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Introduction
This chapter introduces concepts fundamental to 
spectral analysis and applies spectral analysis to char-
acterize neural signals. Spectral analysis is a form of 
time series analysis and concerns a series of events 
or measurements that are ordered in time. The goal 
of such an analysis is to quantitatively characterize 
the relationships between events and measurements 
in a time series. This quantitative characterization 
is needed to derive statistical tests that determine 
how time series differ from one another and how 
they are related to one another. Time series analysis 
comprises two main branches: time-domain methods 
and frequency-domain methods. Spectral analysis is 
a frequency-domain method for which we will use 
the multitaper framework (Thomson, 1982; Percival 
and Walden, 1993). The treatment here also draws 
on other sources (Brillinger, 1978; Jarvis and Mitra, 
2001; Mitra and Bokil, 2007).

In this chapter, we will focus on relationships  
within and between one and two time series, known  
as univariate and bivariate time series. Throughout 
this discussion, we will illustrate the concepts with  
experimental recordings of spiking activity and  
local field potential (LFP) activity. The chapter on  
Multivariate Neural Data Sets will extend the treat-
ment to consider several simultaneously acquired 
time series that form a multivariate time series, such 
as in imaging experiments. The chapter on “Appli-
cation of Spectral Methods to Representative Data 
Sets in Electrophysiology and Functional Neuro- 
imaging” will review some of this material and  
present additional examples.

First we begin by motivating a particular problem 
in neural signal analysis that frames the examples in 
this chapter. Second, we introduce signal processing 
and the Fourier transform and discuss practical issues 
related to signal sampling and the problem of alias-
ing. Third, we present stochastic processes and their 
characterization through the method of moments. 
The moments of a stochastic process can be char-
acterized in both the time domains and frequency 
domains, and we will discuss the relation between 
these characterizations. Subsequently, we present the 
problem of scientific inference, or hypothesis test-
ing, in spectral analysis through the consideration of  
error bars. We finish by considering an application of 
spectral analysis involving regression.

Motivation
When a microelectrode is inserted into the brain, 
the main features that are visible in the extracellular 
potential it measures are the spikes and the rhythms 
they ride on. The extracellular potential results from 

currents flowing in the extracellular space, which in 
turn are produced by transmembrane potentials in  
local populations of neurons. These cellular events 
can be fast, around 1 ms for the action potentials 
that appear as spikes, and slow, up to 100 ms, for the 
synaptic potentials that predominantly give rise to 
the LFP. How spiking and LFP activity encode the 
sensory, motor, and cognitive processes that guide 
behavior, and how these signals are related, are fun-
damental, open questions in neuroscience (Steriade, 
2001; Buzsaki, 2006). In this chapter, we will illus-
trate these analysis techniques using recordings of 
spiking and LFP activity in macaque parietal cortex 
during the performance of a delayed look-and-reach 
movement to a peripheral target (Pesaran et al., 
2002). This example should not be taken to limit the 
scope of potential applications, and other presenta-
tions will motivate other examples.

The Basics of Signal Processing
Spiking and LFP activity are two different kinds of 
time series, and all neural signals fall into one of 
these two classes. LFP activity is a continuous process 
and consists of a series of continuously varying volt-
ages in time, x

t
. Spiking activity is a point process, 

and, assuming that all the spike events are identical, 
consists of a sequence of spike times. The counting 
process, N

t
, is the total number of events that occur 

in the process up to a time, t. The mean rate of the 
process, , is given by the number of spike events  
divided by the duration of the interval. If we consider 
a sufficiently short time interval, t = 1 ms, either a 
spike event occurs or it does not. Therefore, we can 
represent a point process as the time derivative of 
the counting process, dN

t
, which gives a sequence of  

delta functions at the precise time of each spike, t
n
. We 

can also represent the process as a sequence of times 
between spikes, τ

n
 = t

n+1
 - t

n
, which is called an inter-

val process. These representations are equivalent but 
capture different aspects of the spiking process. We 
will focus on the counting process, dN

t
. dN

t
 = 1λδt 

when there is a spike and dN
t
 = λδt elsewhere. Note 

that these expressions correct for the mean firing rate 
of the process. As we will see, despite the differences 
between point and continuous processes, spectral 
analysis treats them in a unified way. The following 
sections present some basic notions that underlie  
statistical signal processing and time series analysis. 

