The force on charge \(q_1 \) from charge \(q_2 \) is \(\vec{F}_{12} = k_e \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12} \), where the direction vector \(\hat{r}_{12} \) points from \(q_2 \) to \(q_1 \) and the proportionality constant is \(k_e = 8.99 \times 10^9 \text{ Nm}^2/\text{C}^2 \).

Note that the permittivity of free space is \(\varepsilon_0 \equiv \frac{1}{4\pi k_e} = 8.85 \times 10^{-12} \text{ C}^2/(\text{Nm}^2) \).

Note that the unit of elemental electronic change is \(e^- = -1.62 \times 10^{-19} \text{ C} \).

We note the Taylor’s expansion \((1 + x)^n = 1 + nx + \ldots \), which is useful when \(nx \ll 1 \). For example,

\[
\frac{1}{(r + d)^2} = \frac{1}{r^2} \left(1 + \frac{d}{r} \right)^{-2} = \frac{1}{r^2} \left(1 - 2 \frac{d}{r} + \ldots \right) = \frac{1}{r^2} - 2 \frac{d}{r^3} \text{ for } d \ll r.
\]

The force on a test charge \(q_0 \) induced by an electric field, denoted \(\vec{E} \), is \(\vec{F} = q_0 \vec{E} \).

1. Two positive charges of strength \(Q_1 = +1.0 \times 10^{-3} \text{ Coulombs} \) sit along the x-axis as shown in figure 1 (+\(\hat{x} \) points to the right along x & +\(\hat{y} \) points to the up along y), with \(L = 20 \text{ cm} \). What is the x-direction of the force on a negative charge of strength \(Q_2 = -1.0 \times 10^{-6} \text{ Coulombs} \) that sits at \((x, y) = (L, L) \)?

 A) -3.0 \times 10^2 \text{ N } \hat{x}
 B) -2.3 \times 10^3 \text{ N } \hat{x}
 C) -7.9 \times 10^1 \text{ N } \hat{x}
 D) +3.0 \times 10^2 \text{ N } \hat{x}
 E) +7.9 \times 10^1 \text{ N } \hat{x}

2. With reference again to figure 1, and \(Q_1, Q_2 \), and \(L \) defined as above, what is the y-direction of the force on \(Q_2 \)?

 A) -3.0 \times 10^2 \text{ N } \hat{y}
 B) -2.3 \times 10^3 \text{ N } \hat{y}
 C) -7.9 \times 10^1 \text{ N } \hat{y}
 D) -6.1 \times 10^1 \text{ N } \hat{y}
 E) -3.0 \times 10^0 \text{ N } \hat{y}
3. Two charged balls with identical mass, M, form a double pendulum as shown in figure 2. The charge on one ball is $Q_1 = +1.0 \times 10^{-6} \text{ C}$ and the other is $Q_2 = +3.0 \times 10^{-6} \text{ C}$. The strings have the same length, with $L = 20 \text{ cm}$ and the angle formed by the two balls is $2\theta = 60^\circ$ ($\theta = 30^\circ$). What is the mass?

A) $3.0 \times 10^{-2} \text{ kg}$
B) $1.2 \times 10^{-1} \text{ kg}$
C) $4.8 \times 10^{-1} \text{ kg}$
D) 1.2 kg
E) This system is unstable as the two values of the charge are different.

4. Four charges, two positive with strength $+|e|$ and two negative with strength $-|e|$, are symmetrically configured along the x-axis as shown in figure 3. What is the force on the test charge q_o?

A) $k \frac{q_o e d}{r^3} \hat{x}$
B) $k \left(\frac{q_o e}{r^2} - \frac{q_o e}{(r + d)^2} \right) \hat{x}$
C) $k \frac{q_o e d}{8 r^3} \hat{x}$
D) zero
E) $k \left(\frac{2 q_o e}{r^2} - \frac{2 q_o e}{(r + d)^2} \right) \hat{x}$

5. A charged sphere with mass $M = 1.0 \times 10^{-15} \text{ kg}$ and unknown charge Q is suspended in a uniform electric field of $1.0 \times 10^7 \text{ N/C}$, as shown in figure 4. Recall that the gravitational acceleration is 9.8 m/s^2 and that $1 \text{ N} = 1 \text{ kg m/s}^2$. What is the strength of the charge (sign and magnitude of Q) that is required to suspend the particle?

A) $+8.8 \times 10^{-12} \text{ C}$
B) $+9.8 \times 10^{-22} \text{ C}$
C) $+9.8 \times 10^{-25} \text{ C}$
D) $-9.8 \times 10^{-22} \text{ C}$
E) $-9.8 \times 10^{-22} \text{ C}$