
& •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' 

=  

  

� 

0 -f3
f1
f2

1
f3

f2
f1

- f1
f2

! 

" 
# # 

$ 

% 
& & •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
'  .

The critical point is that a change in the initial slope is turned into a change solely in

position of the beam in the object plane, i.e.,

 
r
4
= !f

3

f
1

f
2

r
1
" .

                                                  
4 Objectives are usually specified by magnification, denoted M, e.g., M = 40 for a 40-X lens, rather than
their focal length, f3 in the above notation.  The correspondence makes use of an assumed image
distance, denoted L.  Equivalently, the objective may have the image projected to infinity, but the tube

lens brings it to focus at a distance L from the tube lens.  We have M = 
 

L
d4

 and 
 
1
L

+
1

d4
=

1
f3

 for f3 = 
 

L
M+1

.

For example, for typical values L = 160 mm and M = 40, the focal length is f3 = 4 mm.
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 This is the essence of scanning, as the slope is set by the angle of the mirrors whose

manipulation is under control of a galvanometer.  By the way, the maximum scan angle

(r’1) is related to the field of view (2 x r4) by 
 
r
1
! = " 2#r4

2#f3

f2
f1

, or

Max scan angle = 

  

field of view

2if
scan

f
tube

f
objective

 = 
  

field of view

2if
scan

M+1( )

in radians, or ~ 4o for a typical system.  Note the intermediate result for the image of the

mirrors at the back of the objective, i.e.,

  

� 

r3
! r 3

" 

# 
$ 

% 

& 
' =  

  

� 

1 f2
0 1

! 

" 
# 

$ 

% 
& •

  

� 

1 0

! 1
f 2

1

" 

# 
$ 

% 

& 
' •

  

� 

1 f1 + f2
0 1

! 

" 
# 

$ 

% 
& •

  

� 

1 0

! 1
f1

1

" 

# 
$ 

% 

& 
' •

  

� 

1 f1
0 1

! 

" 
# 

$ 

% 
& •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
' 

=  

  

� 

! f2
f1

0

0 - f1
f2

" 

# 
$ $ 

% 

& 
' ' •

  

� 

r1
! r 1

" 

# 
$ 
% 

& 
'  ,

which says that the mirrors are in focus at the entrance of the objective, since the final

height is independent of the initial slope.  Further, the diameter of the (laser) beam at

the objective is related to the diameter of the incident (laser) beam by

Beam diameter at objective = 
 

f
tube

f
scan

• Beam diameter at mirror.

 This ratio is chose to insure that the aperture of the objective is filled.  While we have

not discussed issues of resolving power in this talk, since we let %'0 for purposes of

ray tracing, filling the aperture insures that we utilize the full resolving power of the

objective, i.e.,

Minimum resolution ~ % • 
 

focal length of objective

diameter of objective
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Appendix A - Derivation of Snell’s Law based on principle of minimum time

Distances

d1 = 
 

( x – x
i
)2  + ( y – y

i
)2

d2 = 
 

( x
f
 – x)2  + ( y

f
 – y)2

Speeds
(c $ speed of light in vacuum)

v1 = 
 

c

n
1

v2 = 
 

c

n
2

Calculate the total time of transit, T.

T = 
 

d
1

v
1

 +
 

d
2

v
2

 = 
 

n
1

c
 
 

( x – x
i
)2  + ( y – y

i
)2  + 

 

n
2

c
 
 

( x
f
 – x)2  + ( y

f
 – y)2

Take the derivative of the total transit time with respect to the position, x.  As we are
interested at the contact point at the plane of the interface, we set y = 0.

  

dT

dx
y =0

= 
 

n
1

c
 

 

2( x – x
i
)

( x – x
i
)2  + ( y – y

i
)2

  - 
 

n
2

c
 

 

2( x
f
 – x)

( x
f
 – x)2  + ( y

f
 – y)2

= 
 

n
1

c
 2 sin (&1) - 

 

n
2

c
 2 sin (&2)

The total transit time is minimized when dT/dx|y=0 = 0.  This leads to the identity

n1 sin&1  =  n2 sin&2

Appendix B

Coming soon – still!