Fourier transforms
Time series can be represented by decomposing them 
into a sum of elementary signals. One domain for  
signals, which we call the time domain, is simply 
each point in time. The time series is represented by 
its amplitude at each time point. Another domain 
is the frequency domain and consists of sinusoidal  
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functions, one for each frequency. The process is rep-
resented by its amplitude and phase at each frequency.  
The time and frequency domains are equivalent, 
and we can transform signals between them using 
the Fourier transform. Fourier transforming a signal 
that is in the time domain, xt, will give the values of 
the signal in the frequency domain, ~x( f ). The tilde  
denotes a complex number with amplitude and phase.

x(f) = ∑ exp(–2πiftn) 
N

t = 1

~

Inverse Fourier transforming ~x( f ) transforms it to 
the time domain. To preserve all the features in the 
process, these transforms need to be carried out over 
an infinite time interval. However, this is never  
realized in practice. Performing Fourier transforms 
on finite duration data segments distorts features in 
the signal and, as we explain below, spectral estima-
tion employs data tapers to limit these distortions.

Nyquist frequency, sampling 
theorem, and aliasing
Both point and continuous processes can be repre-
sented in the frequency domain. When we sample a 
process, by considering a sufficiently short interval in 
time, t, and measuring the voltage or the presence 
or absence of a spike event, we are making an  
assumption about the highest frequency in the pro-
cess. For continuous processes, the sampling theorem 
states that when we sample an analog signal that is 
band-limited, so that it contains no frequencies 
greater than the Nyquist rate (B Hz), we can  
perfectly reconstruct the original signal if we sample 

at a sampling rate, Fs =  —1δ t , of at least 2B Hz. The 

original signal is said to be band-limited because it  
contains no energy outside the frequency band given 
by the Nyquist rate. Similarly, once we sample a  
signal at a certain sampling rate, F

s
, the maximum 

frequency we can reconstruct from the sampled  

signal is called the Nyquist frequency,
 

Fs
 —1
2 .

The Nyquist frequency is a central property of all 
sampled, continuous processes. It is possible to sam-
ple the signal more frequently than the bandwidth of 
the original signal, with a sampling rate greater than 
twice the Nyquist rate, without any problems. This is 
called oversampling. However, if we sample the sig-
nal at less than twice the Nyquist rate, we cannot 
reconstruct the original signal without errors. Errors 
arise because components of the signal that exist at a 
higher frequency than Fs

 —1
2

 become aliased into 

lower frequencies by the process of sampling the sig-
nal. Importantly, once the signal has been sampled at 
F

s
, we can no longer distinguish between continuous 

processes that have frequency components greater 

than the Nyquist frequency of Fs
 —1
2

. To avoid the 

problem of aliasing signals from high frequencies into 
lower frequencies by digital sampling, an anti- 
aliasing filter is often applied to continuous analog 
signals before sampling. Anti-aliasing filters act to 
low-pass the signal at a frequency less than the  
Nyquist frequency of the sampling.

Sampling point processes does not lead to the same 
problems as sampling continuous processes. The 
main consideration for point processes is that the 
sampled point process be orderly. Orderliness is 
achieved by choosing a sufficiently short time inter-
val so that each sampling interval has no more than 
one event. Since this means that there are only two 
possible outcomes to consider at each time step, 0 
and 1, analyzing an orderly point process is simpler 
than analyzing a process that has multiple possible 
outcomes, such as 0, 1, and 2, at each time step.

Method of moments for stochastic 
processes 
Neural signals are variable and stochastic owing to 
noise and the intrinsic properties of neural firing.  
Stochastic processes (also called random process-
es) can be contrasted with deterministic processes, 
which are perfectly predictable. Deterministic  
processes evolve in exactly the same way from a par-
ticular point. In contrast, stochastic processes are  
described by probability distributions that govern 
how they evolve in time. Stochastic processes evolve 
to give a different outcome, even if all the samples 
of the process originally started from the same point. 
This is akin to rolling dice on each trial to deter-
mine the neural activity. Each roll of the dice is a 
realization from a particular probability distribution, 
and it is this distribution that determines the proper-
ties of the signal. When we measure neural signals to  
repeated trials in an experiment, we assume that the 
signals we record on each trial are different realizations 
or outcomes of the same underlying stochastic process.

