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THEORY

]
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When particles which have a finite intrinsic angular momentum, or spin, 8 ,are placed in a magnetic field Bo,

their energy levels split according to

U=-1-8, (classical result) where

From quantum mechanics, the component of 8 in any direction is quantized.
S, , for instance, can only assume a finite number of values.
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The probability of inducing a transition, via a photon, between spin (L) states is

E, = AE

Bu,=albB

wy=aBy

o, = uy, (Larmor fraquency)

a maximum when \h .;»
B

This is the basic phenomenon of nuclear magnetic resonance.
Homver,t!wmareoonﬁraimsonhowthephotuns.atﬁ'equmcymL,arepmducedinadenocauseamﬁﬁm.Thmmalm
considerations pertaining to detection of the resonance situation. In the following, I will only give a superficial analysis of NMR,
via 2 treatments, because NMR theory is already extensively covered in “the literature”. Tmnhnmt#l will be the Classical Vector

Model. Treatment #2 will be the Quantum Physical Pre-Quantized EM Field treatment.
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Note that this is the Larmor frequency.
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In orderto, change the partucle s spin state, that is, in order to change 0,

, Y we can apply aqother magnctlc field, B, , whose magnitude may be much
' smaller ( < (1E-5) B, ) than B, (Fig.3). B, must be directed perpendicular
to the plane of & & Bo in order to change © (% = 7i x B). Because  is

x | precessing, the plane is precessing. So, in order to continually change 0,
B, must also precess at @ . This is the same result as acquired previously,
except now we see that the photons must be produced by a circularly

Here, ',1stheLJpemn and not B, , polarized B,.
andlsmthex-zpllme

T2 Processes

s can be seen from the classical vector model, if B, is not completely
WO wefperpendicular to the plane of /i and B, B, produoes a T on the

article which has a component that acts to “synchronize” fi so that i is
perpendicular to B, & B, . (Fig.4)

t this point we will introduce the magneti- | a8
% ion vector M. We will be interested in M | M - %&% o
se it describes the particles’ 7i in a
ontinuous way and on a macroscopic scale.
A So, as B, is on, the phases (u,) of each particle’s i will become equal,
| . 1
PR R Do vime Fi and these will contribute to a net component of the magnetization
lg'l vector in the x-y plane (M, or M ). This component will precess at o, .
So, it could be said that i where

M = Wy, @ M (M, M, M.) porarcoororEaTES

When B, is turned off, the synchronizing mechanism is turned off, and the individual nuclear particles will not
precess at exactly @, . This is due to small variations in the magnetic field throughout the sample caused by the
atoms’ (or partlcles’) locations/orientations relative to each other. In other words, the particles’ own magnetic
fields due to their magnetic moments cause the magnetic field in the sample to vary on a small scale. This

is referred to as spin-spin coupling. Depending on where a given particle is in this slightly inhomogeneous
field, it will have a slightly different resonance/precession frequency. So, the net M . occuring after B, is tumed
off will decay away as the magnetic moments “dephase”. T, is defined as the time constant descnﬁmg thls-
decay time. All processes which contribute to T, are refemd to as T, processes. This situation can thcn be
mathematically represented by by LS ..:

VL

M, - RS _;_._'.'
>

Transitions & T, Processes

We digress briefly from the classical vector model in order to more thoroughly explam fransmons am.f e'T
processes. Henceforth, we will only consider particles, such as protons, with S value1/2. Such a partlple can
have 2 spin states: m = + 1/2, “spin-up” [+> or “spin-down” |->. When we say “transitions” we gre referring
to transitions of a spin 1/2 particle between these 2 spin states. There are 2 types of transitions: spontanecus
and induced.
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The term

s Transitions

“spontaneous transitions” in NMR refers to those transitions which occur, not because of B, , but

because of magnetic coupling between the nucleus of an atom (containing protons) and the surrounding atoms.
(The coupling can be greatly increased by adding a small amount of paramagnetic ions to the sample.) The
nucleon can make a spontaneous transition by emission or absorption of a phonon between itself and the
surrounding atoms. This is equivalent to a transfer of thermal energy. A spontaneous transition from the higher
energy state to the lower energy state ( |->=> |+>) is called spin-lattice relaxation.

