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SUMMARY

How do neurons in orofacial motor cortex (MCtx)
orchestrate behaviors? We show that focal activation
of MCtx corticobulbar neurons evokes behaviorally
relevant concurrent movements of the forelimb, jaw,
nose, and vibrissae. The projections from different
locations in MCtx form gradients of boutons across
premotor nuclei spinal trigeminal pars oralis (SpVO)
and interpolaris rostralis (SpVIr). Furthermore, retro-
grade viral tracing frommuscles that control orofacial
actions shows that these premotor nuclei segregate
their outputs. In the most dramatic case, both SpVO
and SpVIr are premotor to forelimb and vibrissa mus-
cles, while only SpVO is premotor to jaw muscles.
Functional confirmation of the superimposed control
by MCtx was obtained through selective optogenetic
activation of corticobulbar neurons on the basis of
their preferential projections to SpVO versus SpVIr.
We conclude that neighboring projection neurons in
orofacial MCtx form parallel pathways to distinct
pools of trigeminal premotor neurons that coordinate
motor actions into a behavior.

INTRODUCTION

The motor cortex (MCtx) orchestrates complex voluntary

movements through its connections with an array of cortical

and subcortical targets (Alloway et al., 2010; Graziano, 2016;

Graziano et al., 2002; Hattox et al., 2002; Jeong et al., 2016;

Mao et al., 2011; Oswald et al., 2013; Sreenivasan et al.,

2015). In rodents, the bulk of the descending, corticobulbar

projections from MCtx transmit signals through an array of

collaterals that target many premotor nuclei in the brainstem

(Alloway et al., 2010; Economo et al., 2018; Jeong et al.,

2016; Kita and Kita, 2012). Yet despite these broad patterns

of downstream connectivity, activation of neurons in MCtx

can evoke clearly defined movements (Harrison et al., 2012;

Hira et al., 2015). These past data suggest the existence of
N

specific patterns of connectivity from corticobulbar to premo-

tor neurons.

Like the case of neurons in MCtx, individual premotor neurons

send broad collateral projections to other premotor, brainstem,

and thalamic structures (Bellavance et al., 2017; Stanek et al.,

2014; Yoshida et al., 1994). Furthermore, neighboring neurons

in a premotor nucleus can broadly target multiple motor nuclei

(Amri et al., 1990; Cunningham and Sawchenko, 2000; Dong

et al., 2011; Fay and Norgren, 1997a, 1997b, 1997c; Li et al.,

1995; Pinganaud et al., 1999; Takatoh et al., 2013), with some

evidence that individual premotor neurons can target pairs of

motor nuclei to potentially enact concurrent movements (Amri

et al., 1990; Dong et al., 2011; Li et al., 1993; Stanek et al.,

2014; Yoshida et al., 1994).

Here we investigate the nature of connectivity from cortico-

bulbar to premotor neurons for orofacial pathways. Of particular

interest are the inputs to secondary sensory neurons in the tri-

geminal complex that originate from MCtx (Jeong et al., 2016;

Stanek et al., 2014; Takatoh et al., 2013; Yoshida et al., 1994).

These sensory neurons are, in fact, also premotor neurons

that are uniquely positioned to receive both unprocessed sen-

sory information and high-level motor commands (Jacquin

and Rhoades, 1990; Jacquin et al., 1986; Matthews et al.,

2015; McElvain et al., 2018). Classic tracing, along with modern

monosynaptic rabies-EnvA tracing, show that the oralis (SpVO)

and rostral interpolaris (SpVIr) subnuclei of the spinal trigeminal

nucleus project to motoneurons for the vibrissae (Erzurumlu and

Killackey, 1979; Nguyen and Kleinfeld, 2005; Pinganaud et al.,

1999; Takatoh et al., 2013), jaw (Li et al., 1995; Olsson andWest-

berg, 1991; Stanek et al., 2014; Westberg et al., 1998; Yoshida

et al., 1994), tongue (Borke et al., 1983; Pinganaud et al., 1999;

Stanek et al., 2014), eyelid (Gonzalez-Joekes and Schreurs,

2012; Hiraoka and Shimamura, 1977; May et al., 2012; van

Ham and Yeo, 1996), nose (Kurnikova et al., 2019), and forelimb

(Esposito et al., 2014). The results of these prior studiesmotivate

the present study to delimit the involvement of SpVO and SpVIr

in coordinating movements of the forelimbs, jaw, nose, and

vibrissae.