Another powerful simplification is to assume that 
the properties of the stochastic process generating 
the neural signals within each trial are stationary 
and that their statistical properties don’t change with 
time—even within a trial. This is clearly not strictly 
true for neural signals because of the nonstationarities 
in behavior. However, under many circumstances, a 
reasonable procedure is to weaken the stationarity  
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assumption to short-time stationarity. Short-time  
stationarity assumes that the properties of the  
stochastic process have stationarity for short time  
intervals, say 300-400 ms, but change on longer time 
scales. In general, the window for spectral analysis is 
chosen to be as short as possible to remain consistent 
with the spectral structure of the data; this window 
is then translated in time. Fundamental to time- 
frequency representations is the uncertainty prin-
ciple, which sets the bounds for simultaneous  
resolution in time and frequency. If the time- 
frequency plane is “tiled” so as to provide time 
and frequency resolutions Δt = N by Δf = W, then  
NW ≥ 1. We can then estimate the statistical prop-
erties of the stochastic process by analyzing short 
segments of data and, if necessary and reasonable, 
averaging the results across many repetitions or  
trials. Examples of time-frequency characterizations 
are given below. Note that this presentation uses 
“normalized” units. This means that we assume the 
sampling rate to be 1 and the Nyquist frequency  
interval to range from –½ to ½. The chapter Appli-
cation of Spectral Methods to Representative Data 
Sets in Electrophysiology and Functional Neuro-
imaging presents the relationships below in units of 
time and frequency.

Spectral analysis depends on another assumption: 
that the stochastic process which generates the neu-
ral signals has a spectral representation.

xt = ∫  x(f)exp(2πift)df 
½

–½

~

Remarkably, the same spectral representation can 
be assumed for both continuous processes (like LFP 
activity) and point processes (like spiking activity),  
so the Fourier transform of the spike train, t

n
, is  

as follows:

dN(f) = ∑ exp(2πiftn) 
N

n = 1

~

The spectral representation assumes that underlying 
stochastic processes generating the data exist in the 
frequency domain, but that we observe their real-
izations as neural signals, in the time domain. As a  
result, we need to characterize the statistical proper-
ties of these signals in the frequency domain: This is 
the goal of spectral analysis.

The method of moments characterizes the statisti-
cal properties of a stochastic process by estimating 
the moments of the probability distribution. The first 
moment is the mean; the second moments are the 

variance and covariance (for more than one time  
series), and so on. If a stochastic process is a Gaussian 
process, the mean and variance or covariances com-
pletely specify it. For the spectral representation, we 
are interested in the second moments. The spectrum 
is the variance of the following process:

SX(f)δ (f – f ʹ) = E[x*(f)x(f ʹ)]~ ~

SdN(f)δ (f – f ʹ) = E[dN*(f)dN(f ʹ)]~ ~

The delta function indicates that the process is  
stationary in time. The asterisk denotes complex 
conjugation. The cross-spectrum is the covariance of 
two processes:

SXY(f)δ (f – f ʹ) = E[x*(f)y(f ʹ)]~ ~

The coherence is the correlation coefficient between 
each process at each frequency and is simply the  
covariance of the processes normalized by  
their variances.

CXY(f) =
SXY(f)

Sx(f)Sy(f)  

This formula represents the cross-spectrum between 
the two processes, divided by the square root of  
the spectrum of each process. We have written this 
expression for two continuous processes; analo-
gous expressions can be written for pairs of point- 
continuous processes or point-point processes by 
substituting the appropriate spectral representation. 
Also, we should note that the assumption of station-
arity applies only to the time interval during which 
we carry out the expectation.

Multitaper spectral estimation
The simplest estimate of the spectrum, called the 
periodogram, is proportional to the square of the data 
sequence, |~xtr( f )|2. This spectral estimate suffers 
from two problems. The first is the problem of bias. 
This estimate does not equal the true value of the 
spectrum unless the data length is infinite. Bias arises 
because signals at different frequencies are mixed  
together and “blurred.” This bias comes in two forms: 
narrow-band bias and broad-band bias. Narrow-band 
bias refers to bias in the estimate due to mixing sig-
nals at different nearby frequencies. Broad-band bias 
refers to mixing signals at different frequencies at  
distant frequencies. The second problem is the 
problem of variance. Even if the data length were  
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infinite, the periodogram spectral estimate would 
simply square the data without averaging. As a  
result, it would never converge to the correct value 
and would remain inconsistent.