The rate of spontaneous transitions is independent of the rate of induced transitions. So, in order to describe
spontaneous transitions when B, is on, we can look at the situation when B, is off. This is the equilibrium

situation -

subjected

following relations are valid

So,

M; -

the situation in which the sample of spin 1/2 particles is at thermal equilibrium and is not being
to a B, field. At equilibrium then, we can treat the NMR sample as a Boltzmann gas, and so the
N, = number dengity of particles in | +)
N_ = number density of particles in | -)

L
N, =Ce*xr N = number density of particles

N_=¢C e'i!i'-' n = N, - N_ » population difference
M., & M; occuring when B; is off
N=N, + N_
Note that there are just slightly more protons in [+> than in |->.
N. (n/N => 1.6E-6, for B, =>5E3[gauss], T => 300[K] )

5 5 efF o eu“ru'rFL

— - @
N_
In terms of the magnetization vector, :
z,wﬂz 1 1 1 ef_;;l-l - 1 a::n N(a.ﬁ)zno
- N, |—abk]l+N. |-—al]+—~ahN —— + —aliN|— -+
AV 2 2 2 e, 2 2 akT

So, the rate of spontaneous transitions should agree with the above results

an f... = 8. = rate of spontaneous trangition from 4+) - |-)
—— =N, 8 -N_8, S...= 8. = rate of spontaneous transition from | -Y - |4
dt .
_,_..__dN+ =N_S8, - N, 8. N_[t]l » N + Ce Bt
dat 8, + 8. Notethat ast=> oo
Gn &N, 4N NJt]-)N-—f:-—.—q-Ce’(s**s'” w5
at  dt  dt S, + 8. iy
dn 8,
__..,_.) =2 (N.8,-N,8.) where N+-0Ns+s
dt / spontanecus . 8, - 8. N ‘s -
dn n - ng noun{t-»au}-ru.._.-.—.--s Ta e _ 5
-EE- =z - - + - N. 8.
spontanecus 1 1 from above a 8.
T = ( ) e";"?' = (-m-w]
8.+8_ g
So, if the populations are perturbed
of. since 1 . M; - Mz, from their equilibrium values, n will
’ M, = 2 akn M, = - @ return to its equilibrium value, n_,
Ty with decay time constant T,.
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We can better understand the T, processes by understanding the T, processes. The T, processes occur due to the
spontaneous transitions of partlcles In other words, the particles have a finite hfetlme in each spin state. So, the

uncertainty in the energy of a state can be approximated using the uncertainty principle. ARAL 2 B
It is this variation in energy which causes particles to have slightly different Larmor frequen- AETy z h
cies, and hence to dephase - the T, processes. n
For a quantum mechanical explanation of lifetimes, and the Lorentz curve see Gasiorowicz, Quantum AE 2 ;:

Physics, “Special Topic 4 - Lifetimes, Linewidths, and Resonances”

Induced Transitions

From quantum mechanics it can be shown that the probability of inducing a transition via a y at o, is the
same for both transitions. That is, R, ,_ =R__,, ® R

The rate of transition is proportional to the density of electromagnetic field quanta, or B 2, and is approximately
given by a univariate distribution in the frequency domain, @, where o is the (angular) ﬁ‘equcncy of B,

flw] is a normalized function which peaks at a? B,?
® = o, . More will be said about this function later. R = fiw]
So,
dn dn., daN._
[—) -+ —— - —— = {N.R, - N, R)-(N,R.-N_R,)»-2Rn
dt / inducea at dt

Note that induced transitions tend to equalize the populations in the sample, that is, as t => =, n => 0. When B,
is large, n is close to 0, and the sample is said to be saturated.

Power Absorption

Power absorption from the B, field by the sample is how the resonance condition is detected. Therefore, we
would like to determine the magnitude of this power.
By combining both types of transitions we can determine the steady-state “RF” power absorption of the sample.

dn dn dn n «ng
—-D(-——--] +(—-—-) +-2Rn-
dt dt / gpontanecus At / inauced T,

g
nit =0} » —————
1+2R7T,

The power absorption density of the sample is only due to the RF induced transitions, and therefore is given by

PoN,R (Buw,) +N_R, (-Aw) +RaBRn-»taB; —m———a
1+2RT1

Bloch’s Equations

By reviewing the discussion so far, we see that we have gathered 3 relations which completely describe the
magnetization vector M, which are valid for the situation when B, => off. These are called Bloch’s equations.

