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producing fringes with appreciable contrast was the lack of both temporal
and spatial coherence in the X radiation.

At present, Mossbauer sources are the only X-ray sources approaching
the desired degree of coherence; however the available intensity is very low.
Spatial coherence can be obtained by aperturing (but the aperture must be
only a few angstroms) or by moving the subject away from the source.
In cither case intensity is sacrificed in the pursuit of coherence, and stability
problems take over as the limiting lactors. Considerations such as these
probably mean that X-ray holography is impractical with presently available
X-ray sources.

2.4 Beginnings of Optical Holography

First to investigate optical holography for its own sake was-Rogers [2.9].
Working for the most part with a high-pressure mercury arc lamp, Rogers,
in 1952, reported a series of experiments which were forerunners of much
of the holographic investigation carried out more than a decade later with
the laser. Some of the more interesting results were:

1. A hologram made of a hologram (a method now used to copy .holo-

grams).

2. Three-dimensional image generation (a possibility recognized by
Gabor).

3. Image subtraction by superposition .of “negative” and “positive”
holograms.

4. Relief, phase holograms (for high diffraction efficiency).

5. An unsuccessful attempt at forming a multicolor-imaging, composite
hologram (using color selective dyes).

6. Initiation of work on a computed hologram (a forerunner of recent
activity in computer-generated holograms).

Rogers, moreover, pursued Gabor’s suggestion that the hologram of a

point source is closely related to a Fresnel zone plate. The zone-plate analogy

is a useful way of understanding the imaging properties of a hologram and
can be derived through simple geometric considerations ([2.9], see also
El-sum [2.8]).

2.4.1 GEOMETRIC ANALYSIS OF AN ELEMENTARY GABOR HOLOGRAM

As discussed in Section 2.2, Gabor required hologram subjects to be
'small opaque areas on a relatively large transparent background. In the
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analysis to follow, the subject is an idealization of Gabor’s subjects, namely
a single point scatterer of light. The temporal and spatial coherence prop-
erties of the illuminating source are also idealized by assuming a point
source of monochromatic spherical waves. Finally, the pl"i'otos'ensitivé me-
dium recording the hologram is assumed to be thin. With these assumptions
the arrangement analogous to Gabor’s experiment is shown in Fig, 2.5.
A point source S, a distance v from the hologram plane /{, Hluminates the
scatlering center P which is a distance u from H. We wish to derive an
expression for the intensity of the light pattern on the hologram plane H
due to interference of light scattered by P with the background light.

4

H .

Fig. 2.5. An idealization of Gabor’s hologram forming configuration.

The general expression for the intensity of two-beam interference patterns
is given by Eq. (1.9),

=1, + I, + 2a,a, cos(p; — @y).

We assume a hologram is formed whose amplitude transmittance is propor-
tional to /. Diffraction of light illuminating the hologram will result from
the spatial variation of the relative phase dgp = ¢, — ¢, (@, and a, are
nearly constant over the hologram plane). At some point Q on the holo-
gram, A can be expressed in terms of the difference in path“taken by light
traveling from S to Q directly (reference wave) compared to that traveling
from S to Q via P (subject wave). Assume a continuously oscillating-source
producing a light wave (of wavelength 4 and frequency F) whose absolute
phase @ = 2xFr is a linear function of the time. A wavefront arriving at
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Q at time 1, has an absolute phase proportional to the time when it. was
emitted. If the wave velocity is ¢, then the phase of the wavefront arriving
at @ at time 4 via path SPQ is @, = 2zF(ig — (SPQ/c)). Similarly, the
phase of the wavefront simultaneously arrivingat Q via SQ is D, = 2nF(zQ
- (SQ/c)). Since SPQ > SQ, &, > @, and

F 27 Al
2 (SPQ— SQ) = g2 — i = Ap = 5

B, — b, =

¢

Whenever 4/ equals n4, where n =1, 2, 3,..., cos dp = 1, and the inter-
ference fringe has its maximum intensity. The analysis can be confined to
* the xz plane of Fig. 2.5 since, with S and P each located on the z axis, the
intensity pattern is rotationally symmetric about the z axis. From Fig. 2.5
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then the condition
Al = x22f = nA 2.2)

determines the radii x, of the set of maximum brightness, circular fringes
centered at O.

2.4.2 THE ZONE PLATE

Solving for x, in Eq. (2.2), the bright fringes have radii
x, = (fAV2 . 2n)V2, (2.3)

which are proportional to the square roots of the even integers. The con-
dition, Eq. (2.3), is identical to that defining the transmitting zones of a
Fresnel zone plate [2.10]. [A zone plate (see Fig. 2.6) can be constructed
simply by drawing on white paper concentric circles whose radii are pro-
portional to the square roots of consecutive integers 1, 2, 3,.... These
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form annular zones, every other one of which is to'be blackened. This done,
the figure is photographically reduced to a suitable size, and the resulting
transparency is the zone plate [2.70].] Since Eq. (2.3) governs the periodicity
of the zone plate as well as that of the point source hologram, one would
expect their light-diffracting properties to be similar. This is true except
that the zones of the zone plate are a square-wave version of the sinusoidal
fringes of the hologram grating. A sinusoidal grating diffracts the incident
beam only into the 41 and —1 orders, the fundamental directions, while
the square-wave grating diffracts the beam into higher orders, or harmonics,
as well. Thus the diffraction properties of the Gabor hologram can be in-
ferred from the known properties of the zone plate [2.1]] providing we
confine our interest to first-order diffraction.

FiGg. 2.6. Drawing of a Fresnel zone plate..

The zone plate is a diffraction grating with focusing properties. It is at
once both a positive and negative lens. The quantity f in Eq. (2.2) is the
focal length of the zone-plate lens and also of the hologram. Equation (2.1)
1s a focal equation defining the lens-to-image distance u in terms of f and
the lens-to-subject distance ». As in Fig. 2.7 when a point source S illu-
minates a zone plate and only first-order diffraction is considered, two
images are formed: One is a virtual image P from which the -1 order
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diffracted waves appear to diverge and the other is a real image P’ to which
the —1 order diffracted waves converge. By analogy a point-subject holo-
gram also behaves as a diffraction grating with focusing properties and as
a negative and positive léns producing virtual and real images. Supp'o‘se the
hologram is illuminated by the point source S in its original posmon,'a
distance r from the hologram. According to Eq. (2.1) the hologram VYI”
form a virtual image ol & at a distince u from the_hologram. The point
image can be considered a virtual image of S or better, a virtual ima.gf.: of
the original scattering center P, since the image is located at the original
site of P. If we choose the latter view, then the spherical wave diffracted
from the hologram and appearing to diverge from P can be considered a
reconstruction of the wave scattered from P.

+ 1 Order

Zero order

Zone plate

FiG. 2.7. Focusing properties of a zone plate.

The zone-plate behavior of point-subject holograms can be used to explain
the imaging properties of more general holograms. A normal, exte.nded
subject for a hologram may be thought of as an aggregate of point subjects.
Scattered light from each of the points interferes with a reference wave to
produce a superposition of many zone-plate-like holograms. (It is. assumed
that the scattered waves are weak relative to the reference so their mutual
interaction can be neglected.) When the entire hologram is illuminated with
the reference, each individual hologram generates a virtual image of its
associated point subject and, in the process, they combine to image the
extended subject. .
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2.5 In-Line Holograms

Despite a suggestion by Gabor that in the optical regime “where beam
splitters are available, methods can be found for providing the coherent
background which will allow better separation of object planes and more
effective elimination of the twin wave.” optical holography in the 1950s
continued to be carried out with his original in-line arrangement. Lack of
a good source of coherent light probably discouraged experimentation.
Source and subject were placed on an optic axis, defined by the normal to
the photographic plate. To reveal some of the difficulties and limitations
of the method, we return to. the analysis initiated by Gabor and used in
Section 1.8. There attention is centered on the amplitudes of the arriving
and departing waves at the hologram plane.

