

## Physics 4L Lab 6 (2026)

### 6.1 One-pole filter circuit designs.

We pick up from last week, where you solved the first (L.5; Q.10) of 4 circuits. Use available components in the laboratory to build circuits:

- $C = 2000 \text{ pF}, 0.01 \mu\text{F}, 0.033 \mu\text{F}, \text{ and } 0.1 \mu\text{F}$ .
- $L = 1 \text{ mH } (r_L \sim 30 \Omega), 10 \text{ mH } (r_L \sim 300 \Omega), \text{ and } 15 \text{ mH } (r_L \sim 30 \Omega)$ ; remember to measure the internal resistance of the inductor.
- Keeping the load resistance on the waveform generator large,  $R > 2 \text{ k}\Omega$ .

Use this procedure to design the additional circuits below:

- Attempt to hit the desired "break frequency" at 5 % (and no worse than 10 %).
- Acquire data first with the oscilloscope to target the range of the design parameter(s).
- Then measure carefully by acquiring with the DAC-interface (no scope-probe).
- Use a slow, logarithmic sweep, i.e., 2 or more sweeps of 30 s of increasing frequency and 30 s of decreasing.
- Apply a short-time Fourier transform, coded in Matlab, to the acquired data. This analysis calculates the local frequency content within a short duration of a longer signal.

**Q.1 Design a RC low-pass filter with  $f_{3\text{dB}} = 8.0 \text{ kHz}$  (Figure 6.1). Include a Screenshot from the oscilloscope of the rough performance that shows that the 3dB point is within design criteria. A nice way to accomplish this is with an image of the frequency sweep.**

**Q.2 Show the full Bode plot of only the magnitude to demonstrate that your measurements confirm that you hit the desired 3dB break frequency.**

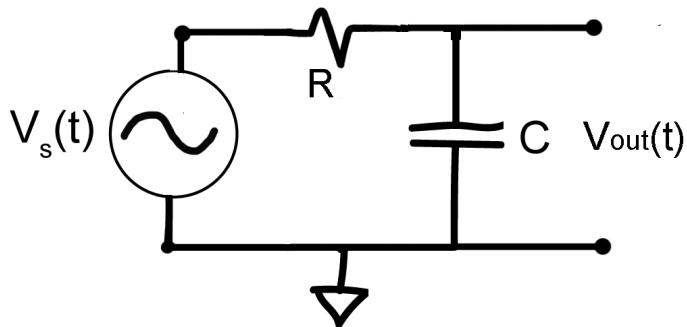



Figure 6.1.

**Q.3 Design a LR high-pass filter with  $f_{3\text{dB}} = 8.0 \text{ kHz}$  (Figure 6.2). Include a Screenshot from the oscilloscope of the rough performance that shows that the 3dB point is within design criteria. A nice way to accomplish this is with an image of the frequency sweep.**

**Q.4 Show the full Bode plot of only the magnitude to demonstrate that your measurements confirm that you hit the desired 3dB break frequency.**

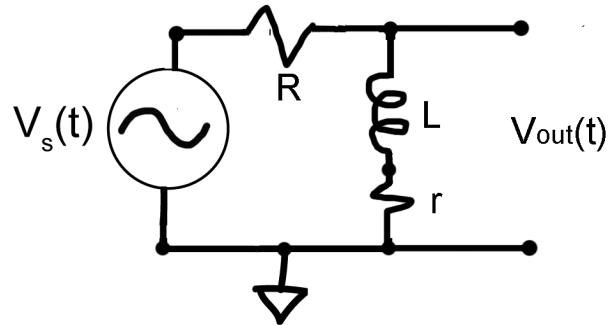



Figure 6.2.

**Q.5** Design a LR low-pass filter with  $f_{3\text{dB}} = 8.0 \text{ kHz}$  (Figure 6.3). Include a **SCREENSHOT** from the oscilloscope of the rough performance that shows that the 3dB point is within design criteria. A nice way to accomplish this is with an image of the frequency sweep.

**Q.6** Show the full Bode plot of only the magnitude to demonstrate that your measurements confirm that you hit the desired 3dB break frequency.