M,
Mg=w;, M,g--wLMy--;i.——
M Mx :ay
r = - — »
T2 OR My=—wLMx—-:IT—
- Mz-Mgo 2
M,;=-——— - MS_MZQ
T1 Mzz—___....

T,
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Returning to the vector model, we can modify these equations so that they are valid for B, => on. Firstly, the
vector situation with B, => off must reproduce Bloch’s equations above.

%sﬁxﬁo
“il‘aﬁxﬁq
‘ﬁ'=ai'ix§u
. 1 My L A My -My, 0\ substituting the value for W
HxBo = [(mlly- 'w_z] X+ (—w:.lu "-f-:] ¥ (— - ) ”] from Bloch’s equations.
Now with B, on, . BBy,
H=aMxB R
xB Bo—+ By z

W = a (§xBo +MxB,) B, B, (Cos[wt] &+8in[wt] §)

Substituting # x 8, from above expanding M x B, , and making a change of basis vectors to the
frame rotating at o, in the x-y plane such that

x aC‘.os[wt}x-rSin[mt]y
we find that = M ¥’ = -Binfot] X+ Coslwt] ¥

H'=(Wn‘w)ﬂy"-r Z' =z
2 - -~
. , Biis chosen to be directed along X’
My = - (&g -w) Myr + By My =~
Ta
- ul-ulo
M,z ~aB; My = —ee
Ty

The steady-state solutions of these Bloch’s equations (which are now valid for B, => on) are

a By T2? (wy - w)
ch = M’O

1+T? (w ~w)24a?B?Ty Ty

aB; Tz
Myl = M'D

14752 (0 -w)? +a?By® Ty Ty

1+75% (- w)?
M, ’“uzo

1+1% (w-w)?+a3B2 Ty Ty

The power absoi'ption density of the sample can be determined as follows

b _e_.sfa’ruao 0Ty

4kT 1+T3 (wp~w)2+a?BiPy 1y

So, the power absorption density (as a function of ©) has the form of a Lorentz curve. This is also the form
of the normalized distribution fl] mentioned previously.
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QUANTUM PHYSICAL, PRE-QUANTIZED EM FIELD, NMR THEORY

In this treatment, we examine 1, uncoupled, stationary in space, spin 1/2 particle. So, we take the possible states of
the system to be |+> and |->, where, as usual, the notation refers to a state with the spin component in the

z direction being either +—§- or - -;— . We examine how the amplitudes to be in these states vary as a function of 1:
time, and 2: the frequency of B, , when the particle is subjected to the previously discussed magnetic field.

The Shrodinger equation is where the Hamiltonian is
- o B eiﬁlt
H|¥)=i8s — ) - - _ [ 1 ]
I ) at ¥ Ho u- Bo-a B;e”“‘" -Bq
i a [ B B, eiut] (a+[t] ) ) a',,[t.] ] and where
2 B et -B a-[t) g [t] ﬁ-»a'é-.a;'&
The 2 coupled differential equations we end up with are 3 (( ¢ 1 ) , ( 0 -i ) s ( 10 ))
: 1 0 i 0 0 -1

. 2 * . i
-i—a,[t] =Boa,{t] +B;e**"a_[t]
a

2 —
-i—a ft] =By e*°ta [t]) ~-Bya_[t] Bo~ (0, 0, Bp)
a —
1 =

To solve these, we make the Ansatz

tat | ¥ will be represented in column vector form for this treatment
a.{t] -»C, e

a_[t] »C_el®® I w) 5 (a+[t] where  aitl = (s 19

a_[t] a_[t] » (- | #
Substituting this we have

The most general solution is a linear combination of the possible

2 .
—C, R, =C, By + C_By e ")t individual solutions. So,

a
L] & s
2 a t] »C eiTteiA”t+C eifte—lwt
—C. R =C, By ettt o g, +[E] v, 2=,
o a_[t] _’c3e-17te1Awt+c4e-13—te-iAwt
In order to eliminate the time dependence, we must have Imposing the intial condition that the particle is in the spin up
state at t=0, using some of the previous relations to eliminate

