

Phys 4L Diagnostic Exam (19 questions)

Participation Credit

This diagnostic is *not* graded for correctness. It is used only to help set the pace of the course. Please do not use external resources.

Section A — Basic Circuit Facts

1. If the resistance of a resistor is doubled while the voltage across it is held constant, the current through it:
 - A. Doubles
 - B. Halves
 - C. Stays the same
 - D. Goes to zero
2. A resistor is connected to a fixed voltage source. Which change will decrease the power dissipated in the resistor?
 - A. Increasing the resistance
 - B. Decreasing the resistance
 - C. Increasing the voltage
 - D. None of the above
3. Two resistors are connected in series. Which quantity is the same through both?
 - A. Voltage
 - B. Current
 - C. Power
 - D. Resistance
4. Two resistors are connected in parallel. Which quantity is the same across both?
 - A. Current
 - B. Power
 - C. Voltage
 - D. Resistance

Section B — Differential Equations

5. Which of the following is a first-order differential equation?
 - A. $\frac{d^2x}{dt^2} + x = 0$
 - B. $\frac{dx}{dt} = -kx$
 - C. $x^2 + t = 0$
 - D. $\frac{d^2x}{dt^2} = \sin(t)$

6. The solution to the differential equation below has which qualitative behavior?

$$\frac{dx}{dt} = -kx \quad (k > 0)$$

- A. Linear decay
- B. Exponential decay
- C. Oscillatory motion
- D. Constant value

7. How many initial conditions are required to uniquely solve a first-order ODE?

- A. One
- B. Two
- C. Three
- D. None

8. The equation below describes motion that is:

$$\frac{d^2x}{dt^2} + \omega^2x = 0$$

- A. Exponentially growing
- B. Exponentially decaying
- C. Oscillatory
- D. Constant

9. How many initial conditions are required to uniquely solve a second-order ODE?

- A. One
- B. Two
- C. Three
- D. Infinitely many

Section C — Partial Derivatives

10. Let

$$f(x, y, z) = x^2y + xyz + z^2$$

What is $\partial f / \partial x$?

- A. $2xy + yz$
- B. $2xy + z$
- C. $xy + yz$
- D. $2x + y$

11. For the same function, what is $\partial f / \partial y$?

- A. $x^2 + xz$
- B. $2xy + z^2$
- C. $x^2 + yz$
- D. $x + z$

Section D — Linear Algebra Fundamentals

12. Which of the following is a linear combination of vectors \mathbf{u} and \mathbf{v} ?

- A. $\mathbf{u} \times \mathbf{v}$
- B. $\mathbf{u} \cdot \mathbf{v}$
- C. $3\mathbf{u} - 2\mathbf{v}$
- D. $|\mathbf{u}| + |\mathbf{v}|$

13. Two vectors form a basis for a 2-dimensional vector space if they are:

- A. Orthogonal
- B. Linearly independent
- C. Parallel
- D. Normalized

14. If A is a 2×3 matrix and B is a 3×4 matrix, the product AB is:

- A. 2×3
- B. 3×4
- C. 2×4
- D. Not defined

15. Matrix multiplication is generally:

- A. Commutative
- B. Associative
- C. Both
- D. Neither

16. The identity matrix I satisfies:

- A. $IA = 0$
- B. $IA = A$
- C. $IA = A^T$
- D. $IA = A^{-1}$

Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$

17. What is AB ?

- A. $\begin{bmatrix} 2 & 5 \\ 4 & 11 \end{bmatrix}$
- B. $\begin{bmatrix} 2 & 5 \\ 6 & 11 \end{bmatrix}$
- C. $\begin{bmatrix} 1 & 4 \\ 3 & 10 \end{bmatrix}$
- D. $\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$

18. What is BA ?

- A. $\begin{bmatrix} 3 & 4 \\ 7 & 10 \end{bmatrix}$

B. $\begin{bmatrix} 3 & 4 \\ 5 & 8 \end{bmatrix}$
C. $\begin{bmatrix} 2 & 5 \\ 4 & 11 \end{bmatrix}$
D. $\begin{bmatrix} 5 & 2 \\ 11 & 4 \end{bmatrix}$

19. Let

$$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$$

What is $M\mathbf{v}$?

A. $\begin{bmatrix} x + 2y \\ 3x + 4y \end{bmatrix}$
B. $\begin{bmatrix} x + y \\ 3x + y \end{bmatrix}$
C. $\begin{bmatrix} 2x + y \\ 4x + y \end{bmatrix}$
D. $\begin{bmatrix} 4x \\ 6y \end{bmatrix}$