The coordination of multiple motor actions into a clearly

defined movement may use downstream premotor nuclei

through labeled line or diverging projections. To discriminate

among these possibilities, we ask, (1) What orofacial movements
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mailto:dk@physics.ucsd.edu
https://doi.org/10.1016/j.neuron.2019.08.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2019.08.032&domain=pdf


are elicited by stimulating layer 5 pyramidal neurons in discrete

locations of orofacial MCtx? (2) What then is the distribution of

projections from orofacial MCtx to pools of premotor neurons

in SpVO, SpVIr, and other trigeminal nuclei? Furthermore, how

do these pools map onto muscles for different orofacial motor

actions? (3) Does activation of SpVO- versus SpVIr-projecting

neurons in MCtx evoke motor actions from a single orofacial

appendage, consistent with signaling along a muscle-selective

pathway that is used in different motor actions, or does this

cortical activation coordinate multiple appendages in an action,

consistent with an action-selective pathway? (4) Last, does the

distinction between SpVO- and SpVIr-projecting activation

show parallel signaling fromMCtx through different pools of pre-

motor neurons to enact different motor actions? We address

these questions in awake, head-fixed mice using optogenetic-

driven stimulation of genetically or virally labeled neurons

coupled with electromyographic and videographic recording,

along with anatomical tract tracing.

Background
The mammalian MCtx is defined by three types of maps: a cy-

toarchitectural map (Brecht et al., 2004; Brodmann and Gary,

2006; Donoghue andWise, 1982), a muscle twitch map (Ferezou

et al., 2007; Fritsch and Hitzig, 2009; Tennant et al., 2011), and a

map of coherent movements (Graziano and Aflalo, 2007; Gra-

ziano et al., 2002; Hira et al., 2015). One of the first described

features of the MCtx was that it was agranular, that is, lacking

an identifiable layer 4 (Brodmann and Gary, 2006; Donoghue

and Wise, 1982). In rodents, the cytoarchitecture map of MCtx

is composed of two distinct regions, the agranular medial

(AGm) and agranular lateral (AGl) areas (Donoghue and Wise,

1982; Tennant et al., 2011). AGm cortex has a dense layer 2

with a pale layer 3. In contrast, layers 2 and 3 in AGl cortex are

largely indistinguishable (Donoghue and Wise, 1982; Tennant

et al., 2011).

The muscle twitch map is a result of lowering the amplitude of

electrical pulses applied to MCtx until only a dominant MCtx to

muscle path dominates. Twitches of single muscles in the jaw,

neck, and vibrissa are evoked in more rostral aspects, while

those of the body and trunk are evoked in caudal aspects (Fere-

zou et al., 2007; Hollis et al., 2016; Tennant et al., 2011).

Although brief pulses of electrical stimulation can evoke mus-

cle twitches, excitatory neurons in MCtx tend to be active

throughout a movement (Churchland et al., 2012; Georgopoulos

et al., 1986; Graziano et al., 2002; Peters et al., 2014).When elec-

trical- or channelrhodopsin-based stimulations mimic these

longer durations of activity in primates (Graziano and Aflalo,

2007; Graziano et al., 2002; Overduin et al., 2012) and rodents

(Bonazzi et al., 2013; Harrison et al., 2012; Hira et al., 2015), com-

plete motor acts are observed.

Although the muscle twitch map is a consequence of the min-

imumelectrical stimulus required to evoke a twitch, at normal ac-

tivity levels in behaving animals the representative region for a

muscle would be larger and overlap with other muscles. Thus,

the movement map is likely an expression of overlap of the

many muscles required for movements. The synergy of muscle

twitch and movement maps has begun to be elucidated by elec-

trophysiological recordings of MCtx neurons (Kakei et al., 1999)
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and electromyographic recordings during intracranial microsti-

mulation (Kakei et al., 1999; Overduin et al., 2012). These past re-

sults motivate the additional need to determine the relation of

maps in MCtx with those in premotor subnuclei SpVO and SpVIr.