Recordings of neural signals are often sufficiently  
limited so that bias and variance can present  
major limitations in the analysis. Bias can be  
reduced, however, by multiplying the data by a data  
taper, w

t
, before transforming to the frequency- 

domain, as follows:

x(f) = ∑ wtxt exp(–2πift) 
N

t = 1

~

Using data tapers reduces the influence of distant 
frequencies at the expense of blurring the spectrum 
over nearby frequencies. The result is an increase in 
narrow-band bias and a reduction in broad-band bias. 
This practice is justified under the assumption that 
the true spectrum is locally constant and approxi-
mately the same for nearby frequencies. Variance is 
usually addressed by averaging overlapping segments 
of the time series. Repetitions of the experiment also 
give rise to an ensemble over which the expectation 
can be taken, but this precludes the assessment of 
single-trial estimates.

An elegant approach toward the solution of both 
the above problems has been offered by the multi-
taper spectral estimation method, in which the data 
are multiplied by not one, but several, orthogonal  
tapers and Fourier-transformed in order to obtain 
the basic quantity for further spectral analysis. The  
simplest example of the method is given by the  
direct multitaper estimate, S

MT 
(f), defined as the  

average of individual tapered spectral estimates,

xk(f) = ∑ wt(k)xt exp(–2πift) 
N

t = 1

~

SMT(f) = —∑ |xk (f)|2 
K

k = 1

~1
K

The w
t
(k) (k = 1, 2, … , K) constitute K orthogo-

nal taper functions with appropriate properties. 
A particular choice for these taper functions, with  
optimal spectral concentration properties, is given by 
the discrete prolate spheroidal sequences, which we 
will call “Slepian functions” (Slepian and Pollack, 
1961). Let w

t
(k, W, N) be the kth Slepian function 

of length N and frequency bandwidth parameter W. 
The Slepians would then form an orthogonal basis 
set for sequences of length, N, and be characterized 

by a bandwidth parameter W. The important feature 
of these sequences is that, for a given bandwidth 
parameter W and taper length N, K = 2NW – 1  
sequences, out of a total of N, each having their  
energy effectively concentrated within a range  
[–W, W] of frequency space.

Consider a sequence w
t
 of length N whose Fourier 

transform is given by the formula

U(f) = ∑ wt exp(–2πift). 
N

t = 1

 Then we can consider 

the problem of finding sequences w
t
 so that the spec-

tral amplitude U(f) is maximally concentrated in the 
interval [–W, W]. Maximizing this concentration pa-
rameter, subject to constraints, yields a matrix eigen-
value equation for w

t
(k, W, N). The eigen- 

vectors of this equation are the Slepians. The  
remarkable fact is that the first 2NW eigenvalues 


k
(N,W) (sorted in descending order) are each  

approximately equal to 1, while the remainder  
approximate zero. The Slepians can be shifted in 
concentration from [–W, W] centered around zero 
frequency to any nonzero center frequency interval 
[f

0 
– W, f

0
 + W]  by simply multiplying by the appro-

priate phase factor exp(2π if
0
t)—an operation known 

as demodulation.

The usual strategy is to select the desired analy-
sis half-bandwidth W to be a small multiple of 
the Raleigh frequency 1/N, and then to take the  
leading 2NW – 1 Slepian functions as data tapers 
in the multitaper analysis. The remaining functions 
have progressively worsening spectral concentra-
tion properties. For illustration, in the left column of  
Figure 1, we show the first four Slepian functions 
for W = 5/N. In the right column, we show the 
time series example from the earlier subsection 
multiplied by each of the successive data tapers. In 
the left column of Figure 2, we show the spectra of 
the data tapers themselves, displaying the spectral  
concentration property. The vertical marker denotes 
the bandwidth parameter W. Figure 2 also shows the 
magnitude-squared Fourier transforms of the tapered 
time series presented in Figure 1. The arithmetic  
average of these spectra for k = 1, 2, . . . , 9 (note that 
only 4 of 9 are shown in Figs. 1 and 2) gives a direct 
multitaper estimate of the underlying process.