Suppose we consider an on-axis subject, suitable for a Gabor hologram,
to be illuminated with coherent light. The total complex amplitude u of the
light striking the photographic plate at the hologram plane can be expressed
as a complex function of spatial coordinates where u =— u, exp(ip,). Part
of w is the undiffracted background or reference wave r — ro exp(iep,),
and part is the light diffracted by the subject a = a, exp(ip,). Thus

u=r-+a, o (4)
and the intensity I at the hologram plane is
I'=uu* = (r+ a)(r + a)*
= ry® + a,® + ra* 4 r*a
= ro® + ao? + 2rya, cos(p; — @,). (2.5)
2.5.1 RESPONSE OF PHOTOGRAPHIC EMULSION

Hologram formation on photographic plates requires that photographic
emulsion be exposed to the light of intensity J, developed, fixed, and then
illuminated by the reference light to produce an image. We inquire as to
the response of emulsion to these operations. Hurter and Driffield in 1890
characterized the photographic plate by a curve (called the H&D curve)
which is a plot of the optical density of the developed plate versus the
logarithm of the exposure. They defined the optical density D as

D = log(1/.9)

where 7 is the intensity transmittance, the ratio of the intensity of light
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transmitted by the emulsion to that incident on it. The exposure £ is defined

as
E = IPTC cC ITQ

(see Section 1.3) where 7, is the exposure time and_Ip or its abbreviat.ed
form I [defined in Eq. (1.1)] is the_ intensity of the hghtv pattern Fo which
the plate had been exposed. A general form of the H&D curve 1s shown
in Fig. 2.8. Although well suited to photography ;m.d used b)f carty holo-
graphers, the curve is not the best way to characterize emulsion response
for hologram formation (see Section 2.6.2).

0

Log E
’/\ Log K

FiG. 2.8. The H&D curve.

The H&D curve is characteristic of both the photographic emglsion and
the development procedure. We represent the straight-line portion of the

curve by the equations

D = log(1]7) = y(log E — log K),
log(1/.9) = log(E/K)", (2.6)

or
T = KYEYoc Evoc I,

In the above, y is the slope and log K is the intercept of the linear portion
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of the H&D curve extended to the log E axis. For coherent-light illumina-
tion we are generally interested in the amplitude transmittance ¢ rather than

.7, where t =47, so that

roc I, 2.7)

Suppose the photographic emulsion, exposed to the intensity /, is devel-
oped as a negative. Then the amplitude transmitlance is given by

1, oc [7vn/2,

If, on the other hand, the negative is printed as a positive, the printing
illumination producing the positive exposure is proportional to 7,, the
intensity transmittance of the negative, and the resulting amplitude trans-
mittance of the print is

ty = (T2 cc (T) 7/ oc (I77m)7/2 oo 172, where  ypy, = I'. (2.8)

ER]

The subscript “p
print.

refers the previously defined parameters to the positive

2.5.2 THE RECONSTRUCTION

Gabor actually did make a positive hologram. .He then illuminated the
positive with the original reference wave r. The complex amplitude of the
light just after passing through the hologram is

w = rt, oc T[7%.
If by proper development I is made equal to 2, then

woc il = 1(r? + a,f + ra* -+ r¥a) = ry’r + ra? + rra* - rjfa

w o< ro¥(r + a) + r®((ag¥ro) explipy)) + ro¥(exp(i2p;)a*) (2.9)

‘where rr* = r*and r = r; exp(ig,). Providing the reference wave amplitude

is uniform over the hologram plate (r,2 = constant), the first term on the
right of Eq. (2.9) represents a wavefront whose complex amplitude is pro-
portional to that of the original wave u in Eq. (2.4). If, further, the reference
wave is so strong that ay/r, <€ 1, then the second term can be neglected.
Finally for a reference wave whose phase is nearly constant over the holo-
gram plane (as, for example, in the transmission method of forming Gabor
holograms), the third term is proportional to the conjugate of the subject
wave complex amplitude. It generates a conjugate twin image of the subject.
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If the transmission method (Fig. 2.4) is used, the twin image is real (see
Section 3.3.1). In this case viewing through the hologram toward the illu-
minating source, one sees the illuminating source, a virtual image of the
subject, and a conjugate real image of the subject. (Recall that an in-line
hologram behaves as a set of superimposed zone plates, and the two waves
generating the virtual and real images can be reconstructed simultaneously.)
If the viewer focuses on the virtual image, its twin, the real image, appears
out of focus. On the other hand, if a white screen is placed in the plane
where the diffracted rays converge to focus the real image, then out-of-focus
light from the virtual image is found to be present. This overlap of light
from the twin image in the viewing direction is a handicap of the in-line
method which Gabor and his successors strove to eliminate.

2.5.3 CoNTRAST IN IN-LINE HOLOGRAMS

Before considering some of the methods employed to eliminate the twin
image problem, let us inquire as to the effect on the reconstruction of choos-
ing a value for gamma other than I" = 2. The complex amplitude of the
diffracted waves at the hologram plane can be represented in general form
as

W oc Il = 1(rg? - ay* + ra* 4 r*a)/’

Fao F

:rr()(l—l— +—a*+——a>
zrro<1+ r.-. + — * 4+

5 i

0

AR . )
. 3 cel )
Assuming ry® > a,? so that the second term is negligible and multiplying
through by the factor r, we have

I . ,
W oC ,.01“<r + - a) +4- the conjugate real-image term.

Focusing on the virtual image and neglecting the unfocused real-image
light,

wocr-i—-zr—a. (2.10)

Equation (2.10) tells us that the value of gamma controls the contrast, i.e.,
it controls the ratio of the signal amplitude to the background. For ex-
ample, when I" = 42 (positive hologram) then w is a reconstruction of
the original wave u = r + a where the subject light adds to the background;
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when I = —2 (negative hologram) then w == r — a and the subject light
is subtracted from the background. In the latter case the result is a negative
image. Values of I" between -2 and —2 produce varying degrees of contrast.

2.5.4 ELIMINATION OF THE TwIN IMAGE PROBLEM

We have seen that in-line holograms, as formed by carly holographers,
require: (1) subjects consisting of small opaque objects on a large trans-
parent background so that r® 3 a,?, (2) a positive print to be made of the
original exposure, and (3) the overall gamma to be +2 to maintain original
contrast in the subject. While these requirements were restrictive, it was the
overlap of one unfocused image onto its twin focused image that seemed
most hampering. Several early attempts were made to eliminate the un- -
wanted image light while still maintaining the in-line geometry. The first
of such attempts was the two-hologram method of Bragg and Rogers [2.12].
Their procedure is straightforward: A subject, suitable for an in-line holo-
gram, is illuminated with parallel coherent light and its diffraction pattern
recorded in Hologram 1. If, afier development, the hologram is replaced
and the subject removed, illumination by the original source generates a
virtual image of the subject at the original subject position u = —f [see Eq.
(2.1) for v = oo}. A real image is also formed at a distance f on the far
side of the hologram. However, in the plane of the real image is also the
unwanted diffraction pattern produced by the wave appearing to diverge
from the virtual image. Since the virtual image and the subject occupied
identical positions, 2/ units distant from the real image plane, it was clear
to Bragg and Rogers that the unwanted diffraction pattern was identically
that of the subject observed at a distance of 2f. They suggested that a nega-
tive photographic record of the subject diffraction pattern be made at a
distance 2f from the subject. This, then, is the second hologram.