RESULTS

Orofacial Motor Cortex Muscle Mapping
Inspired by past work with primates (Graziano and Aflalo, 2007;

Graziano et al., 2002), we first mapped behaviorally relevant

orofacial movements evoked from MCtx. To characterize

many orofacial appendages, we recorded the electromyo-

grams (EMGs) of the biceps brachii, digastric, intrinsic vibrissa,

masseter, quadriceps, and splenius capitis muscles, and we

videographed concurrent motion of the forelimb, jaw, nose,

and vibrissae during optical stimulation of MCtx in Thy1-ChR2

mice (Figures 1A–1D and 2A–2C; laser spot diameter 35 mm).

We modulated the incident laser power, while recording

EMGs, at 2 of the intended 15 stimulation sites (Figure 1C, jaw

and vibrissa MCtx stimulation sites outlined in green and purple,

respectively) to determine the optimal power for mapping. Acti-

vation of motion either saturated or peaked at a power of 3.0mW

(Figure 1E). The final power was chosen to be below this value

(i.e., 2.4 mW) (Figure 1E, arrows). As a means to map motor

actions from many locations in orofacial MCtx (Figure 1C), we

chose a 1 s, 30 Hz stimulus train (Figure 1D).

Composite maps of evoked amplitude were made for each

muscle EMG and for nose and jaw movements across all stimu-

lation sites. Significant activation or suppression of all EMG

channels was found at all locations (five mice; p < 0.001, Kolmo-

gorov-Smirnov [K-S] test). Some muscles, like the digastric and

splenius capitis, exhibited ‘‘hotspots’’ of stronger activation from

specific regions of MCtx, with smaller, yet still significant modu-

lation from other stimulation locations (Figure 1F). The broad,

low-level activation of all muscles is consistent with control of

posture by MCtx, in addition to coordination of specific motor

actions (Amundsen Huffmaster et al., 2017; Mimica et al.,

2018; Overduin et al., 2012).

Examination of the composite maps for the jaw and neckmus-

cles and jaw and nose movement show a division between the

medial and lateral aspects of orofacial MCtx. The medial division

has strong activation of the nose and splenius capitis muscles,

while the lateral shows activation of the digastric and masseter

muscles (Figure 1C, inset). This division likely reflects a predom-

inant, albeit incomplete, segregation of exploratory movements

to medial orofacial MCtx and feeding movements to lateral oro-

facial MCtx.

The biceps brachii, intrinsic vibrissa, and quadriceps muscles

transcended the division of exploratory versus feeding areas

(Figure 1F). We found that many stimulus sites evoked moderate

activation of the intrinsic vibrissa muscle (Figure 1F), which is

responsible for protraction of the vibrissae. Surprisingly, this

muscle was strongly activated along the lateral part of orofacial

MCtx (Figure 1F), a location that was not identified in mapping

experiments performed with the animal under anesthesia (Fere-

zou et al., 2007; Haiss and Schwarz, 2005; Tennant et al., 2011;

Kleinfeld et al., 2002). Consistent with previous work (Ferezou

et al., 2007), we found only one stimulus location that evoked
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Figure 1. Orofacial Motor Cortex Map of Induced Muscle Activity, as Inferred from Movement and EMGs

(A) Schematic of laser activation of Thy1-ChR2-YFP mice with EMG recordings and high-speed videographs from above for the vibrissa and nose movements

and using a mirror to reflect the forelimb and jaw movements up to the camera.

(B) Coronal section of Thy1-ChR2 mouse through MCtx with dense YFP labeling in layer 5.

(C) Schematic of positions targeted by a blue laser in MCtx for trials of 1 s of blue light. Jaw and vibrissa MCtx stimulus locations for (E) are identified by a green

and purple outline of the laser spot, respectively. The expanded view is a summary of our observation that MCtx nominally partitions into a medial-exploratory

region and a lateral-feeding division.

(D) Single trial examples of forelimb, jaw, nose, and vibrissa movements and biceps brachii, digastric, intrinsic vibrissa, masseter, quadriceps, and splenius

capitis EMG envelopes. The blue box indicates the time the light train is ongoing. Examples are from a variety of stimulus locations, as labeled.

