
NONLINEAR OPTICS

Nonlinear optics refers to the alteration of the optical properties of a material by light (Boyd 
2003). As light propagates through a material, it generates oscillating dipoles, which in turn  give rise 
to electromagnetic radiation, allowing the light to continue. This process is typically described by the 
following simple relation:

, 
where P is the polarization of the material (dipole moment per unit volume), 
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 is a constant 
called the susceptibility, and E is the electrical field generated by the incident light. However, this 
linear relationship between polarization and electric field is a first order approximation to a more 
complicated functional relationship, which is better approximated by the higher order terms in the 
Taylor series expansion:

where 
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refers the n-th order nonlinear susceptibility. Assuming that the magnitude of this 

constant, 

BRIEF ARTICLE

THE AUTHOR

P = χE

P = χ(1) ⊗ E + χ(2) ⊗ E2 + · · ·

χ(2) = Ns〈β〉

χ(n)

χ(n)

χ(1)
∝

(
E

Eatom

)n−1

Ilaser =
400mW

10s of µm
≈ 4× 10−1W

(1× 10−5m)2
= 4×109 W/m2

1

, decreases with n, it becomes clear why we see second harmonic generation only 

in very strong electric fields.   Applying a perturbation approach leads to the following 

approximation for the ratio of 
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 to  
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 as a function of electric field strength: 

 

As we will describe shortly, the second order polarization gives rise to the phenomenon of second 

harmonic generation. Therefore we calculate this fraction for 
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 for a mode-locked Ti-sapphire 

laser with an average power of 400 mW emitting 100 femtosecond pulses at a rate of 80 MHz. 
The power in a single pulse is then equal to the average power over a second divided by the 
fraction of time spent in pulses:

Fraction of time pulsing
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In order to determine the intensity of light from the incoming laser, we must also know the size of 
the beam at the focus. We will ignore the issues involved in the laser having a Gaussian intensity 
profile and approximate it as a collimated beam with a diameter of 4 mm. Following Mansuripur 
1998, we take the size of the spot at the focus as the wavelength of light (800nm) divided by the 
numerical aperture. The numerical aperture of an ordinary glass lens is simply the index of 
refraction  (which we take to be 1.6) multiplied by the sine of the angle between the edge of the 
beam and the focal point. Using a lens with a focal length of 38 mm, we calculate that the size of 
the spot will be 13 micrometers in diameter. The intensity at the focal point is then

 

which is approximately 1000 times smaller than the atomic electric field, so that each 

successive 
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 will be 1000 times smaller than the one before it. From this calculation, we can 

see the importance of maximizing the intensity of incident light during the pulses if we are to 
generate an appreciable second order polarization,
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SECOND HARMONIC GENERATION

As a wave propagating in space, E has the form (Hecht 2001) 

2 THE AUTHOR

r2 = 0.9871

P (2) = χ(2)E2

E = E0 sin(ωt)

cos2(ωt) =
1 + cos(2ωt)

2

P (2) =
χ(2)E2

0(1 + cos(2ωt))

2

=
8× 107 pulses

second

1× 10−13 seconds

pulse
= 8× 10−6

=
0.4W

8× 106 = 5× 104W

Intensity =
power

area
=

5× 104W

π × (13× 10−6, )2 = 9.4× 1013W/m2

, the polarization 

therefore has the form

2 THE AUTHOR

r2 = 0.9871

P (2) = χ(2)E2

E = E0 sin(ωt)

cos2(ωt) =
1 + cos(2ωt)

2

P (2) =
χ(2)E2

0(1 + cos(2ωt))

2

=
8× 107 pulses

second

1× 10−13 seconds

pulse
= 8× 10−6

=
0.4W

8× 106 = 5× 104W

Intensity =
power

area
=

5× 104W

π × (13× 10−6, )2 = 9.4× 1013W/m2

P = χ(1)E0 sin(ωt) + χ(2)E2
0 sin2(ωt) + · · · .   However, since we 

know from trigonometry that 

2 THE AUTHOR

r2 = 0.9871

P (2) = χ(2)E2

E = E0 sin(ωt)

cos2(ωt) =
1 + cos(2ωt)

2

sin2(ωt) =
1− cos(2ωt)

2

P (2) =
χ(2)E2

0(1 + cos(2ωt))