To observe the real image and simultaneously eliminate disturbance from
its twin, one must illuminate Hologram 1 in its original position and register
Hologram 2 with the disturbing pattern in the real image plane. The negative
record on Hologram 2 should just cancel the actual pattern received from
the virtual image; remaining should be the real image on a uniform back-
ground. In practice the cancellation is imperfect, and the method at best
only partially successful. Moreover it introduces noise and applies only
to the real image.

El-Sum [2.7] suggested other methods for eliminating the twin image,
and Lohmann [2./3] proposed a method involving filtering the Fraunhofer
diffraction pattern. Neither these nor the Bragg-Rogers method proved
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entirely eflective nor were they very convenient or flexible. The problem
remained one of major importance. Before considering Leith’s and Upat-
nicks’ solution to the twin image problem, we note that, in certain cases,
the in-line hologram is capable of producing the desired image without
undue interference from the twin image. Using the in-line method, Thomp-
son et al. [2.14] were able to form pulsed-laser holograms of moving aerosol
particles. (The available pulsed lasers lacked sufficient coherence length,
so the in-line method seemed a good choice.) Aerosol particles are so small
that a hologram made in the near field of the ensemble of particles is still
in the far field of any individual particle. If one examines the real image of
a particle, its virtual image appears to lie in a plane a long distance away.
Hence, at the real image plane, the diffraction pattern of the point-like
virtual image appears as an unobtrusive uniform hackground, a spherical
wave of constant amplitude. The real image may therefore be clearly
observed.

2.6 Off-Axis Holograms

By breaking with the in-line geometry concept and introducing the ref-
erence beam at an angle to the subject beam, Leith and Upatnieks devised
the most general and -successful method of separating the twin image (as
well as undiffracted light) from the desired image. Figure 2.9 indicates the
arrangement initially employed by Leith and Upatnieks [2./5] with a
mercury discharge light source. Two lines from the Fraunhofer diffraction
pattern of a line grating are selected as phase-related secondary sources.

Hologram
late
Fraunhofer pla
Mercury pattern Reference
discharge .
sourc

Ay

annnNWnnnn

. . \ Subject
Line grating
Mask

FiG. 2.9. Initial arrangement used by Leith and Upatnieks to form an off-axis holo-
gram. [After E. Leith and J. Upatnieks, J. Opt. Soc. Amer. 52, 1123 (1962).]
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One of these acts as the reference wave source while the other transillumi-
nates a subject. The hologram can be formed anywhere in the region of
beam overlap. The resemblance of the experimental arrangement to that
of Young is apparent.

While it is perhaps more appropriate to delay the explanation of the
off-axis method till after the spatial frequency domain concept has been
introduced (Chapter 5), some of the obvious benefits can be appreciated
by returning to a zone-plate picture. Consider Fig. 2.10 which indicates a
zone-plate pattern formed by interference of a plane wave reference with
the spherical wave scattered by a point scatterer at P. The in-line procedure
entails placing a small photographic plate (the dashed-line rectangle) at
the center of the pattern such that its normal passes through P and is
parallel to the directiog of propagation of the reference plane wave. When
nonlaser sources are used, the portion of the interference pattern which can
be recorded as a hologram is generally confined to a small radius about
the center, because of the limited coherence length of the light. As the light -

Reference

off - axis
hologram

\V/ On-axis
viewer

0ff -axis

viewer

Fig. 2.10. A simple hologram recorded off axis.
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path from source to hologram plane via the subject increases over the direct
path via the reference wave and the difference approaches the coherence
length of the source, the interference fringe visibility becomes zero and the
record of the interference no longer diffracts with useful efficiency. One
can see from Fig. 2.10 that the path difference increases as one proceeds
out from the center of the interference pattern. The small hologram that
can be formed is illuminated by the plane wave reference and diffracts a
wave appearing to diverge from a virtual image at P and a second wave
converging to a real image at P’. On-axis observation of either image is
disturbed by the out-of-focus light from the other and by the undiffracted
illumination as well. '

Suppose, however, that the coherence length of the light is sufficient to
produce useful fringe visibility over a large portion of the zone-plate pattern
such that the small photographic plate can be moved so far off axis that it
intercepts no axial rays from P. Then, as indicated in the figure, the rays
diverging from the virtual image at P are all angularly separated from
those converging to P’, and the twin image problem_is eliminated. That
portion of the illuminating reference wave emerging undiffracted from the
hologram is also angularly separated from the image waves. [Referring to
Eq. (2.5), we note that the subject wave intensity q,? is recorded on the
hologram along with the interference terms and the constant reference
intensity. The illuminating reference wave also diffracts from any spatial
modulation of the hologram optical density due to 4,2 Thus 0, in Fig. 2.10,
must be taken large enough to avoid overlapping the image waves with
transmitted illumination diffracted by a,% For general subjects the inter-
action with a,? results in diffracted light confined to some angular range
centered on the reference direction.]

2.6.1 CONTRAST IN OFfF-Axis HOLOGRAMS

_ Since the diffracted image wave and the transmitted- illuminating wave
do not overlap in viewing space, the reconstruction presented to the observer
of, say, the virtual-image wavefront is represented by only the second term
in Eq. (2.10), 4I"a. The value or sign of I" no longer governs the contrast
in this case. If I" were chosen to be —2, the generated image would no longer
be a negative of the original. The observed image-wave intensity, given by
(—34la)(—&l"a*), is still proportional to the original wave intensity and
will yield a positive image. Thus only a single negative hologram is nec-
essary to produce a positive image whose contrast is that of the original
subject.
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2.6.2 LINEAR RESPONSE

With the advent of the off-axis method it became clear that characteriza-
tion of photographic emulsion by the slope of the linear region of its H&D
curve is inconvenient [2./6]. Of course any method of characterization must
be directed toward achieving a recording which faithfully reconstructs the
subject wave when illuminated by the reference wave. Fidelity is obtained
when the amplitude transmittance of the developed hologram is linearly
proportional to the intensity of the interference pattern. Then the virtual
image wave, as given in Eq. (2.9), is ry%a and proportional to a, providing
ro? is constant over the hologram. Therefore an exposure characteristic of
significance to holography is the plot of the amplitude transmittance ¢
versus exposure £ as shown in Fig. 2.11a. A proper exposure for holography
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Fig. 2.11. (a) Amplitude transmittance versus exposure. (b) The H&D curve showing
the location of the linear region of the curve in (a). [After H. Kogelnik, “Reconstructing
Response and Efficiency of Hologram Gratings,” Proc. Symp. Mod. Opt., New York, 1967,
p. 605. Polytechnic Press, Brooklyn, New York, 1967.]

will produce an amplitude transmittance having values within the limits of
the linear portion of the curve. If the maxima or minima of the intensity
pattern, to which the hologram plate is exposed, produce transmittance
values corresponding to the nonlinear portion of the curve, distortions will
be observed in the reconstruction. Figure 2.11b shows that the linear region
of the ¢ versus E plot for the commonly used Eastman Kodak 649F emulsion
lies at the toe of the H&D curve. In this case the latter provides little guid-
ance in selecting the exposure limits. It is interesting to note that the average
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exposure value, corresponding to the center of the linear region of the 7
versus E curve, is considerably less than that corresponding to the center
of the linear region of the H&D curve. Hence, for a given emulsion, holo-
gram exposures are generally shorter than those for normal photographs
and the plates are less dense (see Fig. 1.1).

2.6.3 FurTHER EFFECTS OF THE OFF-SET REFERENCE AND INCREAsED Co-
HERENCE

Introduction of the off-axis technique had the effect of freeing optical
holography from restraints originating in the early work with electron
waves and X rays. It became evident that by using beam splitters one no
longer needed to derive the reference from undiffracted light passing through
the subject, even in the in-line case. This together with the increased coher-
ence of laser light allowed holography to be applied to the general class of
transmitting or reflecting objects, e.g., continuous tone transparencies and
reflecting three-dimensional solids.