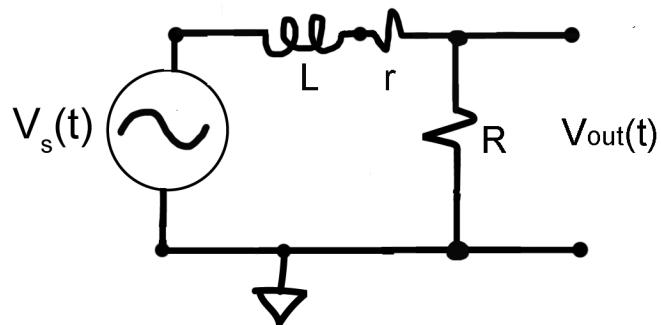



Figure 6.3

## 6.2 The transfer function for a 2-pole bandpass filter.

Build the circuit in Figure 6.4. The central frequency for this circuit is  $\omega = 1/RC$  radians/s (Figure 6.5). Choose a combination of R and C to make the central frequency equal to *roughly* 1000 Hz.

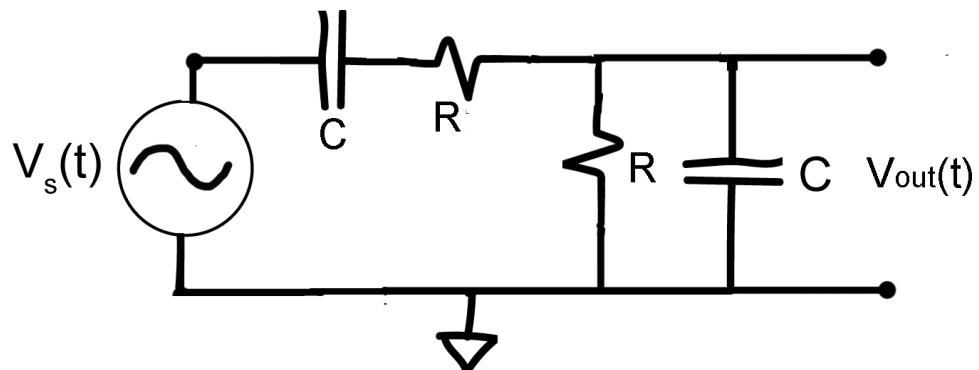



Figure 6.4

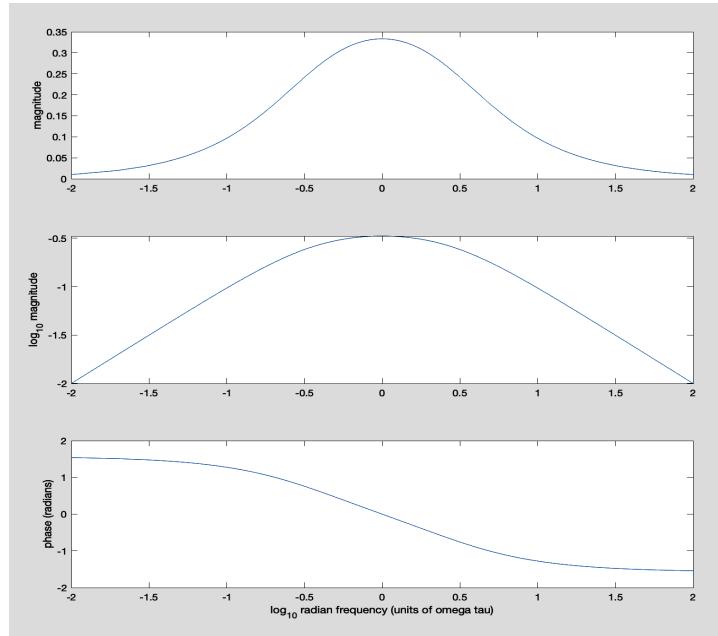



Figure 6.5

**Q.7 & 8. Measure the magnitude response (Q.7) and the phase shift (Q.8) of the two-pole bandpass over a range of two orders of magnitude above and two orders of magnitude below the central frequency. Choose 10 points for each order of magnitude.**

**Q.9. Calculate the expected response as predicted by the transfer function; refer to figure 6.5 as a normalized example. Recall that the output can be expressed in terms of voltage divider of complex impedance.**

**Q.r10 Plot theory (as a solid line) and experiment (as data points) for both magnitude and phase on the same Bode plots. Explain where and why any mismatch occurs.**