Q,~»Q +w some of the “C” constants, and then normalizing, we have
We now have a set of algebraic equations Wthh are, i8in[awt] (v~ aBy) A
in matrix form, a.[t] - [CDB [awt] - 2 Aw T
ia w
29,-B, -B; c a_[t] » L sin[awt] et ¥t
"a Zam)le) 2
1 a TR0 The associated probabilities are then
In order for there to be a nonzero solution, the determinant 2 {w - aBg)? 2
of the above matrix must be zero. This yields that P[] » Cos oo t]”+ (@ - aBy)? +ad BI Sin (40 t]
@
Q, = — + Aw 1 \/ o? B} )
where - _ 3 2 P_[t] - Sin[aAw t}
Aw = 2 (w aBo) + (aBl) (ﬁi-dBo)zi-dzﬂi

2]
Q_ - -— %t Aw
2
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Comments

Looking at the result for P {t] (the probability that the sﬁin"‘fliias” asa ﬁm'ctiion."'gof ﬁme) we see that it oscillates
sinusoidally at a frequency Aw, and ranges between 0 and a maximum value of of B?

This value will be 1 when @ => aB,, or @, ,which is the Larmor frequency. (@ ~aBo)? + a? B}

Notice that this term exhibits the Lorentz line shape.

Usually, one wants to measure aB, very precisely. To do this, one needs to acheive a sharp curve. To achieve a sharp
curve, or, in other words, to acheive a very narrow region in @ space in which the “spins flip” and hence the particles
absorb power through spin relaxation (which is what one actually usuatly detects), the aB, term in the denominator

(and hence B,) needs to be small.

a® B}

(@ - aBg)? + a? B}

Tt By e By (10) 7

/// \
/
//
e By - By (10)72
/ / \\‘\

e .

By -+ By (10072

/
0.2} -
/‘ By Bo L0)
/'// \\‘H
e T - , T
1.98x107 1.99x107 2.01x107 2.02x107 o [He]

Example graph of Lorentz factor, using o, => 20[MHz].
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EXPERIMENT

Magnet Current Regulator

[ |
[ b1 A i E D
7 _ % Continuous Wave NMR Setup
_ i // illustration by

Davin Nilsson |
Main Magnet
A Main Magpnet. (.2 - .7 [Tesla] ) This is the electromagnet that produces B,.

B Modulating coils. These 2 coils have a smaller inductance thari the main magnet. They are used to
modulate the main magnetic field ( usually at 25[Hz] )

C Sample apparatus. The sample is in a small cylindrical vial which is inside of an inductor. This inductor
produces B,. The inductor has a fixed inductance. The inductor is connected to the osclillator (D) viaa
coax cable. Outside of the inductor are 2 more coils which are oriented in the same direction as (A) & (B).
These coils have a lower inductance than (A) & (B), and are used to modulate the main magnetic field at a
lower amplitude and higher frequency (60 [Hz]) than (B).

D Marginal Oscillator. This device controls B, and detects the power absorption. A variable capacitor
controls the frequency of B, (13 - 40 [MHz]). The amplitude is also adjustable. The power absorption is
measured by the following. The marginal oscillator maintains a constant current amplitude through the
LC circuit. The Q value of the inductor changes depending on the magnitude of power absorption by the
sample. The Q value changes the effective L. Besides slightly changing the LC resonant frequency, this
changes the voltage amplitude across the LC circut. The output of the marginal oscillator is proportional
to the amplitude of this voltage.

For more information on this and other NMR experiments see Melissinos, Experiments in Madern Physics, “Chapter 8 - Magnetic Resonance Experiments”
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Magnet Current Regulator

E Variac Voltage Control. This controls the volt-
" age output that will be present across the
“MOSFET stack™ and the magnet coils. It
effectively limits the maximum current pos-
sible through the magnet. Set this as low as
possible for efficient current regulation.

F . Current Controls. These controi the current
_ through the main magnet. There is a coarse
and fine control. On the schematic, these
controls would be the variable resistor VR1.
Rather than adjusting the oscillator frequency
(D), the fine control is usually used to acheive
the resonant situation. '

G Stack Voltage Meter. This meter shows the
voltage across the MOSFET stack. The volt-
age across the stack should be high enough so
as to enable current regulation, but not so high
as to destroy the MOSFETs.