‘The in-line hologram requirement that the reference intensity greatly

_exceed the subject wave intensity need not be met with the reference beam
off set. However, the reference intensity must be large enough compared to
its modulation (by the subject wave) to prevent the resultant exposure from
swinging beyond the bounds of the linear portion of the ¢ versus £ curve.
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Chapter 3

GEOMETRIC ANALYSIS OF POINT-SOURCE
HOLOGRAMS

In Chapter 2 the Gabor in-line hologram and the Leith-Upatnieks off-
axis hologram were described in terms of the interference of light coming
from two point sources. Despite the simplifications involved, such point-
source holograms clearly illustrate many of the basic features of holography.
From them much can be learned about the spacing of the interference
fringes to be recorded, about properties of the virtual and real images that

are generated, and about the magnification obtainable in the reconstruction

process.

There are no point sources of light in the physical world, but the extended
sources and illuminated subjects we do encounter can be thought of as
collections of point sources. Let us suppose that a,, a,, ..., etc. represent
the complex amplitudes of light waves arriving at the hologram plane from
one such collection of subject point sources. If r represents the reference
light complex amplitude arriving at the hologram, then the total complex
amplitude at the hologram is

a,+a,+ -+ 4r.

The quantity important to the holographic recording process is the total
intensity

I=(a, +a,+ --- +r)a*+ a,*+ .-« + 1%
= a;a,* -+ a,2,% 4+ ... 4+ ¥ -+ (a,a,* + a,a,* + <)
+ r(a* 4+ a* + )+ r¥(a, + a, + ).
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Apart from the intermodulation terms (the terms a,a,* + a,a,* + ...),
which indicdte interference among the subject wave components, the subject
point sources behave independently. Concern with effects of the inter-
modulation terms on reconstruction can be removed in the ways touched
on in Chapter 2. For the case of in-line holography, the reference wave
amplitude is made much larger than the subject wave amplitude. The inter-
modulation terms then become negligible. In the case of off-axis holography,
the angle between subject and reference waves is chosen large enough to
angularly separate the image waves from the waves diffracted by the inter-
modulation terms. (The latter waves propagate in directions close to that
of the illuminating beam.) :

Since the subject point sources can for our purposes be regarded as inde-
pendent, we restrict our attention here to a single subject point source and
to the holograms formed with a reference point source. We assume all
waves travel from left to right. We further assume that (1) all illumination
is perfectly coherent, (2) the holograms are exposed and developed to
produce an amplitude transmittance proportional to the intensity of the
interference pattern, and (3) the holograms behave as plane diffraction
gratings. ‘

The reader who anticipates making his own holograms and seeks to
observe the results and properties described in this chapter should be fore-
warned regarding the choice of recording media. Many of the effects to be
discussed, e.g., simultaneous observation of real and virtual images and the
results of illuminating the hologram at a different angle or with a different -
wavelength than that used to form it, can best be observed when the holo-
gram truly behaves as a plane diffraction grating. The high-resolution photo-
graphic emulsions normally used in holography range from 6 to 15 um in
thickness; therefore small reference-to-subject beam angles must be em-
ployed to avoid the angular and spectral selective properties of volume-
grating behavior. One recording material thin enough to behave essentially
as a plane diffraction grating is thermoplastic ({3.1], see also Chapter 10).
Holograms formed in it will exhibit the properties we shall analyze. '

3.1 Computation of Subject—Reference Phase Differences

In the analysis to follow, a subject, reference, or illuminating wave
arriving at any point Q on the hologram plane in Fig. 3.1 is to be repre-
sented by the difference in its phase at Q over its phase at a fixed point of
origin O. (It is assumed that the amplitude of the spherical wave arising
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from each point source is approximately uniform across the hologram planc
and thercfore plays no part in the essential process.) If we assume that the
space on cither side of the hologram has the same index of refraction and
if the hologram can be regarded as very thin, then relative phase can be
computed from geometrical light-path differences. We shall employ the
basic analysis introduced by Meier [3.2]. It involves making paraxial ap-
proximations. (For a nonparaxial analysis see Champagne [3.3].)

Let a = a, exp(ip,) be the complex amplitude of the light arriving at
the hologram plane from the subject point source and let r = ry exp(ip,)
be the complex amplitude of the reference wave at the hologram. Then,
as in Section 2.5 (but without restriction to the in-line configuration), the
intensity recorded at ‘the hologram plane is

I = a4+ ry? 4 ra* + r*a. 3.1
We are primarily interested in the interference terms
ra* 4 r*a = 2ayr, cos(p, — @,) (3.2)

which describe the periodic spatial variation of intensity in the interference
fringes. The periodicity of the hologram fringes is governed by the argu-
ment of the cosine, i.e., by the phase difference ¢, — ¢

a-

Yy Y2
1} ® R{xr,¥r, 20} ) i
' Qlxp,y2',0
.P(X|,Y|,Z|=‘d) . ( 2. Y2 )
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5 -z
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Input plane Hologram plane

FiG. 3.1 Parameters required for computation of ¢, — ¢,.

Consider now hologram formation as indicated in Fig. 3.1. The subject
point source P is in the x,y, plane, z; = —d units from the origin O of the
z axis. The origin O is located in the hologram x,'y,’ plane. (The primes
will be carried until we reach that stage of the analysis where enlargement
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of the hologram plane is considered.) A reference point source R is located
in some arbitrary plane x.v., a distance z, from the hologram plane. If R
is to the left of the hologram plane and the reference wave diverges from
R, z.is negative (as shown); if R is to the right of the hologram plane and
the reference wave converges to R, z, is positive. We wish to compute
¢r — (7, at an arbitrary point Q in the hologram plane. We can differentiate
(1/22) (g, — ) with respect 1o a spatial coordinate to determine the number
of cycles of intensity variation per unit distance along the coordinate axis.
We then know how many fringes per unit distance in that direction must be
recorded by the photographic emulsion as a function of the arrangement
of P, R, and the recording plate. -

The starting phases of the waves emanating from P’and R are perfectly
arbitrary. Let us assume that these have been adjusted so that each wave
has the same phase at the point O in the hologram plane. We can call that
phase value zero. Since P and R are point sources, they each emit a spherical
wave whose phase at-any point in space is proportional to the radial distance
of that point from the source. Then, by computing the path difference
PO — PO, we obtain the phase ¢, of the light complex amplitude at Q
coming from P. By similar computation we obtain the phase g, of the light
complex amplitude at Q coming from R. The sign of the phase at Q relative
to that at O must be carefully considered. The two diagrams of Fig. 3.2

Q

P 'llla .
\

(a) (b)

FiG. 3.2. Aid in determination of the signs of relative phase at Q and O for (a) a
diverging subject wave and (b) a converging reference wave.

are useful in discussing this point. The magnitude of the phase difference ¢, ,
corresponding to the path difference PQ— PO, is |¢,) = (2n/3) |(PQ—PO)|
where /7 represents the wavelength. If P is a real point source of diverging
spherical waves and if PQ > PO, then the wavefront arriving at Q was
emitted at an earlier time than that simultaneously arriving at O (see Fig.
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3.2a). Therefore its phase at Q must be less than that of the front at O
(assuming phase to increase with time), and consequently ¢, = — (27/4)
X (PQ — PO). In Fig. 3.2b a converging reference wave is indicated. Here
R exists as an eflective point focus on the opposite side of the hologram
from P. For RQ > RO, the phase of the wavefront at Q is greater than
at O since the wavefront at Q was emitted later. Thus, for a converging
reference wave, ¢, = +(Q2n/A)}(RQ — RO), while for the usual case of a
diverging reference wave, . = —(2n/3)(RQ — RO).