Figure 3A shows the periodogram estimate of the 
spectrum based on a single trial of LFP activity dur-
ing the delayed look-and-reach task. The variability 
in the estimate is significant. Figure 3B presents the 
multitaper estimate of the spectrum on the same 
data with W = 10 Hz, averaged across 9 tapers. This  
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estimate is much smoother and reveals the presence 
of two broad peaks in the spectrum, at 20 Hz and 
60 Hz. Figure 3C shows the multitaper spectrum  
estimate on the same data with W = 20 Hz. This  
estimate is even smoother than the 10 Hz, which 
reflects the increased number of tapers available to 

average across (19 tapers instead of 9). However, 
the assumption that the spectrum is constant with 
the 20 Hz bandwidth is clearly wrong and leads to  
noticeable distortion in the spectrum, in the form of 
a narrow-band bias. Figure 3D shows the multitaper 
estimate with bandwidth W = 10 Hz averaged across 
9 trials. Compared with Figure 3B, this estimate is  
noticeably smoother and contains the same frequency  
resolution. This series illustrates the advantages of 
multitaper estimates and how they can be used to 
improve spectral resolution.

Bandwidth selection
The choice of the time window length N and the 
bandwidth parameter W is critical for applications. 
No simple procedure can be given for these choices, 
which in fact depend on the data set at hand, and 
are best made iteratively using visual inspection and 
some degree of trial and error. 2NW gives the num-
ber of Raleigh frequencies over which the spectral 
estimate is effectively smoothed, so that the vari-
ance in the estimate is typically reduced by 2NW . 
Thus, the choice of W is a choice of how much to 
smooth. In qualitative terms, the bandwidth param-
eter should be chosen to reduce variance while not 
overly distorting the spectrum by increasing narrow-
band bias. This can be done formally by trading off an  
appropriate weighted sum of the estimated variance 
and bias. However, as a rule, we find fixing the time 
bandwidth product NW at a small number (typically 

Figure 1. Slepian functions in the time domain. Left panels: First 
four Slepian functions for NW = 5. Right panels: Data sequence 
multiplied by each Slepian data taper on left.

Figure 2. Slepian functions in the frequency domain. Left panel: 
spectra of Slepian functions from left panels of Figure 1. Right panel: 
spectra of data from right panels of Figure 1.

Figure 3. Spectrum of LFP activity in macaque lateral intra- 
parietal area (LIP) during delay period before a saccade-and-reach  
to preferred direction. A, Single trial, 500 ms periodogram  
spectrum estimate. B, Single trial, 500 ms, 10 Hz multitaper spec-
trum estimate. C, Single trial, 500 ms, 20 Hz multitaper spectrum 
estimate. D, Nine-trial average, 500 ms, 10 Hz multitaper spec- 
trum estimate. a.u. = arbitrary units.

A

C

B

D
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3 or 4), and then varying the window length in time 
until sufficient spectral resolution is obtained, to be a  
reasonable strategy. It presupposes that the data are 
examined in the time-frequency plane so that N may 
be significantly smaller than the total data length.

Figure 4 illustrates these issues using two spectrogram 
estimates of the example LFP activity averaged across 
9 trials. Each trial lasts approximately 3 s and consists 
of a 1 s baseline period, followed by a 1–1.5 s delay 
period, during which a movement is being planned. 
The look-reach movement is then executed. Each 
spectrogram is shown with time on the horizontal 
axis, frequency on the vertical axis, and power color-
coded on a log base-10 scale. Figure 4A shows the 
spectrogram estimated using a 0.5 s duration analysis 
window and a 10 Hz bandwidth. The time-frequency 
tile this represents is shown in the white rectangle. 
This estimate clearly shows the sustained activity  
following the presentation of the spatial cue at 0 s 
that extends through the movement’s execution.  
Figure 4B shows a spectrogram of the same data  
estimated using a 0.2 s duration analysis window 
and a 25 Hz bandwidth. The time-frequency tile for 
this estimate has the same area as Figure 4A, so each  
estimate has the same number of degrees of free-
dom. However, there is great variation in the time- 
frequency resolution trade-off between these  
estimates: Figure 4B better captures the transients in 
the signal, at the loss of significant frequency resolu-
tion that distorts the final estimate. Ultimately, the 
best choice of time-frequency resolution will depend 
on the frequency band of interest, the temporal  
dynamics in the signal, and the number of trials 
available for increasing the degrees of freedom of a 
given estimate.