Schematic of the magnet current regulator

H

I

Sweep Input. The voltage at this input is attenuated by (I) and then summed to the reference voltage of
the feedback op-amp. So, the sweep input voltage can be used to vary the magnet current regulator’s
output current. The sweep input is used to slowly sweep the main magnetic field (usually ramp waveform
input). The sweep is usually used with the lock-in amplifier. The sweep waveform can be generated by the
LabView hardware and software, and output to the sweep input.

Sweep Attenuator. This control attenuates the sweep input. The attenuation is n/10, where n is the number
on the dial.

Signal Enl Equi
60[Hz] Modulator. This device outputs current at 60[Hz]. The amplitude is adjustable. The output current
usually goes to the coils described in (C). It is used to modulate the main magnetic field. If the “DC” ~
magnitude of the main magnetic ficld is near the resonant value, then a small 60{Hz] variation in the
magnetic field will cause the magnitude of the magnetic field to pass through the resonant vaiue 120
times/sec. If the output of the marginal oscillator (D) is then shown on an oscilliscope which is triggered
to 60[Hz] (AC line triggering), the signal will be stable on the screen. This method is usually used at

first to obtain resonance. ‘

Lock-In Amplifier *

K OQutput Meter. This meter shows the voltage output of the RC stage of the lock-in. This voltage is the output

of the lock-in. The output voltage can be input to the LabView hardware.

* For an explanation of lock-in amplification, see the section in this manual Lock-In Amplification p.10-12.
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L Sensitivity. This control adjusts the gain of the lock-in’s input amplifier.

M Output Gain. This control adjusts the gain of the output voltage (K).

N Phase Control. This control adjusts the phase difference between the lock-in’s internal 25 [Hz] reference
signal and its 25{Hz] current output which goes to the coils in (B). There are 2 knobs. One which adjusts
the phase through 90°increments and one that varies continuously from -45° to 45°.

0 RC Time Constant Control. This control adjusts the RC Time Constant. Higher values will filter more
narrowly about 25[Hz] but it takes longer for the RC filter to reach the actual value. So, if sweeping
through a rapidly changing value, reducing the RC time constant (or increasing the sweep time) will
allow more accurate reconstruction of the original NMR signal.

P Lock-In Modulation Amplifier. The 25[Hz] modulation output of the lock-in is fed to this amplifier before
it goes to the coils (B). There is a control to adjust the modulation amplitude.

SAMPLE PROCEDURE

This procedure is intended to familiarize you with the NMR equipment and the LabView program. In this
experiment the sample will be distilled deionized water with a small amount of paramagnetic ions added to
enhance the signal. The particle involved in the resonance will be the proton.

Place the water sample in the sample apparatus (C).

Tum on the cooler. This cools the magnet coils which usually dissipate 1.5[kW].
Set the current regulator’s voltage control (E) to 0.

Turn on the Master Power switch. '

Press the red High Voltage button.

Adjust the voltage control to .35 (black line).

Set the coarse current (G) to 7 (black line).

~N AU R W N e

The ammeter should be in the range 80 <=> 100.

8 Turn on the marginal oscillator (D) by turning on the battery switch and the oscillator switch.

9 Set the oscillator frequency to ~ 18[MHz], and amplitude to the 10 position. (You can measure the frequency
by connecting a frequency counter to the frequency output connector on the chassis)

10 The output of the oscillator should be connected to an oscilliscope which is in “line” triggering mode, .
Sims/div], 2[mV/div]. '

I'1 Tum on the 60[Hz] modulator (J) and set to medium amplitude,

12 Because the gyromagnetic ratio of the proton => 5.585, the magnitude of B, for which @, =>2 n18[MHz],
is 0.4225([Tesla] or 4225[gauss). So, by adjusting the main magnetic field (using the fine current control
for precision) the resonance signal should appear on the oscilliscope. The value of .4225[Tesla] usually
corresponds to an ammeter reading of 0.9{A].

If the resonant signal is present, we will now switch to the Tock-in amplifier,

13 Turn off the 60{Hz] modlulator...

14 Disconnect the oscillator output from the oscilliscope and connect it to the input of the lock-in,
15 Tum on the lock-in amplifier.
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16 Turn on the lock-in 25[Hz] modulation amplifier (P). Set the amplitude to a medium seiting.