We can now return to the computation of ¢, — @, for the case where P
and R are each sources of diverging light on the same side of the hologram.
For the phase of the subject wave at Q, ¢,(x,, y,'),

)
92 = — 57— (PQ — PO)
i

2 : ! : E 2 2 2 9 9
= — G (I = X O = )t 2 = b 2]

i f o x.)2 r__ 2 711/2
=+—2£[~21{[1 + (x, X1) ‘}"(}/g 1) ]

21 z“"

. [1 + x12 + ylz ]1/2}’

z,?

where 2, is the wavelength of the light used to form the interference pattern
and where we understand z; to have a negative value so that the sign of ¢,
remains negative. (Thus the character of the wave, i.e., diverging or con-
verging, is carried implicitly in z..) If both P and O are not far off the z

axis, and if z, is large enough, @, can be approximated to the first order
in 1/z, by

] } (3.3)

Pa =~ T 7271— (xg? + ¥o¥ — 2x/x, — 29)/y,)

The next higher-order terms in the binomial expansion are third-order in
1/z,. [The first-order approximation will be satisfactory for most of the
purposes of this chapter. We shall point out when an expression derived
in this chapter with the aid of Eq. (3.3) differs, because of the approxima-
tion, from that obtaired through other considerations.] ¢.(x,’, .'), the
reference phase at Q, obtained in a fashion analogous to that used for ¢, , is
O AR A A ] N e Y
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The subject-reference phase difference at Q is then given by

27 1oy ] 1
$r— Pu = 7—‘ [('\_2" + y:f)( 2Zr - 221

1

== I (3.5)

The quantity in the brackets is the path difference .4/ for light traveling to
O from P as against that traveling to Q from R.

3.1.1 THE IN-LINE HOLOGRAM

Both subject and reference point sources are on-axis in the case of the
in-line hologram so that in Eq. (3.5), x1, »1, X;, and y, are all zero. If we
relabel z, = —u and z, = —v to correspond with the notation of Section
2.4.1, then the path difference in Eq. (3.5) becomes

I8 192 1 l 1
ar= ¢+ 30 )5 = =)

= o)) =R £ )

where we have used Eq. (2.1), f~* = v~ — »~!, and where g is the radial
distance from the origin O at the hologram plane. The bright fringes of
the interference pattern occur whenever 4/ = ni, where n is an integer.
Since 4/ is symmetric about the origin, the fringes are circular and form
the zone plate pattern given by

_ xRt Rﬂq_ﬁ_l 3.7
m“—T%T v )Ty T M (37)

As stated in Eq. (3.2) the spatial variation of the interference pattern
intensity is governed by a cosine function, cos{p, — ¢,) = cos(2xm Al[4,).
If A/ were linearly dependent on the spatial variable, then a constant fre-
quency could be ascribed to the cosinusoidal intensity variation. This is
generally not the case, but a flocal spatial frequency, the fringe frequency
»(0), can be defined. (Here p is the spatial variable measured along a direc-
tion perpendicular to the crests of the interference pattern, and » is con-
sidered to be a function of n.) We define » as the spatial rate of change of
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the phase of the intensity pattern at Q divided by 27z radians:

o) =PI = () 68
For Al given in Eq. (3.7),
»(0) = olfhs- | (3.9)

Thus, proceeding radially outward from the hologram center, the fringe
frequency increases linearly with p. At some value of g, v may exceed the
resolution capability »,, of the photosensitive medium. Such a radius defines
the limiting aperture and the image resolution of the hologram.

When comparing the recording resolution requirements of in-line holo-
grams with other hologram-forming configurations to be analyzed in this
chapter, we shall find it convenient and sufficient to consider only &' the
fringe frequency component of ¥ along the x,” direction. As a further
simplification we consider R to be at infinity (a plane wave reference with
z, = co). For this case [see Eq. (3.6)]

!

p_ O@r—@d) X
¥= 27 0x, | ZA (3.10)

The farther the subject is from the hologram, the coarser and the more
easily recorded are the fringes. Gabor attempted to apply this fact in his
“projection method” (Section 2.2). Unfortunately image resolution de-
creases as well if x," is limited.

3.1.2 THE OFF-AXIS -HOLOGRAM

The relation obtained by setting 4/ = ni, in Eq. (3.5),

a1 = <+ () (5= =)

Zr Z
_ x( X _ _"_1) _ y( e &) =nk, (1D
Zr z, Zr 2

is the general expression for a circle whose center has the coordinates

i Tixr T 2 r_ Z1Yr — Zeh .
Ye =TT T T (3-12)
and whose radius p is given by
2 41X — ZXy 2 S — 2 * 2”)‘12121'
2= . A
¢ < L — I )+< 1 — Zr >+21—Z, (3.13)
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Suppose we consider the off-axis intensity pattern formed by the inter-
ference of an axial .plane wave reference (x; = y, = 0, z, = co) with a
spherical subject wave diverging from an off-axis point (x,, y, =0, z,).
The center of the set of circular fringes, whose radii correspond to integral
values of n in Eq. (3.13), is given by Eq. (3.12) as x,’ = x; and y,’ = 0.
A zone-plate pattern is thus centered at the foot of the perpendicular dropped
from P to the hologram plane. The situation is indicated in Fig. 3.3. If the

reference \

g

\ s

Hologram

Fi1G. 3.3. Hologram produced by off-axis subject P and axial plane wave reference.

photographic plate is centered at O so that it can record only off-center
portions of the interference pattern, a Leith-Upatnieks hologram is obtained.
The fringe frequency & in the x,’ direction can be found by differentiating
Alf7, in Eq. (3.11) under the conditions x, = 3y, = y, = 0 and z, = co.
The result is

(3.14)
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Assuming the hologram plate to be centered at O, let us compare &' in
Eq. (3.14) with that found for the in-line configuration, Eq. (3.10).
At the hologram center (x,’ = 0) the in-line fringe frequency is zero while
the off-axis fringe frequency is x,/z;4;. As one proceeds outward in the
negative x,’ direction (see Fig. 3.3), the frequency of each fringe system
increases linearly with x,” and this frequency difference is maintained. At
the edge of the hologram are generated the highest frequencies to be re-
corded. If the photosensitive medium on the hologram plate is to record
the fringes in the off-axis case, it must have a resolution capability x,/z,4,
in addition to that required for the in-line case. Examination of Eq. (3.11)
reveals that had we considered an off-axis reference plane wave (x, 340,
x/z, = tan 0, =~ 0,), the frequency difference would in that case be

(3.15)

where 0, is the mean angle to the axis made by the subject wave, i.e., the
angle to the z axis made by a ray passing from P to the center of the holo-

gram at 0. Thus the mean angle between subject and reference beam pro- -

vides the difference in the maximum fringe frequency generated in an
off-axis hologram as against the in-line hologram. )

In the practical case of an extended subject, either the width of the subject
or the width of the recording plate can cause the fringe frequency &' to
exceed the plate resolution »,. When the plate is small compared to the
subject, the last term in Eq. (3.14) [or (0, — 0,)/4,in Eq. (3.15)] is dominant.
Point sources at the extreme dimension of the subject produce the maximum
fringe frequency at the plate. If & > v for the extreme portions of the
subject, then such portions are not recorded. On the other hand, when the
plate is much larger than the subject, the dominant term in Eq. (3.14)
might be the first. Beyond some value of x,’ all subject points produce
zone-plate fringes whose frequency & > v,,. That value of x,’ defines the
practical extent of the hologram record.

3.1.3 LensLEsS FOURIER TRANSFORM HOLOGRAM

We consider now the arrangement shown in Fig. 3.4 where subject and
referénce points are in the same plane. The coordinates of the subject point
P are (x;, y; =0, z;) and those of the reference point R are (x,, y, = 0,
z. = z;). The phase difference ¢, — ¢, in Eq. (3.5) becomes

Pr— Pa = — T (—- — T)«B'. (3.16)
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FiG. 3.4. Lensless Fourier-transform hologram configuration. (Nore: 0, is a negative
angle while 0, is positive.)