(E) Amplitude and standard deviation of the rectified EMG for the digastric, intrinsic vibrissa, and splenius capitis muscles from classic vibrissa MCtx (AP +

1.5 mm, ML 1.5 mm; purple outline in Figure 2C) compared with jaw MCtx (AP + 3 mm, ML 2 mm; green outline in Figure 2C) at different light intensities.

(F) Composite amplitude maps (five mice across a total of 15 days, interpolated between light points) for the biceps brachii, digastric, intrinsic vibrissa, quad-

riceps, and splenius capitis EMG envelope recordings and anterior-posterior nose and up-down jaw movements.
retraction of the vibrissa (Figures S1A and S1B). This site directly

overlaps with large-amplitude activation of the splenius capitis

neck muscle (Figure 1F), a muscle most strongly active during

deep (90�–130�) head turns (Richmond et al., 1992; Roucoux
et al., 1989). Furthermore, this location is in close proximity to

the location where head turning movements have been evoked

in freely moving mice (Barthas and Kwan, 2017). The combina-

tion of vibrissa retraction and large-amplitude activation of the
Neuron 104, 765–780, November 20, 2019 767
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Figure 2. Mapping Orofacial Motor Cortex-Evoked Forelimb, Jaw, and Nose Movements, as Inferred from Videography

(A) Schematic of the videographic recording set up with the mirror image shown for tracking the jaw (left) and forelimb (right) and for the videography from above

as done for the nose (middle).

(B) Single trial example of vertical (top) and lateral (bottom) jaw position.

(C) Conversion of single dimension positions in (B) to two-dimensional projection. Black dots illustrate the start and end of the projection (inset) that shows the

movement path as observed looking on directly in the dimension of the mirror (forelimb and jaw) or from above (nose).

(D) Motor cortex stimulation points as seen in Figure 1C. Filled blue circles indicate locations where visible jaw movements were observed; black outlined circles

indicate location from which jaw tracking examples are shown in (E). Movements were similarly observed in all five mice.

(legend continued on next page)
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(A) All evoked forelimb targets (i.e., the black average trace of the projected movements in Figures 2I and S2D) are shown overlaid on an example mouse. The
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Location number refers to (B).

(B) Overlay of composite amplitudemap of the biceps brachii map (gray; Figure 2F) with the three described clusters of forelimb elevation (red), illustrating that the

darker gray locations in MCtx (larger evoked amplitude of biceps brachii) coincide with the darker red stimulation sites in MCtx (higher elevation of forelimb).

(C and D) Overlaid composite maps illustrating the division between exploratory and feeding movements on the basis of rhythmic (C) and ballistic (D) motor

actions.

(E) Ethological map of orofacial movements based on Figures 1, 2, and 3.
splenius capitis suggests that this area in MCtx is specialized for

head turning (Figures S1A–S1C).

Taken together, the amplitude maps show a patchwork of

partially overlapping hotspots that tile across the MCtx and

represent unique patterns of muscle activity that cluster accord-

ing to exploratory versus feeding movements (Figure 1C, inset).

Orofacial Motor Cortex Movement Trajectory Mapping
To advance from maps of individual muscle activation to move-

ment, we measured entire trajectories of the forelimb, jaw, and

nose (same five mice as in Figure 1) (Figures 2, 3, and S2A) using

videography (Figures 2A–2C). Consistent with the activation of
(E) Jawmovements in two dimensions over time (left) with projected trajectory (rig

darker lines indicate that more time was spent at those coordinates. The blue bo

(F) Same as (D), but here filled blue circles indicate locations where visible nose

locations for traces in Figure 2G. Movements were similarly observed in three m

(G) Nosemovements in two dimensions over time (left) and projected trajectory (rig

darker lines indicate that more time was spent at those coordinates. The blue bo

(H) Similar to (D) and (F); here filled blue circles indicate locations where forelim

movement type (cluster 1, 2, or 3, as seen in Figures 3A and 3B) was evoked

three mice.

(I) Forelimb movements in two dimensions over time (left) with projected trajec

projection, darker lines indicate that more time was spent at those coordinates. T

and 2 are shown with the example for cluster 3 in Figure S2D.