Calculating error bars
The multitaper method confers one important  
advantage: It offers a natural way of estimating  
error bars corresponding to most quantities obtained 
in time series analysis, even if one is dealing with an 
individual instance within a time series. Error bars 
can be constructed using a number of procedures, but 
broadly speaking, there are two types. The funda-
mental notion common to both types of error bars 
is the local frequency ensemble. That is, if the spec-
trum of the process is locally flat over a bandwidth 
2W, then the tapered Fourier transforms ~x

k
( f ) con-

stitute a statistical ensemble for the Fourier transform 
of the process at the frequency, f

o
. This locally flat 

assumption and the orthogonality of the data tapers 
mean that the ~x

k
( f ) are uncorrelated random vari-

ables having the same variance. This provides one 
way of thinking about the direct multitaper estimate  
presented in the previous sections: The estimate con-
sists of an average over the local frequency ensemble.

The first type of error bar is the asymptotic error bar. 
For large N, ~xk( f ) may be assumed to be asymptoti-
cally, normally distributed under some general  
circumstances. As a result, the estimate of the spec-
trum is asymptotically distributed according to a χ 2

dof
 

distribution scaled by 
S(f)
dof . The number of degrees 

of freedom (dof ) is given by the total number of data 
tapers averaged to estimate the spectrum. This would 
equal the number of trials multiplied by the number 
of tapers.

For the second type of error bar, we can use the  
local frequency ensemble to estimate jackknife error 
bars for the spectra and all other spectral quantities 
(Thomson and Chave, 1991; Wasserman, 2007). The 
idea of the jackknife is to create different estimates  
by, in turn, leaving out a data taper. This creates a 
set of spectral estimates that forms an empirical dis-
tribution. A variety of error bars can be constructed  
based on such a distribution. If we use a variance-
stabilizing transformation, the empirical distribution 
can be well approximated using a Gaussian distribu-
tion. We can then calculate error bars according to 
the normal interval by estimating the variance of 
the distribution and determining critical values that 
set the error bars. Inverting the variance-stabilizing 
transformation gives us the error bars for the original 
spectral estimate. This is a standard tool in statistics 
and provides a more conservative error bar than the 
asymptotic error bar. Note that the degree to which 
the two error bars agree constitutes a test of how well 
the empirical distribution follows the asymptotic  
distribution. The variance-stabilizing transforma-

Figure 4. Spectrogram of LFP activity in macaque LIP averaged 
across 9 trials of a delayed saccade-and-reach task. Each trial is 
aligned to cue presentation, which occurs at 0 s. Saccade and reach 
are made at around 1.2 s. A, Multitaper estimate with duration of 
500 ms and bandwidth of 10 Hz. B, Multitaper estimate with dura-
tion of 200 ms and bandwidth 25 Hz. White rectangle shows then 
time-frequency resolution of each spectrogram. The color bar shows 
the spectral power on a log scale in arbitrary units. 

A B
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tion for the spectrum is the logarithm. The variance- 
stabilizing transformation for the coherence, the 
magnitude of the coherency, is the arc-tanh.

As an example, Figure 5A shows asymptotic and  
Figure 5B empirical jackknife estimates of the spec-
tral estimate illustrated in Figure 3D. These are 
95% confidence intervals and are largely the same 
between the two estimates. This similarity indicates 
that, for these data, the sampling distribution of the 
spectral estimate follows the asymptotic distribution 
across trials and data tapers. If we were to reduce the 
estimate’s number of degrees of freedom by reducing 
the number of trials or data tapers, we might expect 
to see more deviations between the two estimates, 
with the empirical error bars being larger than the 
asymptotic error bars.