Differentiation of (¢, — ¢,)/27 with respect to x,’ yields the constant fringe

frequency )

e Xy — Xr

&= i (3.17)
Since the intensity of the interference pattern is independent of y,’, as is
apparent from Eq. (3.16), the fringes are vertical, uniformly spaced, linear
fringes. Their intensity varies cosinusoidally in the x,’ direction. (The phys-
ical arrangement and results are equivalent to those of Thomas Young’s
experiment. The method was suggested by Winthrop and Worthington for
X-ray holography [3.4] and by Stroke for optical holography [3.5].)

As may be seen in Fig. 3.4, the ratio x,/z; = tan 0, = .0, in our first-order

approximation, and similarly the ratio x,/z; = 8,. We can write ¢, — @, in

Eq. (3.16) as
2n .
Pr— Pa = T (01 - 0,)x2 » (318)
1

an expression depending only on the angle subtended at the hologram by
the distance separating P and R. If points P and R are at an infinite distance
from the hologram (z, = z, = oo, while x,/z, =~ 0, and x,/z, = 0, are still
finite), Eq. (3.18) continues to hold. The waves arriving at the hologram
from point sources at infinity are plane waves. They are the far-field pattern
or Fourier transforms of the point sources. Hence the linear fringe system
of Eq. (3.18) can be regarded as the interference of a plane wave reference
with the Fourier transform of the subject point source P. Not only can the’
hologram formed as in Fig. 3.4 be illuminated with the original reference
point R to produce an image of P, but it can equally well be illuminated by
a plane wave to reconstruct a plane wave which is the Fourier transform
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ol P. In the latter case the reconstructed wave must be observed in the far
field to obtain the image of P. The required second Fourier transformation
can be performed optically by placing a lens adjacent to the hologram and
observing the focal pattern in the back focal plane of the lens. A further
discussion of the lensless Fourier transform hologram is given in Chapter 8.

By placing the reference source close to the subject, x; — x; in Eq. (3.17)
can be kept small and the fringe frequency &' kept low. To the extent that
the approximations leading to Eq. (3.3) hold, & is constant across the
hologram plate, and holograms can be formed on plates of low resolution.
For extended subjects, x; — x, is a function of the width of the subject.
Fringes produced by extreme portions of the subject may yet exceed the
plate resolution, thus preventing these portions from being recorded. How-
ever, for small subjects the lensless Fourier transform hologram configura-
tion produces a uniform, low-frequency fringe system over a large plate area.
The result is a wide-aperture hologram which images with high resolution.

Equation (3.18) may be used to express the fringe separation, d = 1/&,
for the interference pattern formed by the intersection of two plane waves:

d=21,/(0, —0,). (3.19)

Suppose that as in Section 1.3.1, 0, = —0,. Substituting into Eq. (3.19) we
obtain

20,d = 1, (3.20)

which is a small-angle approximation to Eq. (1.10)
2dsinf = 1.

That the lensless Fourier transform hologram is equivalent to the holo-
gram record of two intersecting plane waves is understandable when one
notes that in (@, — @,) are phase expressions for two spherical waves of
equal but opposite curvature. Phase contributions due to curvature of the
wavefronts cancel leaving only those contributions due to the difference
in mean directions of the waves.

3.2 Reconstruction with a Point Source

Having considered various hologram-forming arrangements, let us now
investigate the reconstruction process. We assume that it is possible to
magnify or demagnify the hologram after formation and before recon-
struction. To take account of this, the hologram plane coordinates are
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relabeled x, = mx,’ and y, = my,’, where m is the linear magnification.
We also assume that the reconstructing wavelength 1, need not be the same
as the forming wavelength 7,; their ratio is given by u = 4,/4,. The recon-
structing or i[luminati"hg wave originates from a point source C(x,, Ve, Z)
as in Fig. 3.5. We do not require C to be the original reference source; it
may be the source of a diverging wave or the focus of a converging wave.

M
. : A3
Clx¢,ye,2c)

X3

S

Fi. 3.5. Illumination of a hologram in plane x,y, with a point source C(x., yc, zJ)-
The image plane can be separated from the hologram by a positive distance z;, as shown
(in which case the image is real), or by a negative distance (virtual image).

When the hologram is properly recorded in photographic emulsion, its
amplitude transmittance 7 is proportional to the intensity J given by Eq.
(3.1) (see also Section 1.8), where the spherical wave intensities /, = a,*
and I, = r,® are approximately uniform over the hologram plane. Hence
for holograms of point sources, diffraction results only from illumination
of the spatially varying interference terms in the transmittance proportional
to

ra* -+ r*a.

The complex amplitudes of the diffracted waves at the hologram plane are
proportional to the products of the illumination complex amplitude ¢ times
the above transmittance terms,

cra* 4 cr¥a,

where ¢ = ¢, exp(ip,). In Section 1.8 it is said that the first term above,
containing a*, yields a real image while the second, containing a, produces
a virtual image. As we shall see, this is not always the case. Nevertheless
the phase of the diffracted wave

cra¥* = Cololo exp[i((pc + @Pr — (pa)]
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is to be labeled
¢1{:¢c+¢r—q)ay (321)

while the phase of the wave cr*a is to be labeled
PV =P~ Pr + Pa- (3.22)

As in the computation of ¢, , we can cause the phase ¢, of wave ¢ to be
zero at the origin O and calculate the relative phase at some arbitrary point
(x5, ¥») on the hologram plane. Thus

27 [ 1 \ .
Pele, 1) ~ - | (67 98— 2o — )| (B.23)
2 [

The axial distance z, can be either positive or negative corresponding to
illumination by a converging or diverging wave respectively. We can now
substitute into Eq. (3.22) the values of ¢, @,, and ¢;, given in Egs. (3.23),
(3.3), and (3.4), respectively, to obtain

27 \( 1 \[ x® + 3" — 2x,%, — 20y
= () )

As Ze 4

n 27 ( 1 ) ( X% - yit— 22X — 23’y
}‘1 2 Z; )
— "27[ (_l_.>( xé?’ + yéz _ 2X2'x, _ 2y2,yr )
/11 2 Zy ’

Introducing x, = mx,', y, = my,’, and g = 1,/4,,

=7 lxr N b K
pv(xs, Vo) = 7 [(xz + ¥ )( Z. + miz, ez, )
_zx(_fi+ﬂ’i_&>_2y(yc _;_ﬁ}l_ﬂf_)}
A\ z, mz,  mz, Nz, " mzy,  mz )}
L (3.24)
Similarly
| =7 g + 2 (L _ J_>
Pr(xs, ¥2) % [(xz + »?) Z TS + iz,
_2x<x° __ﬁx_’_*__&)_zyn(lc__“_yl-_g_#_yi)]
Nz, mz, ' mz, Nz mzy | mz )}
(3.25)

If the hologram is indeed to image the point-source subject P, the phases
of the reconstructed waves at the hologram, gy and ¢y, must correspond
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to those of spherical waves. A first-order approximation to a spherical-
wave phase distribution over the hologram can be written,.as in Eq. (3.3),

Xy, yo) = ‘%75— {—2173 (5% + yo* — 2x9X3 — 2)'2)’3)]' (3.26)
In the above equation, z, is the hologram-to-image plane separation while
x; and y, represent the coordinates of the image point P in the image planc
(see Fig. 3.5). We must try to arrange ¢y and ¢y to have the same form
as @. If this can be done, then the image waves are, to first order, spherical
and converge or diverge according to the signs of ¢y and . They represent
the case of perfect first-order imaging of the point source. The higher-order
terms, neglected in the expansion of ¢, ¢y, and ¢y, however, may differ
and so represent aberrations (see Section 3.4).