2

=
8× 107 pulses

second

1× 10−13 seconds

pulse
= 8× 10−6

=
0.4W

8× 106 = 5× 104W

Intensity =
power

area
=

5× 104W

π × (13× 10−6, )2 = 9.4× 1013W/m2

P = χ(1)E0 sin(ωt) + χ(2)E2
0 sin2(ωt) + · · ·

, the second order polarization 

bcomes 

 To rephrase this result in English, we have an electric dipole being induced in the medium at 
double the frequency (half the wavelength) of the incoming laser light. This is similar to the 
technique of two-photon fluorescence in which two photons collide with a fluorophore in a 
narrow window of time, causing it to become excited and to emit a photon of light at slightly less 
than double the frequency of the incoming photons. Two-photon fluorescence and second 
harmonic generation are depicted schematically in Figure 1
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Although these two techniques are superficially similar, they arise from very different physical 
processes - two-photon fluorescence requires a fluorophore, which relaxes from the excited state 
through vibrational states before emitting a photon in a random direction. In contrast, second 
harmonic generation does not include relaxation through vibrational states, so no energy is lost to 
heat, a significant problem in temperature-sensitive biological tissues. Furthermore, second-
harmonic generation produces a coherent beam of light in the forward direction only. Since it does 
not rely on excitation of a larger fluorophore, it is also much faster, and ought not to be as 
susceptible to photobleaching. 

There are, however, certain strict conditions on the generation of second harmonics. The first is 
that only noncentrosymmetric objects can generate second harmonics, because the second-order 

nonlinear susceptibility 
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 is a vector average over the hyperpolarizability of the medium, which 

cancels out when the hyperpolarizability is the same in all directions.  

The second condition is that of phase matching - in order to avoid destructive interference 
between second harmonics generated at different positions in the medium, which depletes an 
already weak signal, the original wavelength and the halved second harmonic wavelength can be 
made to propagate at the same speed. This is achieved despite the normal variation of the index of 
refraction with wavelength (e.g. prisms) by means of a birefringent crystal, which is a crystal with 
different indices of refraction at different polarization angles. For example, for a crystal which 
propagates light more slowly at lower wavelengths and more slowly on the ordinary axis of the 
crystal (negative uniaxial crystal), it is possible to achieve this at a tunable angle of the crystal 
relative to the polarized light of the laser, ensuring constructive interference in the forward 
direction.
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Figure 1 - Two-photon fluorescence versus second harmonic 
generation, Jablonski diagram



EXPERIMENTAL SETUP

Second harmonic generation begins with a mode-locked Ti:Sapphire laser, the set-up of which is 
beyond the scope of this paper.  Using a glass slide, we divert approximately 4% of the laser beam 
to a spectrometer that is used to measure the spectrum of the emitted light.  When the laser is 
mode-locked, the spectrum is broad, usually spanning the wavelengths 770-790 nm.  Passing 
through the glass slide, the rest of the beam is directed to the optical axis by a set of mirrors.  
Using two flipping-mirrors (c and d in Figure 2), we are able to create two paths to the optic axis.  
When mirror c is down and d is up, there is a static path that can be used for aligning elements of 
the optic axis and checking on the generation of the second harmonics.  Switching the status of the 
mirrors directs the light path to a set of scanning mirrors (e), which are controlled via a laptop 
running Matlab and connected to a data acquisition card.

The beam next passes through a beam expander.  We used a telescope system with a -25.4 mm 
lens and a 75.6 mm lens, expanding the beam by approximately 3 times.  The goal of the beam 
expander is to get the beam to fill the back of the objective.  The 3x expansion made our beam 
approximately 6 mm in diameter.  

After the expander, the beam passes through a wave plate and polarizing beam splitter.  The wave 
plate adjusts the polarization of the light, and the beam splitter diverts light of a particular 
polarization away while letting the remaining light through.  The wave plate and polarizing beam 
splitter, then, work together to serve as an attenuator for the beam.  Rotating the wave plate allows 
different amounts of light to pass through the beam splitter.  This is important, as we found that at 
full power the laser could burn biological tissue if left in one place.
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Figure 2: Experimental Setup.  The setup is described in the text.
a. Pumping laser.  b. Ti:Sapphire Laser.  c,d.  Flipping mirrors.  e. Scanning mirrors.  f. Beam expander.  g. Rotating 
wave plate.  h. Polarizing beam splitter.  i. Beam block for beam deflected from h.  j. Objective lens.  k. Sample.  
l. Collecting lens.  m. Blue filter.  n. Photodiode.  o. Oscilloscope.  p. Laptop.  q. Data acquisition card.
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An objective or lens is used to collect the remaining light and focus it onto the sample.  We used a 
38.1 mm lens.  For our sample, we began with BBO crystal.  We also tried to generate harmonics 
from a piece of bone and from a section of tendon from a rat tail.  Unfortunately, only the BBO 
crystal was successful in producing second harmonics.  Successful second harmonic generation 
produces a violet light.  Because most photons do not get converted by second harmonic 
generation, a strong red beam will also come through.  A blue filter blocks this beam.  