Correlation functions
Neural signals are often characterized in terms of  
correlation functions. Correlation functions are 
equivalent to computing spectral quantities but with 
important statistical differences. For stationary pro-
cesses, local error bars can be imposed for spectral 
estimates in the frequency domain. This is not true 
for correlation functions, even assuming stationarity, 
because error bars for temporal correlation functions 
are nonlocal. Nonlocality in the error bars means that 
uncertainty about the correlation function at one lag 
is influenced by the value of the correlation function 
across other lags. The precise nature of the nonlocality  
relies on the temporal dependence within the  
underlying process. Consequently, correlation func-
tion error bars must be constructed by assuming there 
are no dependencies between different time bins. 
This is a far more restrictive assumption than the 
one holding that neighboring frequencies are locally 
flat and rarely achieved in practice. Other problems  
associated with the use of correlation functions are 

that if the data contain oscillatory components, they 
are compactly represented in frequency space and 
lead to nonlocal effects in the correlation function. 
Similar arguments apply to the computation of corre-
lation functions for point and continuous processes. 
One exception is for spiking examples in which there 
are sharp features in the time-domain correlation 
functions, e.g., owing to monosynaptic connections.
 
Figure 6 illustrates the difference between using spec-
tral estimates and correlation functions. Figure 6A  
shows the spectrum of spiking activity recorded 
in macaque parietal cortex during a delay period  
before a coordinated look-and-reach. The duration 
of the spectral estimate is 500 ms, the bandwidth is  
30 Hz, and the activity is averaged over nine trials. 
Thin lines show the empirical 95% confidence inter-
vals. Figure 6B shows the auto-correlation function 
for the same data, revealing some structure around 
short lags and inhibition at longer lags. There is a 
hint of some ripples, but the variability in the esti-
mate is too large to see them clearly. This is not too 
surprising, because the correlation function estimate 
is analogous to the periodogram spectral estimate, 
which also suffers from excess statistical variability. 
In contrast, the spectrum estimate clearly reveals 
the presence of significant spectral suppression and a 
broad spectral peak at 80 Hz. The dotted line shows 
the expected spectrum from a Poisson process having 
the same rate.

Coherence
The idea of a local frequency ensemble motivates 
multitaper estimates of the coherence between two-
point or continuous processes. Given two time series 

Figure 5. 95% confidence error bars for LFP spectrum shown  
in Figure 3D. A, Asymptotic error bars assuming chi-squared  
distribution. B, Empirical error bars using leave-one-out jack- 
knife procedure.

A B

Figure 6. Spike spectrum and correlation function of spiking  
activity in macaque LIP during delay period before a saccade-and-
reach to the preferred direction. A, Multitaper spectrum estimate 
duration of 500 ms; bandwidth 15 Hz averaged across 9 trials. Thin 
lines show 95% confidence empirical error bars using leave-one-out 
procedure. Dotted horizontal line shows firing rate. B, Correlation 
function estimate from which shift predictor has been subtracted. 
a.u. = arbitrary units.

A B
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and the corresponding multiple tapered Fourier trans-
forms ~x

k
( f ), ~y

k
( f ), the following direct estimates can 

be defined for the coherence function:

xk (f)yk(f)
k 

~

CXY (f) =

~1
K

 —∑ *

Sx(f)Sy(f)  

This definition allows us to estimate the coherence 
from a single trial. Estimating the coherence presents 
many of the same issues as estimating the spectrum, 
except that more degrees of freedom are needed 
to ensure a reasonable estimate. In common with 
spectrum estimates, the duration and bandwidth of 
the estimator need to be chosen to allow sufficient 
degrees of freedom in the estimator. Increasing the 
number of trials will increase the effective resolution 
of the estimate. 

Figure 7 shows the coherence and correlations 
between two simultaneously recorded spike 
trains from macaque parietal cortex averaged  
over nine trials. Figure 7A shows the coherence  
estimated with 16 Hz bandwidth. The horizontal 
dotted line represents expected coherence for this 
estimator when there is no coherence between the 
spike trains. The coherence significantly exceeds this 
threshold, as shown by the 95% confidence inter-
vals, in a broad frequency band. Figure 7B illustrates 
the coherence estimated with a 30 Hz bandwidth. 
The variability in the estimate is reduced, as is the 
noise floor of the estimator, as shown by the lower  
horizontal dotted line. Figure 7C shows the cross- 
correlation function for these data. Here, too, there 

is structure in the estimate, but the degree of vari-
ability lowers the power of the analysis.