3.3 Characteristics of the Images

By factoring out the ceefficient of (x,2 + y,?) in ¢y and ¢y, one can pro-
duce the desired form, indicating perfect first-order imaging. The image
coordinates (Xav, Vav, Zav) for ¢v and (xyp, Yau» Zsp) fOr @y can be identified

as
-1 2
4 J m?zez,z;
43V — T Y 3o = 2, 4 - > = 5
Ze nez; n-z. M= Zy -+ UZZp — UZeZ,
2 i -
MBXeZ 2y & WX 2.2, — PINXZeZ,
Xpy = efifr 1 MINX 22 — WINXZe , (3.27)
MPZ iz + p(Zezy — pZeZy
Yoy = M3y 2, = W\ ZeZ — UIVZeZ,
3V = > o ’
mizyzp 4+ Iz, — pzezy
and
-1
(1 uoo, U . mPzez, 2z,
LR TN\ T T T -2 ~ ’
Ze m3zy miz; MZ\Zy — UZeZr + pUzezy
MEX 212 — UIMX|ZoZp - WX 22,
Xsp = C— S E— , (3.28)
M2y 2y — PZZr T PIch
MYz — UMY ZoZ, S UINYiZeZy
Ysr =

5
mMiziZp — 2z + Hzezy

Along with the relations defining the image location, we can define
expressions for the lateral magnification My, as
dx, . dys

My =—-= ,
m dx, dy,
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from which we obtain

2. - —1
My = ”1(1 + a4 ) )
ZC zl'
# . (3.29)
2 -1
My = m(l NI R > >
UZe z:
and the angular magnification M,,, as
d(x;/z5)
My, = ——378
e d(x,/z;)
from which we obtain
| Mang | = p/m. (3.30)

3.3.1 IN-Line HOLOGRAM IMAGES

The letters V and R refer to the reconstructed waves cr*a and cra*,
respectively. Whether the images produced by these waves are actually
virtual or real depends upon their divergence or convergence, i.c., upon
the sign of z;v and zzz. A negative value implies a diverging wave and a
virtual image; a positive value implies a converging wave and a real image.
(Note: z;, the subject-to-hologram distance, has a negative value if the
subject is a real object.) We shall begin our analysis of image character-
istics with Gabor’s in-line holography where reference, subject, and illu-
minating sources are all on axis so that

xXp =X, = Xx, = 0.

Only the x and z components of the image coordinates will be analyzed,
since no new information is obtained by considering the y component.

Gabor’s “projection method” required that the subject be placed close
to the source, i.e., z; = z; 4 4 where 4 is a negative distance and where
A/z; L1 (see Section 2.2). Suppose 4 =m =1 and z, = z.. (This cor-
responds to Gabor’s all-optical verification of his invention.) With the
above x and z values Egs. (3.27) and (3.28) give )

Xy = 0, Zzy =2z, =2z,— 4,
(3.31)

2 1\t
Xy = 0, Z3r = ( — _> =z, + 4.

Ze z,

The images lie close to and symmetric about the illuminating source. Since
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z, is negative, both images are virfual. To photograph these, Gabor needed
a lens to form real images at a photographic plate.
For u = m = 1, the lateral magnification in Eq. (3.29) becomes

I 1\]!
Mlub,\’:‘:l+zl<z — Z ) 5

] 1 \]!
M= [1 =2+ )|

When the illuminating source is located at the original reference source
position z, = z,, then M, v =1 and My, x ~ —1, remembering that
z,/z, =~ 1. (The —1 magnification in the case of the virtual image produced
by gy indicates an inverted image.) When the illuminating wavefront has
less curvature at the hologram than the reference wave, ie., | z,| > | z |,
the lateral magnification increases. 1t becomes large, approaching z,/4 as
z, —oo and the illumination becomes a plane wave. However the corre-
sponding value of the image plane distance z, becomes large as well. The
angular magnification, M,,, = u/m = 1, remains constant.

Gabor’s original plan was to form the hologram at electron wavelengths
and illuminate it at optical wavelengths. For this case u = 1,/4, ~ 10° To
avoid aberrations, he planned to scale the hologram by a factor u = m
and to place the illuminating source at distance z, = /mz, from the hologram.
The lateral magnification under these conditions becomes

(3.32)

Ml:\& = 4m = :}:'u, (333)

but the angular magnification remains unity. Consequently the distance
from hologram to image plane is x4 times the distance between object and
hologram.

The essential feature of the “rransmission method” of Haines and Dyson
(see Section 2.2) was to place the subject close to the hologram so that
|z,| <€z |. Again with x;, = x;, = x, =0, u =m =1, and z, = z;, we
obtain from Egs. (3.27) and (3.28)

Xzy =0, Igv = Zy,

2 1\?
X = 0, ZyR == ( — ~> .

Zr Zy

(3.34)'

If the reference is a plane wave so that z, — oo, then a virtual image is
found at z, and a real image at —z;, the images symmetric this time about
the hologram. Both images are upright since in this case M, v = M g
= +1.
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A result of general consequence, not confined to on-axis holography,
can be obtained by considering the hologram to be illuminated by a plane

wave (z; = o) of wavelength different from that used to form it (w>1).

With no scaling (m = 1), the lateral magnification My = (1 — z,/z)!
depends on the ratio z,/z, but is independent of the wavelength change. 1f,
in addition, the reference wave had been a plane wave (z, = ©0), then no
magnification whatsoever is obtainable in the reconstruction process. Of
course scaling up the dimensions of the hologram can produce large lateral
magnification even with plane reference and illuminating waves. However,
optical enlargement of the hologram is an impractical and undesirable step
in an otherwise lensless imaging process. It also places the image plane at a
considerable distance from the hologram. For example, when z, = z,=co
and x4 = m, the axial distance of the real image is z,; = —mz; = —uz,.

3.3.2 LETH-UPATNIEKS OFF-AXIs HOLOGRAM IMAGES

Leith’s and Upatnieks’ method allows off-axis positions for the subject,
reference, and illuminating sources, and there is no need to restrict the
reference source to the z axis as we did in Section 3.1.2. Effects of illuminat-
ing the hologram with a wavelength and mean angle different from those
of the reference beam can be illustrated easily by assuming plane waves for
both reference and illuminating beams. In this section and throughout the
remainder of the chapter we shall consider that the hologram dimensions
are kept constant so that m = 1. Again we confine our attention to the v
and z image coordinates. With these simplifications Egs. (3.27) and (3.28)
reduce to

xs\,:xl—}—(_)f_“)i_(xr )_,lle+_,l( B, _0r>, gy = L

“c M <Zr 12 "
(3.35)
x3R=X1*21(—66—+0r>: I3 = — =
H “

where 6, = tan 0, = x,/z, and 0, ~ tan 0, = x,/z, are the angles that the
illuminating and reference beams make with the positive direction of the
z axis (see Fig. 3.6).

When the illuminating wave is identical to the reference, x4 = 1 and
0. = 0,. A virtual image then appears at the location of the original subject
source (xy, z;), and a real image appears in a plane z, distant on the other
side of the hologram from the illumination sources. Both images are
upright. N
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FiG. 3.6. lllumination of Leith~Upatnieks hologram with plane wave c¢. Hologram
had been made with spherical wave a and plane wave reference r. (Note: 0, and 0, are
positive angles while 0, is negative.)