We used a 25.4 mm collecting lens to focus the beam onto a photo diode.  By attaching a narrow 
band-pass filter to the photo diode and adjusting the wavelength of the mode-locked laser, we 
were able to determine that the light being generated was second-harmonic light, not auto-
fluorescence of the sample. The photo-diode was connected to an oscilloscope, and the magnitude 
of the signal was recorded using the laptop and data acquisition card.

We were successful in generating a second harmonic signal from BBO crystal, however we were 
not able to record a signal from biological tissue as we had originally hoped.  Here are some ideas 
for making this successful in the future.  First, make sure the mirrors used will reflect almost all the 
light with wavelength 750-800 nm.  This is especially important to keep in mind when selecting a 
set of scanning mirrors: the first set we tried transmitted the majority of the light.  We also had our 
pumping laser at a 90° angle to the Ti:Sapphire laser.  A representative of the Tsunami Laser 
Company told us that this was bad practice and beam from the pumping laser should go directly 
into the second laser.  It is possible that this would make the Ti:Sapphire laser easier to get into 
mode lock.

We chose to use a 38.1 mm lens in place of a traditional objective in our setup.  This worked well 
for the BBO crystal, but may have lost too much power for other samples.  The goal of the beam 
expander is to cover the back aperture of the objective.  Because we used a lens, we may have 
needed a larger expansion.  On the other hand, the back of an objective is generally smaller than 6 
mm, so a smaller expansion should be used.

We used only one photo diode to collect the second harmonic light, and we found that our eyes 
were more sensitive than the photo diode.  That is, we could see a clear signal even when the 
oscilloscope reading was indistinguishable from its reading when the beam was blocked entirely.  
That we never a saw second harmonic signal from the tendon may not mean that no signal was 
generated.  We had hoped to be able to use the photodiode and oscilloscope to detect signals that 
were not visible to our eyes.  With one photodiode this is not possible.  Two potential solutions 
come to mind.

First, it would be helpful to collect the portion of the signal that is back propagated from the 
sample.  This may be achieved by inserting a dichroic mirror between the beam splitter and the 
objective lens.  The dichroic mirror should transmit light in the range of the red beam and reflect 
light in the range of the violet beam.  The reflected light from this mirror could then be collected 
by a second photodiode, and the signal added to that of the first.  Another potentially useful 
solution would be to try using photo multiplier tubes instead of photodiodes; these should be 
more sensitive than the human eye.
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RESULTS

Although we were unable to generate second harmonics in tendon, as desired, we were able to 
generate them from BBO crystal, and could explore some properties of this signal.

First, we showed that the second harmonic signal in BBO crystal is strongly dependent on the 
rotation of the crystal.  The amount of second harmonic signal depends on the degree of phase-
matching between the red and violet light.  As the crystal is rotated, the angle, theta, between the 
ordinary axis of the crystal and polarization of the light varies, which varies the index of refraction 
for the 400 nm light.  Thus, the degree of phase-matching between the two wavelengths varies with 
the angle of the crystal, so the strength of the signal should vary as well.

Results are shown in Figure 3.  The blue line shows our first set of measurements.  We expect the 
results to be periodic, with period some factor of 360°.  We began measuring at 160°, which is 
where we had found maximal signal strength.  We were surprised that when we had rotated the 
crystal 360°, our signal had diminished from 32 μW to 6 μW.  To check our measurements, we 
repeated the experiment, rotating 45° at a time.  Results, plotted as green dots, show the same 
pattern.

Looking at the pattern of 
results, it appears that there 
are three levels at which the 
signal may plateau: no signal 
(0-1.5 μW)1, weak signal 
(5-8 μW), and strong signal 
(28-32 μW).   Between 
these plateaus are fairly 
sharp transitions.

We hypothesize that the 
p lateaus are re lat ive ly 
stable, but the location of 
the transition could be 
sensitive to parameters of 
the laser.  In particular, 
notice that the first  sharp 
descent is “interrupted” 
briefly, but if the first five 
measurements were shifted 
by 20°, the curve would be 
smooth and monotonic.  
Similarly, the descent at the 
end would line up nicely 

Al Kaye & Emily Mankin
Phys 273; Spring 2009

1 Note that the signal never disappeared completely to our eyes.  The signal on the oscilloscope, 
however, was indistinguishable from a blocked beam when it reached 1.3 mW.  All such values are 
plotted as 0 on the graph.