(J) Composite maps of locations with rhythmic activity of the digastric (top) and sp

Movement descriptions are overlaid. The vibrissa map shows net movement; de
the digastric and masseter muscles (Figure 1F), jaw movements

were evoked from most stimulus sites (Figure 2D, filled blue

circles). Jaw trajectories were downward and contralateral (Fig-

ure 2E). Small movements of the jaw could be detected that

corresponded to low-amplitude contractions of the digastric

(Figure S2A, location 8). Rhythmic jaw movements (i.e., chewing

and licking) were evoked from a subset of locations that had

large-amplitude digastric activity (Figures 2E, 2J, and S2A–

S2C) andwere characterized by rhythmic activation of the digas-

tric (Figures S2B and S2C). As found previously with primates

(Huang et al., 1989) and mice (Kobayashi et al., 2002), cortical

activation of rhythmic jaw movements can differ slightly from
ht). All trials are shown (colored lines) with the average (black). In the projection,

x indicates the stimulation duration.

movements were observed, and black outlined circles indicate the example

ice.

ht). All trials are shown (colored lines) with the average (black). In the projection,

x indicates the stimulation duration.

b movements were tracked and recorded. Colored outlines indicate which

from laser activation at that location. Movements were similarly observed in

tory (right). All trials are shown (colored lines) with the average (black). In the

he blue box indicates the stimulation duration. An example each for clusters 1

lenius capitis (bottom) muscles along with rhythmic nose movements (middle).

tails are in Figure S1.
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natural chewing behaviors in that themasseter is often not rhyth-

mically active, and when it is, the masseter and digastric rhyth-

mic bouts overlap (Figure S2C), as occurs pathologically during

bruxism (Taylor et al., 2017). Last, in addition to rhythmic jaw

activation, coordinated jaw motor actions were resolved at

some stimulation sites. One suchmovement involved concurrent

rhythmic jaw movement with rhythmic protrusion of the tongue

(Figure S2A) at a site that was close in location to the previously

identified cortical licking region (Komiyama et al., 2010).

Nose movements were elicited by activation of the medial re-

gion of MCtx (Figure 2F, filled blue circles). Evoked nose move-

ments were along both the anterior-posterior (Figure 2G, top)

and medial-lateral (Figure 2G, bottom) directions. Rhythmic

nose movements moved the nose contralaterally and were

evoked at only a single stimulus site within the broader region

that evoked nose movements (Figures 2G and 2J). The rhythmic

activity from the nose was distinct and segregated from that of

the jaw (Figure 2J), consistent with known frequencies of chew-

ing, licking, and sniffing inmice as well as their different functions

in exploration and feeding (Figure S3A) (Kobayashi et al., 2002;

Kurnikova et al., 2017).

It is known that the neck is rhythmically activated during natu-

ral chewing (Giannakopoulos et al., 2013; Satoh et al., 2011),

sniffing (Kurnikova et al., 2017), and head shakes and bobs (Ko-

bayashi et al., 2002; Kurnikova et al., 2017). Here we found rhyth-

mic activation of the splenius capitis neck muscle at three

distinct frequencies, in different regions of orofacial MCtx (Fig-

ures 2J and S3A–S3C). The splenius was found to have a similar

frequency at locations of digastric rhythmicity to the digastric

(Figure S3B, green) and a different frequency that was similar

to rhythmic nose movements at locations with nose rhythmicity

(Figure S3C, teal). There was a third, slow frequency in medial

orofacial MCtx that was independent of other muscles and

movements we measured and could, on the basis of frequency,

potentially be attributed to head bobbing (Figures S3A–S3C,

gold spectra).

The final piece of our cortical map of orofacial movements

was to identify evoked forelimb movements (Figures 2H–2J).

Although the forelimb is not an orofacial appendage, forelimb

movements are an essential aspect of orofacial behaviors such

as feeding and grooming. Here, activation of the biceps brachii

muscle was induced from all stimulation sites in orofacial MCtx

(Figure 1F); however, forelimb movements could only be tracked

from stimulation at a subset of sites (Figure 2H, filled blue cir-

cles). Three categories of movements were evoked (Figures

2H, 2I, and S2D, green, blue, and pink).