As in Section 1.4, it is customary to describe the response of a diffraction
grating to incident illumination in terms of the angles of incidence and dif-
fraction. Since holograms discussed in this chapter are similar to plane
diffraction gratings, it is appropriate to calculate the diffraction angles
corresponding to illumination of a hologram with a plane wave making an
angle 0, to the hologram plane. We can simplify matters further by consider-
ing 0, = 0, = 0 as in Fig. 3.7. Then from Eq. (3.35) the diffraction angle
corresponding to the ¢y diffracted wave is

oy X .
Oy = Yov K 8, (a negative angle for z; << 0),
Zgv 21
Ax,
D 5 o'
L o
X, ','/7*\\\ X,
il O~ ~ 165 | | .
c=r ! | l l 0 Gy | r :
{ |
|
-——————— 7, Z -
H

Fi6. 3.7. 1llumination of off-axis hologram with a plane wave ¢ where 0, =0, = Q.
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and the angle corresponding to ¢y, is

x x iy
Oip = —% = — =L~ 0,  (a positive angle for z, < 0).
Z3R Zy

The image waves are as shown in Fig. 3.7. The effect of a wavelength change
in the illuminating beam is to multiply the diffraction angles by the wave-
length ratio u. On the other hand for 4 = 1 but 0, 7= 0, = 0, the effect is
to add 0, to both 04y and 0y, , essentially rotating the emerging beams about
' the y axis. _
For the general case of an off-axis reference plane wave and a similar
illuminating wave, the diffraction angles obtained from Eq. (3.35) are

03\7 = ,uOl -+ OC —_ ,uUr and 031{ = —,uol - Oc + ﬂor (3.36)

A choice of angles often used in making holograms is 0, = —«, §, = +-«f
and 0, = +a. If u is kept equal to 1, the diffraction angles 0,y = —« and
0,3 = +3a are as shown in Fig. 3.8.
X2
'y
P.\ a
™ G3g= +3a
ar ™~ -
>7
al. 0 Gs,=-a
H
c=r

F1G. 3.8. Off-axis hologram made with subject and réferencc beams symmetric about
normal and illuminated with original reference.

Thus far, all of our results have been derived from a first-order approxi-
mation. Our analysis, when applied to elementary hologram formation and
illumination with plane waves, should yield the familiar plane diffraction
grating response, Eq. (1.11)

d(sin i 4 sin 8) = A,.

However the first-order analysis allows only a small angle approximation
to Eq. (1.11) to be obtained. To illustrate, let us first restate Eq. (1.11) in
a form pertinent to holographically formed gratings. Consider a grating
to have been formed by interference of two plane waves on a photographic
emulsion as in Fig. 1.4, For the case shown there, each forming angle can
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be set equal to 6, so that d = 2,/(2 sin 0,). Substituting ¢ into Eq. (1.11)
and assuming that an illuminating plane wave is incident at an angle i = 0,,
we obtain for the angle of diffraction & (which is also the angle 6, in the
notation of this chapter)

sin 6 = sin 0; = 2(1,/4,) sin 8, — sin 0,

== sin 0,2u — 1). (3.37)

Now let us evaluate the diffraction angle 0;v, in Eq. (3.36), under similar

conditions. The conditions are met by setting §;, = —8, and 0, = 6,. We
obtain

03\7 = 01(2# - 1), (3.38)

the first-order approximation to Eq. (3.37). Thus, results obtained through
first-order geometric considerations hold only so long as sin § = tan § =~ §.

3.3.3 IMAGES WHEN ALL SOURCES ARE EQUIDISTANT FROM THE HOLOGRAM

Suppose the subject and reference point sources lie in the same plane so
that z, = z., and suppose that the illuminating wave is identical to the
reference (x, = x;, z, = z;). Equations (3.27) and (3.28) reduce to

Xgy = x (1 — p) + MXy, Z3v = Zp,

(3.39)
Xar = X (1 + u) — px,, Z3R = 23

The configuration forms the lensless Fourier transform hologram, and in
this case both images are virtual, lying in the original subject plane. If the
reference source lies on the z axis, then the images are symmetric about
the z axis. The image at (x;p, z,z) is inverted.

Any of the waves can be converging to a point which is a positive distance
from the hologram plane. Suppose the subject beam is such a converging
beam so that z, is positive and suppose z, = z, = —z,. Then

Zv = 4,/Qu — 1),

and the image produced by ¢ is real, for 2u > 1. On the other hand the
image produced by @y is characterized by

e = —2,/Qu+ 1)

and is virtual. If, instead, it is the illuminating wave that is chosen to be
converging to a point a positive distance from the hologram, then inspection
of zgy and z;g in Egs. (3.27) and (3.28) reveals that both images are real;
in this case the image at (x,v, zsv) is inverted.
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3.4 Third-Order Aberrations

Equation (3.26) representing a spherical-wave phase distribution over the
hologram is only a first-order approximation in 1/z;. The next order of
approximation consists of a number of terms all multiplying the factor
(1/z5)3. This is also true, of course, of the expressions for ¢,, ¢;, and @,
in Egs. (3.3), (3.4), and (3.23), respectively. The third-ordAer terms .Of Egs.
(3.3), (3.4), and (3.23) are to be added together in accordance with Eg.
(3.21) or (3.22) to give the third-order terms in @y or gr. The phase dif-
ferences between the third-order expansion of Eq. (3.26) and the third-order
expansion of @y (or @) are the aberrations.

Meier [3.2] has calculated hologram aberrations in terms of their usual
classifications: spherical aberration, coma, astigmatism, field curvature, and
distortion. He finds that one or the other of the waves diffracted by the
hologram yields an image free of all aberrations providing the illuminat'ing
wave is identical with the reference. For this case the magnification is unity.
Magnification is achieved (1) by illuminating the hologram with a spherical
wave whose curvature differs from the reference, keeping u = m = 1;
(2) by illuminating with a wavelength differing from that used to form the
hologram, u % 1; and (3) by scaling the hologram, m 7= 1. The first method
cannot be employed without producing aberrations. If plane waves are
used for reference and illumination, then the condition u = m and 0, = 6,
produces an aberration-free image from @y, while y = m, 0, = ——Or' pro-
duces an aberration-free image from gy . (The scaling, however, requires a
lens which may degrade the image.) When reference source and subject
sources are equidistant from the hologram (the lensless Fourier transfqrm
configuration, z, == z,), magnification can be achieved without opFlcal
scaling and with zero spherical aberration. The magnification is obtgmed
by making u > 1. However at least one of the other aberrations will be
present.
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Chapter 4
THE FOURIER TRANSFORM

The analysis of point-source holograms, presented in Chapter 3, is based
on the determination of differences in geometrical path to the hologram
taken by simple spherical or plane waves issuing from point sources. For
such simple waves, the complex light amplitude in the immediate vicinity
of the hologram can be easily specified; fundamental aspects of hologram
formation and wavefront reconstruction are then describable in terms of
this complex amplitude. When, on the other hand, a complicated distri-
bution of light complex amplitude exists in an input plane, and it is desired
to know how this distribution is modified by passage through free space,
optical components, holograms, and other obstacles, then consideration
must be given to more general light wave propagation.

Electromagnetic waves can be temporally modulated or, as is generally
the case at optical wavelengths, they can be spatially modulated. When
temporally modulated, the wave propagation may be analyzed in either of
two domains: a temporal domain or a temporal-frequency domain. Analo-
gously, spatially modulated wave propagation, which is our concern here,
may be analyzed in either a spatial domain or a spatial-frequency domain.
In the spatial domain the light complex amplitude a(x, y) is expressed as a
function of the x, y spatial coordinates of an observation ‘plane through
which the light propagates. The same complex amplitude distribution can
be expressed in terms of orthogonal spatial frequencies ¢ and # as well.
According to the basic theorem of Fourier analysis, as applied to light
distributions, any two-dimensional complex amplitude pattern can be con-
sidered as a discrete or continuous set of sinusoidally varying patterns (pe-
riodic components). The reciprocal of the spatial period of any of the
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