Figure 3.  Strength of second harmonic signal is dependent on the rotation 
of the crystal, but may be sensitive to yet undetermined properties of the 
laser.

μW



with the descent at the beginning if we imagined this as having a period of 330°.

It is not clear what is causing the instability in where the transitions occur.  We monitored the input 
power carefully during this experiment; all measurements were made with the mode-locked laser 
at a power of 420-430 mW.  We often noticed a seeming “bistability” in the oscilloscope signal that 
would persist for a moment when we turned the crystal.  That is, for a moment the oscilloscope 
would vacillate between two different amplitudes.  This usually resolved itself quickly and we took 
the data point once it settled.  We found that, in general, the mode-locking of the laser was 
unstable, and we suspect this instability could have contributed to the bistable oscilloscope signal 
and to the instability in where the transitions between strong and very weak signals occurred.

For our next experiment, we set the crystal at a rotation of 200° (at the time, this was the 
strongest signal point) and then measured the power of the input laser and the output second 
harmonic signal as we rotated the wave plate.  This data (see figure 4) shows a robust periodic 
effect with period of 90°.  This shows, first, that the wave plate, indeed, attenuates the power of the 
mode-locked laser, as predicted.

The periodicity of the second harmonic response also demonstrates that the dependence on the 
input intensity of the second harmonic signal is robust.  Finally, we can see that the input intensity 
varies between 15 and 350 mW, while the second harmonic signal varies between 0 and 30 μW.

T h e o r e t i c a l c a l c u l a t i o n s , 
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, 
suggest that the strength of the 
second harmonic signal will vary 
with the intensity of the input 
signal, squared.  To test this, we 
plotted the input intensity vs. 
output intensity and fitted the 
data with a quadratic function 
(see Figure 5).  Looking at a log-
log plot of the same data reveals 
the quadrat ic re lat ionsh ip 
between input intensity and 
second harmonic generation.  
The least-squares fit for the log-
transformed data is y = 1.968x - 
8.081, with an r-squared value 
of .987.   The 95% confidence 
interval for the slope is (1.877, 
2.059), so 2 is included.  We 
conclude that there is good 
ev idence that the output 
intensity does vary quadratically 
with input intensity.
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Figure 4.  Rotating the wave plate causes a robust, periodic effect 
on the amplitude of each signal.  Note that the input signal is 
several orders of magnitude greater than the output.
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CONCLUSION

We have generated second harmonics by collimating and then focusing a mode-locked Ti-sapphire 
laser onto a birefringent crystal. We obtained experimental verification of several important 
features of second harmonic generation: namely, that the strength of the light varies quadratically as 
a function of the intensity of the incident beam, and that the polarization of the incident light 
relative to the ordinary axis of the birefringent crystal determines the strength of the second 
harmonic, in keeping with theoretical predictions based on phase matching. We furthermore 
showed that the light generated was at precisely half the wavelength by means of a narrow band 
filter,  and we were able to generate second harmonics in a scanning configuration. 

It is our hope that future students will be able to build upon these results by imaging the collagen 
fibrils in a rat tail, replicating published results from Freund et al (1986). Although we were 
successful in exploring some of the fundamental physical aspects of nonlinear optics with this 
project, we were not successful in our ultimate goal of applying this tool to neurobiology. With the 
scanning configuration in place, it ought to be possible to study the polarity of filaments in cells, 
including the microtubules in neuronal processes (Kwan et al 2008). The use of styryl dyes to 
optically record action potentials in neurons using second harmonic generation offers the possibility 
of a fast readout of neural activity that could penetrate deeply into tissue without the sort of 
heating encountered in traditional two-photon microscopy (Helmchen and Denk 2006). This might 
not be beyond future generations of students in this Biophysics course. 
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Figure 5.  Input intensity vs. output intensity (regular and log-log plots).  Blue dots were taken from measurements 
made every 10 degrees of wave plate rotation and were used for curve-fitting.  Red curves are best fits, 
calculated with the Matlab curve fitting toolbox.  Green dots were taken every 2 degrees of rotation between 
300 and 310 degrees.  They were not used in determining best fit, but appear to lie along the best fit curve.  The 
figures show that the intensity of the second harmonic signal varies quadratically with the intensity of the 
incoming beam.
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