Regression using spectral feature 
vectors
Detection of period signals is an important problem 
that occurs frequently in the analysis of neural data. 
Such signals can arise as a result of periodic stimu-
lation and can manifest as 50/60 Hz line noise. We 
pursue the effects of periodic stimulation in the mul-
tivariate case in the next chapter Multivariate Neural 
Data Sets: Image Time Series, Allen Brain Atlas. As 
discussed therein, certain experiments that have no 
innate periodicity may also be cast into a form that 
makes them amenable to analysis as periodic stimuli. 
We now discuss how such components may be de-
tected and modeled in the univariate time series by 
performing a regression on the spectral coefficients.

Periodic components are visible in preliminary  
estimates as sharp peaks in the spectrum, which, for 
multitaper estimation with Slepians, appear with flat 
tops owing to narrow-band bias. Consider one such  
sinusoid embedded in colored noise:

x(t) = A cos(2π f t + ϕ) + η(t)

It is customary to apply a least-squares procedure to 
obtain A and φ, by minimizing the sum of squares 

∑|x(t) – A cos(2π f0t + φ )|2

t
. However, this is a 

nonlinear procedure that must be performed numeri-
cally; moreover, it effectively assumes a white-noise  
spectrum. Thomson’s F-test offers an attractive  
alternative within the multitaper framework by  
reducing the line-fitting procedure to a simple  
linear regression.

Starting with a data sequence containing N samples, 
multiplying both sides of the equation by a Slepian 
taper w

k
(t) with bandwidth parameter 2W, and Fou-

rier transforming, one obtains this result:

xk(f ) = μUk(f – f0) + μ *Uk(f – f0)  + Nk(f)∼

Here μ = A exp(iφ) and U
k
(f) and N

k
(f) are the  

Fourier transforms of w
k
(f) and η(t), respectively. If fo 

is larger than the bandwidth W, then f  - fo 
 and f  + fo  

are separated by more than 2W, and U
k 
(f  - fo) and 

U
k
(f  + fo) have minimal overlap. In that case, one 

can set f  = fo 
and neglect the U

k
(f  + fo) term to obtain 

the following linear regression equation at f  = fo:

xk(f ) = μUk(0) + Nk(f 0)
∼

Figure 7. Spike coherence and cross-correlation function for  
spiking activity of two simultaneously recorded neurons in macaque 
LIP during delay period before a saccade-and-reach to the preferred 
direction for both cells. A, Multitaper coherence estimate duration 
of 500 ms; bandwidth 16 Hz averaged across 9 trials. Thin lines 
show 95% confidence empirical error bars using leave-one-out 
procedure. Dotted horizontal line shows expected coherence under 
the null hypothesis that coherence is zero. B, Multitaper coherence 
estimate duration of 500 ms; bandwidth 30 Hz averaged across 9 
trials. Conventions as for A. C, Cross-correlation function estimate 
from which shift predictor has been subtracted.
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The solution is given by

μ (f 0) =
Uk(0) xk (f 0)

k = 1 
~∑

K

|Uk(0)| 2
k = 1 
∑

K

The goodness of fit of this model may be tested  
using an F-ratio statistic with (2, 2K − 2) degrees 
of freedom, which is usually plotted as a function of  
frequency to determine the position of the significant 
sinusoidal peaks in the spectrum,

F(f) =
|Uk(0)| 2

k = 1 
∑

K

(K – 1)|μ (f)|2

k = 1 
|xk (f) – μ (f)Uk(0) | 2~∑

K

Once an F-ratio has been calculated, peaks deemed 
significant by the F-test, and which exceed the signif-
icance level 1–1/N, may be removed from the origi-
nal process in order to obtain a reshaped estimate of 
the smooth part of the spectrum:

Sreshaped(f) =
k = 1 i 

|xk (f) – ∑μ iUk(f  – fi)|2~∑
K

 —1
K

This reshaped estimate may be augmented with the 
previously determined line components, to obtain 
a so-called mixed spectral estimate. This provides 
one of the more powerful applications of the multi-
taper methodology, since, in general, estimating such 
mixed spectra is difficult.
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