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1 Introduction

We are frequently interested in the frequency response of our circuits. Given an input
sinusoidal waveform of some frequency, the frequency response tells us how much the output
waveform will be amplified/attenuated (A(w)) as well as its relative phase shift (¢(w)) from
the input.

Vin = Vo sin(wt) — Vo = Vo A(w) sin(wt + ¢(w))

Thus, the frequency response characterizes the circuit’s behavior in the frequency domain.
If the system is linear and time-invariant, we can then use our frequency response to predict
the circuit output of input waveforms of any shape. After all, we can transform any input
waveform into the frequency domain with the Fourier Transform, which tells us about the
frequency components which make up the input. We then multiply the frequency response
with the input waveform’s frequency domain representation. The magnitude of the frequency
response scales the amplitudes of the input frequencies; meanwhile, the multiplication of the
complex phase factors will sum the phase, shifting the original frequencies. Thus, we now
have the properly scaled and phase shifted output frequencies, which we can inverse Fourier
transform to the output waveform.

Of course, the entire analysis above can also be done in the time domain for simple circuits,
but quickly becomes difficult to do for more complicated systems. Meanwhile, the frequency
response is something which can be experimentally measured, as is done in Lab 2 for the
simple RC low-pass and high-pass filter circuits.
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2 Electrical Impedance

Motivated by the notion of a frequency response, it should be clear that we ought to consider
the Fourier transform representation of our passive circuit elements.

The simplest case to treat is that of resistors, which are governed by Ohm’s Law V(t) =
I(t)R, where R is a real-valued constant. When we take the Fourier Transform, very little

changes: V(w) = I(w)R.

Inductors and capcacitors are instead governed by differential equations in time. Here, the
Fourier transform becomes very handy. Consider some function f(t) represented as an inverse
Fourier transform of its frequency representation:
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We can take the time derivatives of both sides of the equation on the left. As the integral
is of w, we can bring the derivative under the integral sign and differentiate. As only the
complex exponential has time dependence, the equation can be written as follows:

d 1 > -
a1 e“iw f (w)dw
dt 2w J_

Note that this is written in the form of an inverse Fourier transform! Thus, whatever is in the
integrand that is not the complex exponential must be the Fourier transform of the left-hand
side. We then know that the Fourier transform of the time derivative of some function is iw
times said function’s Fourier transform. By instead calling df /dt = g(t) and f(t) = [ g(t)dt,
we can also immediately find the Fourier transform of an integral. Summarized below:

df(t) F .
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Let us now return to the discussion concerning the inductor and capacitior. Recall that the
former is governed by V(t) = L%(tt) while the latter is given by V(t) = % = & [1(t)dt.
Below, we show the time domain and corresponding frequency domain representations:

V(t)=I{t)R +— V(w) = I(w)R

V(t) = Ld‘;—it) —— V(w) = [(w)iwL
V(t) = é / [(0)dt s V(w) = f(w)%

In frequency space, all of the equations are of the form of Ohm’s Law, but with complex
valued “resistances”. These are what we call impedances. We now generalize Ohm’s Law
for complex impedances as V = I Z, where Z is the impedance of whatever circuit element.
Because these impedances are governed by Ohm’s Law, we can solve circuits in the frequency
domain as though every element is a resistor, and just use Kirchoff’s laws as always. As an
additional result, impedances add in series and in parallel like resistors.

1
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3 Passive First Order Filters

Most of the filters presented in Lab 2 are the simplest possible electronic circuits, consisting
of only two passive circuit elements. The optional LRC circuit is an example of a higher
order passive filter which achieves a much steeper attenuation after passing its fsqp point.
Later in the course, we will study circuits with active components which can also be similarly
analyzed but can additionally achieve amplification rather than just attenuation.

In these notes, I will consider the example LR circuit shown below.

Figure 1: LR first order low-pass filter. L = 94mH and R = 9.9k(}.