17 Set the sensitivity (L) to S{mV]. Set the gain (M) to 10X. Set the RC time constant (O) to 3s]. .

18 Adjust the magnet current regulator’s fine current control to achieve the maximum value on the lock-in

. output meter. _ . :

19 Adjust the phase controls (N) so that the lock-in output meter deviates from 0 as little as possible as you -
manually sweep B, through resonance (using the fine current control). For maximum amplification, adjust
the phase 90° from this phase. For positive polarity the 90° change should be such that the end phase is '
closer to 320° than 14(°. .

LabView Hardware.& Software

20 The lock-in signal output should be going to the LabView input. The LabView output should be going to
the sweep input (H).

21 Adjust the sweep attenuator (F) to 2.

22 Open the LabView NMR program.
Use the following settings: number of sweeps => 2, sweep time => 20 [s], sweep voltage => 5[V]
Run the program.

The NMR program will start at -5[V] and ramp to 5[V] then immediately start over at 5[V]. It will take
20[s] per sweep and do 2 sweeps. The top graph shows the output of the lock-in amplifier for each sweep.
The bottom graph is an average of alt of the iterations. The bottom graph’s leftmost x-axis value corresponds
to -S[V] and the rightmost to 5{V]. So, as the program does more sweeps, the bottom graph should look
“cleaner” - less noisy. You can save this averaged data.

You should see something which resembles the derivative of a Lorentz curve. This curve is proportional to
the derivative of the power absorption with respect to B .

Here is an example of what you might see ;5!

A

0.25 f

_ _. v»f,,"*JN/ e , ‘
Vo 50 00 P -
-0.25}
-0.5 : : 1 sweep
-1 75+
0.51
0.25
///
/—”/ N N n
V7 50 00 ~ 150 200
-0.25} _
05l average of 40 sweeps
N 7K
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. . This is an original anglysis of Lock-In
OCk’In Am llﬁcatlon Amplification by Christian Malone

The lock-in amplifier is a device used to increase the signal-to-noise ratio by reducing the “1/f" noise factor. It is actually the combination
of 2 devices. Device #1 inputs a sinusoidal signal into the experiment. Device #2 filters the output signal of the experiment at the same
frequency. The experiment’s output signal in the absence of the Lock-In Amplifier is then more accurately determined by reconstructing this
signal from the output of Device #2. . -
Device #1 outputs a sinusoidal voltage (Vyrp,) at frequency o, which is used to cause small amplitude variations in a parameter of the
experiment about the value of interest. The output signal of the experiment (V) will now contain a small varying signal near frequency
Wgyyy- S0, what was before a 0[Hz] “DC™ output signal, now is the same “DC* signal but with a small amplitude variation near frequency
©@srp- From this small varying signal, the original “DXC” signal can be reconstructed - as will be shown. This method reduces the signal-to-
noise ratio because the frequency domain of the experiment is shifted by @, ,» 50 that now the sinusoidal component of interest occurs
at @, rather than at 0. It is this shifting of the frequency of Vi’ sinusoidal component of interest to a higher value which improves
the signal-to-noise ratio.
Vi S Oy, component can now be filtered by Device #2 which is shown in Fig 5.
Let’s examine the specific case in which
Vm = VtJ Cos[Qt-f:B] V..
so that the frequencies of Vexp @nd V__ (the square o___.J
wave switching signal), are the same, where 9 is the
phase difference between the signals. So,

2n<c< 2n+1) vocos[nt+9]
vi[t] » Q aQ
(2 } (2 }
...._!.1_11_”“” An+2' 7 ~VgCos[Rt + 8]
o a

After sampling and averaging many values of V.r - the value obtained is the average value of V,.

1 =3 '!ﬁi 2V,
vi:m"‘;; f VoCoﬂ[Qta-G]dt-bf -VoCos[Dt+8]dt| -+ - — Bin[8]
— 0 = T

Q

r i
For V_, . frequencies other than Q, such as Q+AQ ,the average values of V, during different —— intervals of time will be
different. These average values will vary sinusoidally at frequenc

y AQ and so will be attenuated by the low-pass RC filter
stage. Sinusoidal components whose AQ >> 1/RC will be heavily attenuated. Even without considering the attenuation,
components other than those very near Q (AQ << 1/RC), will cause an oscillating V.

our » and after sampling and averaging
many values of V _, the effects of these components will cancel out.

