Physics 1B - Quiz 3 (12 Feb 2007)

Formulas

The force on charge q_1 from charge q_2 is $\vec{F}_{12} = k_e \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$, where the direction vector \hat{r}_{12} points from q_2 to q_1 and the proportionality constant is $k_e = 8.99 \times 10^9 \text{ Nm}^2/\text{C}^2$.

Note that the permittivity of free space is $\varepsilon_0 \equiv \frac{1}{4\pi k_e} = 8.85 \times 10^{-12} \text{ C}^2 / (\text{Nm}^2) = 8.85 \times 10^{-12} \text{ A}^2 \text{s}^4 / (\text{kg m}^3).$

Note that the unit of elemental electronic change is $e^{-} = -1.62 \times 10^{-19}$ C.

The force on a test charge q_0 induced by an electric field, denoted \vec{E} , is $\vec{F} = q_0 \vec{E}$.

The electric flux through a surface is $\Phi_{e} \equiv \sum_{All \ Surfaces} EA_{\perp} = \sum_{All \ Surfaces} EA \cos \theta$, where $A_{\perp} = A \ cos \theta$ is the component of the area whose normal lies parallel to the electric field.

Gauss' Law relates the net flux through a closed surface to the net charge enclosed by the surface, *i.e.*, $\Phi_e = 4 \pi k_e Q_{Total}$.

The electric field produced by a point charge q at the origin, *i.e.*, $\vec{r} = 0$, is $\vec{E} = k_e \frac{q}{r^2} \hat{r}$ where \hat{r} is the radius vector in spherical coordinates.

The electric field produced by a line charge, with charge per unit length λ , is $\vec{E} = 2k_e \frac{\lambda}{r} \hat{r}$, where the line is defined to lie along the \hat{z} axis and \hat{r} is the radius vector in cylindrical coordinates.

The electric field produced by a surface charge, with charge per unit area σ , is $\vec{E} = 2\pi k_e \sigma \hat{n}$, where the surface lies in the \hat{x} - \hat{y} plane and \hat{z} corresponds to the normal to the \hat{x} - \hat{y} plane in Cartesian coordinates.

Work-Energy Theorem: $W = \Delta KE + \Delta PE$

Electric potential:
$$\Delta V = -E \Delta x \cos \theta$$
, where $\Delta V = \frac{\Delta P E}{Q}$

$$V = k_e \frac{q}{r}$$
 a distance r away from a point charge q.

Current:

$$I = \frac{\Delta Q}{\Delta t} \quad \text{or} \quad I = n \ e \ v_D \ A$$

Capacitance: $Q = C \Delta V$ where $C = \frac{\kappa}{4\pi k_e} \frac{A}{d}$ for parallel plates and κ is the dielectric constant

$$I = C \frac{\Delta V}{\Delta t}$$

Energy Stored = $\frac{1}{2}Q \Delta V = \frac{1}{2}C (\Delta V)^2 = \frac{1}{2C}Q^2$

Resistance: V = I R where $R = \rho \frac{1}{A}$ and ρ is the resistivity in Ohm-m.

	Series	Parallel
Capacitors	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$	$C_{eq} = C_1 + C_2 + C_3 + \cdots$
Resistors	$\mathbf{R}_{\rm eq} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3 + \cdots$	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$

Power Dissipated = $IV = I^2R = V^2/R$

Kirchoff's Laws: 1) Sum of voltage drops around any loop is zero, *i.e.*, gains = losses


2) Sum of current flow into a node is zero, *i.e.*, total current in = total current out

Finally! The Quiz

- 1. For current flow in a resistor, which statement is true?
- A. The acceleration of the charge carrier is proportional to the voltage drop across the resistor
- B. The velocity of the charge carriers is proportional to the voltage drop
- C. The velocity of the charge carriers is a constant that depends solely on the type of material
- D. The velocity of the charge carriers is a constant that depends solely on the temperature
- E. The velocity of the charge carriers is a constant that depends solely on the geometry

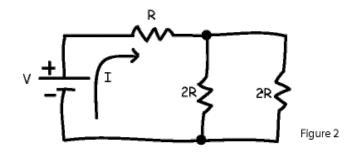
2. A 1.50 V battery is connected across a 4 F capacitor, as shown below in figure 1. What is the energy stored in the capacitor subsequent to removal of the battery?

- A. 6.0 J
- B. 4.5 J
- C. zero
- D. 6.0 W
- E. 4.5 W

3. The resistivity of cytoplasm, the solution inside of a cell, is 100 Ω cm. What is the resistance of a cylinder of cytoplasm that is 1.0 mm long and 2.0 μ m in diameter? Mind the units!

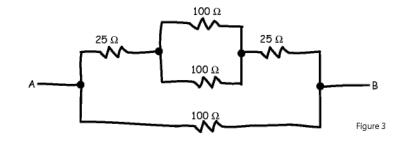
- A. $3.2x10^{8} \Omega$
- B. $3.1x10^{-15} \Omega$
- C. $3.2 \times 10^3 \Omega$
- D. $8.0 \times 10^7 \Omega$
- E. $8.0 \times 10^3 \Omega$

4. A room heater operates at 220 Volts and consumes 2000 W of power. How much current does the heater draw?


- A. 1.1×10^{-1} A
- B. 4.1×10^{-3} A
- C. 3.0 A
- D. 9.1 A
- E. 4.4×10^5 A

5. In bacterial photosynthesis, the absorption of one photon causes a *pair* of electrons to move across the membrane. Under high light levels, *pairs* of *electrons* cross once every 100 μ s. What is the current?

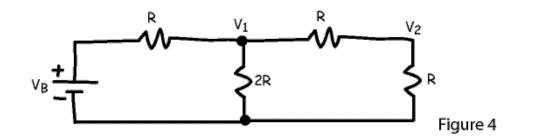
- A. 1.6x10⁻²¹ A
- B. 3.2x10⁻²¹ A
- C. 2.0 A
- D. 1.6x10⁻¹⁵ A
- E. 3.2x10⁻¹⁵ A


6. A battery supplies current to a circuit with 3 resistors, as shown below in figure 2. What is the correct expression for the total current I?

- A. V/R
- B. V/(2R)
- C. 2V/R
- D. 5V/4R
- E. 3V/R

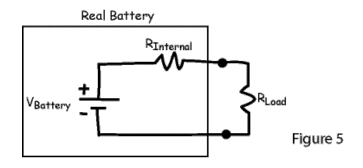
7. Find the equivalent resistance between points A and B for the circuit shown below in figure 3.

- Α. 50 Ω
- B. $3.0 \times 10^{-2} \Omega$
- C. 112 Ω
- D. 71 Ω
- Ε. 3.8 Ω



8. A battery supplies current to a circuit with 4 resistors, as shown below in figure 4. What is the correct expression for the potential V_1 ? Hint – you do not need to keep track of V_2 to find V_1 .

- A. $1/3\ V_{\scriptscriptstyle B}$
- B. 1/2 V_B
- C. 2/3 V_B
- D. $4/5 V_B$
- E. $2 V_B$


9. What is the correct expression for the potential V2 in Figure 4? Think carefully before you start!

- A. 1/5 V_B
- B. $1/4 V_B$
- C. 1/3 V_B
- D. 1/2 V_B
- E. 2/5 V_B

10. In a real battery with interval resistance, as shown below in figure 5, the voltage drop across an external load resistor is

- A. always less than the open circuit voltage, V_{battery}
- B. equal to the open circuit voltage
- C. unconstrained
- D. zero
- E. always greater than the open circuit voltage