Prior to any advanced circuit analysis, we can immediately tell this is a low-pass filter. In
the extreme case of w — 0, the inductor’s impedance iwl — 0, which is a short-circuit
(wire). Thus, V,,; is on the same node as Vj,, so they must be equal at low frequency. On
the other hand, for w — oo, the inductor impedance goes as iwl — oo, which is an open-
circuit. In that case, the circuit is broken so no current flows. As a result, there is no voltage
drop across the resistor, so V,,; gets pulled to ground at high frequency. Summarizing, this
circuit passes Vj, to V. for low-frequencies and attenuates to 0 at high-frequencies - it is a
low-pass filter.

3.1 Theory: Transfer Function

We will now find analytical expressions for the magnitude and phase of the frequency re-
sponse. To do this, let us first find the relation between Vout and V;n By recognizing that
our circuit is simply a voltage divider of complex impedances, we can immediately write the

result:
5 Zn

Vout(w> = mvm(w)

Aside: Review of Voltage Dividers

Being able to recognize voltage dividers quickly is a crucial skill to develop in this
course! Thus, we will briefly review it. We can generalize the circuit shown in
Figure 1 to any two passive elements connected in series with impedances Z; and
Zy, configured such that Z; takes the place of the inductor and Z, replaces the
resistor. The total impedance is therefore Zp = Z; + Z5. Using Ohm’s Law, the
current flowing through the circuit must be I = Vj, /Zr. As the components are
in series, the current through either of the components is still I = Vi, /Zr. By
noting that Viout is simply the voltage drop across Z,, we use Ohm’s Law to find
‘/out — [Z2 Z2 ‘/'m
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Rearranging our voltage divider equation yields the frequency response, which I will hence-
forth denote as H(w):

‘/out_ R
Vi, R+iwL

Hw) =

It is additionally convenient to define quantity 7 = L/R, which has units of time, yielding:

B 1 1l —awr
14wt 14 (wT)?

H(w)

The magnitude and phase of the frequency response are found the usual way for any complex-
valued function, resulting in:

Alw) = |H(w)| = 1 ¢(w) = £(H(w)) = — arctan (wT)

Notice that wr is unitless. Taking the limits wr < 1 and w7 > 1 correspond to to taking the
low and high frequency limits - think about why this is. As a hint, recall that the f3;5 value
is related to 7. Taking these limits will also allow understanding of linear approximations of
the resulting Bode plots for the low and high frequency limit - be sure to do this and explain
the results on your lab report!

Finally, putting everything together, we can write the output for any given input:

Vin(t) = Vosin(wt) — Vo (t) = Yo sin(wt — arctan(wr))
1+ (wr)?

3.2 Experiment: Measured Quantities

From the above discussidihe experimental procedure should be clear. The ratio of the output
amplitude Vp/ 1 + (w7)? to the input amplitude V; yields the magnitude of the frequency
response. Similarly, the phase shift of the frequency response is simply how much the output
signal is shifted from that of the input signal.

We now only need to measure these quantities over 20 logarithmically even steps in frequency
across 2 decades, centered about f3gp. If f= 10%is logarithmically evenly space, exponent x is
linearly even. The starting and ending values of x are then simply a = log,,(0.1f-345) and b =
log,o(10f-345). For a total of N = 20 points, we have N-1 = 19 evenly spaced steps, so the
exponent step size is bl_—g“, allowing us to define each frequency we ought to measure.
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3.3 Bode Plots

To visualize the frequency response, we plot the information on a Bode plot. As changes
typically happen over multiple orders of magnitude of frequency, the x-axis of Bode plots are
logarithmically scaled. The Bode magnitude plot tells us how much the frequency response
amplifies/attenuates the signal, A(w) = H~/Out / Vin|. This quantity is generally plotted in units
of decibels (dB), which is 201og;, |A(w)|. On the other hand, the Bode phase plot tells us
how much the frequency response phase shifts the signal. Below is an example Bode plot for
the circuit analysis done above, using the measured values of R = 9.9k() and L =94mH.
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Figure 2: LR first order low-pass filter Bode plot of magnitude (above) and phase (below). Theory is
plotted as a blue curve, while experimental data points are plotted as red markers. The vertical dotted line

is the theoretically predicted f34p value.
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