2v
So,weseethatV = . =~ 2V

8in[e] where V and 0 refer to the sinusoidal component of V., at frequency Q.

Hence, this device effectively filters out the Q-component of the input signal. Since we want the »

st COmponent, Q and
@y, Should be the same vatue (which will from now on be referred to as Q) - in other words Q2 should be set to Dy

There are some practical considerations for determinin g the value of Q. The higher , the better the signal-to-noise ratio.

However, we don’t want a © (or amplitude Vo) 50 high that the amplitude of 2 is so high that transient

ot
effects occur in the experiment (thereby affecting V_ ) which would otherwise, in the “DC” case, not occur. For this NMR
experiment specifically, Q => 25[Hz).

Signal Reconstruction

To represent the output vahue of an experiment as a function of its parameters we will use fIC,C,,...], where f represents the ouput value for a

given combination of parameters {C.}. Keep in mind that it is this f that we want to solve Jor, and we will wani t6 solve for it in terms of the

information output from the Lock-In, which is Vour oo I €2 and Vo are small enough so that no transient effects oceur, and if we cali the
stimulated parameter “B”

» then the output value of the experiment, which will vary over time, will be f[C ,C,,.., B+ Cos[Q t+$],C,..] where B
is the “DC” magnitude of parameter B, B is the modulation amplitude of B (which is related to Vo) and ¢ is the phase of B relative 1o Viogr

- which is not necessarily the same as the phase of Vemy Of the phase of s (V,,’s) Q~component. For example, in the case of this experiment,
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consider applying V. across a resistor and inductor in series in order to vary the magnetic field, B, of the inductor. The phase of V., , and the

phase of the varied parameter, B, will be different.

We will abbreviate the notation of f and its dependence to f{B+f Cosf£) t+$]]. Note that B+ Cos[Q t+$]} is called Vy, inFig.5. V. o depends on
the magnitude, V, , and phase, 0, of the Q-component of B+ CosfQ t+¢]]. So, as will be shown, f[B,] can be related to V. .,

Expanding fin a trigonometric Fourier series, £[Bo+B8Cos{Rt +4]] = lin Za;n t:o-[f-T1 t] +by sm[f{- t] 4}
o=l

Because Device #2 filters through a voltage which is related only to the sinusoidal component of f at frequency (1,

we need to obtain this component, that is, we need to olT)tgin the a & b_corresponding to the frequency Q. These

values are termed a_, & b, , and occur at nn-vnound[T]

. . . . ngw .
This sinusoidat component, 1im (as, Cos| —— t] + b, Sin|

and the values V& 8 can be identifiedtoa , & D, .

g x
T

t]) , can then be equated to Vo Cos[at + 6]

Vo = \I ap,? -u-b,,,ﬂ‘t

b
2 2 8 -+ -aAtan [ —]
So that now, Voorave - = — Vo 610 [0] = — b, ) an,

b_, can be solved for by,

Ty

lim Tsin[ﬂ t] “( £[By + BCos{at +¢l] = %iZa.Cou[n—"t] +b,siii[-"—"-'- t]
-T T ""n-o T T

0

x (retabelling m to n)

n=>0

' n=0
b, -+

1 T
1im — f[Bg+ﬁCos[n° t+¢]]sin[11n] dt
Tea m - m

Do
T

In order to simplify the above expression for b_, we expand £[Bo + 8 cos | t+¢]] in a polynomial series about B, .
After substituting b, into (2), we have,

. o 2 1 (& 1
Note that since (2) is valid forall  Voorawe[Bol = lim — — [Z TS £ (8,1 (B cos|

o x T Jolss P
B, , the B, dependence of V, ... 10

ng x

t+¢])’] sin[i‘.“;. t]at (3)

can be included as in expression =~ (1 T nox 3 ng
= — 11 ] e 3 £
3. VooravolBol = & Z ( e Lce- [227 ceq] sin] = +] dt) B e0m]  (4)
From (3) to (4), the proportionality -3
X . il 5
constant 2 1 Vooravo[Bol = a ) C3 87 £ [Bo] )
lim — - 1=0
T : ) ©
oy v Bo] = ~a8in[¢] ¥ og 823 £33V [,]
has been combined into a.. Note that ovravo{Bo : ; ’ °
in spite of the limit, a # 0 . This is so, because it is not where,
just 1 sinusoidal component at frequency €2, infinitesimal " . g 7 3 -
in magnitude, which contributes to V., .. , but also (an Rl }_'.1-;_[ cos ~ad ¢] sinf —~ t] d¢
. - - T
infinite amount of) components near 2, whose net effect is 1
1o cause a finite proportionality constant o.. Thea * &b * % - cinte]
of these nearby components are almost the same, which is
the reason that the finite constant a can be pulled outside 3 c4
the expression. 3 S o 1
0 0 T 1
1| -sin(é] ——=
2
some values of C.and ¢, are, 2 0 EE)
! ! 3| -1giniel 3| g
= s
il I - s P
6 ¢ ‘&— T
7| - 55 Sinle] L
7| wwew
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Since (6} is valid for all B, , it can be integrated and differentiated with respect to B, to yield useful relations. This
is done, because we are solving for fO[B, ], which does not appear in (6), but appears in / (6) dB, . However this
relation also involves f=[B,] for n > 0, and so we need other relations involving the “variables” f[B,] (n>0)in
order to eliminate them. These relations are produced by differentiating (6). So, we have the following;

1

=V (Bo] = e B £ [Bo] + €1 87 £ [Bo] + €2 8% £ [Bo] ... where,

a 8in[¢] 2

{-1)
v B VI[By’] dBy’

- - Vm)[BOJ =Cuﬁf‘1)[301 +C1,.B3 f(s) [Bol +c;ﬂsf(s)(Bg] +eae [Bo} *,[g [Bo’1 0

a8inf[¢]
- VO [Be] 2o BE% [Bo] + 0187 W [Bo] + 03 B5 £ [By] . ..

a8in(¢] {V ur ave 15 abbreviated to V)

1 @ @ ) (&)

SA—— AL T £ g qu B a2 B £ B fea

aBinie] [Bg] =ce B [Bg] +ex 8 [Bg) +02 8 {Bs] +

This can be written in matrix form as

A {co B [ ¢ B? 0 o, B o - (£'0
v 0 B 0 c:if 0 e ||EW
1 A 0 0 o8 0 opf 0 £@ (the [B ] notati'on is dropped for convenience
-—— vizd | o 0 0 o co B 0 ey B £3 andtoemphas;zzthatforaﬁxedeo,me {lo
asin[¢] v 0 0 0 0 o B 0 - £ @ & V® can he}hought of as variables and con-
v 0 0 0 o 0 o B 15 stants respectively)
| ] L : : : : J [ &

This matrix relation can be solved for f©.

1 -
£(B - 21n-1 vfzn-n
(Bo] » —--————-—asin[ﬂ E 4, B [Bol

na=0
where the d, can be given by the following recursion relation dp+1
dn » -an Aoy
1al
f[B,] can also be written as -
£[Bo) + - PIRCE LS W o O,
: agin(¢] &I
some values of d & k_are
n 8 Xs f[B,] can be approximated by
0 2o 1
1 -Cy 1 1 1 By o 1 ‘rBe
£f[Bo} + » — mjvnfda' 20-1 ylan-1) g ‘a——_jvn' dasn,’
5 = = ol T [ﬁ _VIBo'1ds +§dnﬂ (Bl ) 3 - tmtar )., V[B0’1 B0
3 -7 C3 7
4] 13c, 13
5] -107¢cs | 107 This approximation is valid when 1 v B}
6| 409¢, | 409 BN A Vo ey
71 -56197 ¢, | 56197

PRACTICALITY CONSIDERATIONS

Since 8, and hence ¢, is variable, one can maximize the signal strength of V- avg by doing the following. Vary 9 until Vouravg = 0. Here,

you know that Sinf¢) => 0, and hence $ => 0. You should record this constant phase difference. Now for the max value of Sin[¢] (which

is 1), increase @, by 90-.

The above expressions for f[B,] involve an unknown scaling constant ot This constant not only lumps together the effect of nearby frequency
components, but also the numerous electronic/mathematical amplification devices/processes that the signal goes through before its final destina-

tion (such as the graph in LabView). If it becomes necessary to know this constant, it will have to be calibrated for.
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