The first forelimb movement type (Figure 2H, location 5; Fig-

ures 3A and 3B, first cluster) corresponds to a forelimb trajectory

to the mouth with the paw supinated. The elevation of the paw

during this evoked movement was higher than for any other

evoked movement and was the most closely associated with

the mouth (Figure 3A). This stimulation location overlapped

with large-amplitude activation of the digastric and large tracked

movements of the jaw (Figure 1F). Supination to the mouth was

evoked most laterally, within the ‘‘feeding’’ division of orofacial

MCtx (Figure 3D).

The second type of forelimb movement (Figures 2I and 2J,

locations 2, 4, 7, and 9; Figures 3A and 3B, second cluster of
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stimulation sites) evoked forelimb grasping below the mouth.

These four stimulation sites overlap with the region of strong

activation of the splenius capitis and quadriceps muscles (Fig-

ure 1F). From the rostral locations of this second cluster (Figures

3A and 3B), evoked forelimb movements that came closer to the

face (i.e., more elevated) corresponded with locations that

evoked larger jaw opening (Figure 1F), episodically with rhythmic

jaw movements (Figure 2H), and larger amplitude responses of

the biceps brachii (Figures 1F and 3B).

In the third type of forelimb movement (Figures 2I and S2D,

locations 1, 6, and 11; Figures 3A and 3B, third cluster of stim-

ulation sites), the pronated forelimb moved away from the body

into the surrounding space (Figure 3A). Less elevated trajec-

tories of this lateral movement were evoked from rostral stimu-

lation sites (Figures 3A and 3B). Activation of the biceps brachii

muscle was greatest at locations with larger forelimb elevations

(Figure 3B).

We constructed an ethological map of orofacial movements

on the basis of overlapping patterns of cortically evoked chew-

ing, sniffing, forelimb-to-mouth movements, head bobbing,

head turning, lateral forelimbmovements, and licking (Figure 3E).

The resulting movements and known cortical inputs support the

notion that the medial region of orofacial MCtx is responsible

for distinct types of exploratory movements, while more lateral

regions are responsible for feeding movements (Figures 3C,

3D, and S3D).

Premotor Distribution in Spinal Trigeminal Subnuclei
SpVO and SpVIr
Although MCtx can evoke coordinated movements, it remains

unknown if downstream premotor circuits contribute to coordi-

nation of these movements. We next determined if trigeminal

premotor nuclei have overlapping premotor neuron pools for

forelimb, jaw, and vibrissa muscles that could contribute to co-

ordinated movements.

To map the premotor neuron input from muscles of the face

and forelimb, we used the transsynaptic retrograde virus pseu-

dorabies at a time point that labeled back to premotor neurons

(Matthews et al., 2015). Pseudorabies was chosen for its high

efficiency in transporting transsynaptically from muscle in adult

animals. To explore coordination of different muscle groups,

we chose onemuscle from eachmuscle group of interest: the bi-

ceps brachii forelimb muscle, the digastric jaw muscle, and the

intrinsic vibrissa muscle (nine mice with three mice per muscle)

(Figure 4A). Pseudorabies-labeled neurons were found in both

SpVO and SpVIr in all nine mice; example sections for each

muscle are shown in Figure 4B. The border between the spinal

trigeminal nucleus and the parvocellular reticular formation

(PcRt) was determined from the intensity of cytochrome oxidase

staining (Furuta et al., 2006) (Figure 4B). Premotor neurons were

also found in the adjacent reticular formation and other known

premotor regions (Figure 4B).

Consistent with previous literature, more premotor neurons

were found in PcRt than in SpVO and SpVIr (Figure S4A, left)

(Stanek et al., 2014; Takatoh et al., 2013). Across many animals,

a group of neurons that crossed between the PcRt and SpVO

was consistently observed (Figure S4B). PcRt neurons appeared

to be smaller and denser, while SpVO premotor neurons were
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Figure 4. SpVO and SpVIr Have Two Distinct Premotor Neuron Clusters

(A) Schematic illustration of muscle injections of pseudorabies-GFP into the biceps brachii, digastric, and intrinsic vibrissa muscles.

(B and C) Example of horizontal sections from an injection in the biceps brachii, digastric, and intrinsic vibrissa muscles (B), oriented as in (C). GFPwas converted

to dark product, and sections were counterstained with cytochrome oxidase.

(D) Sagittal reconstruction of all premotor labeled neurons in SpVO and SpVIr.

(E) Two clusters found using the 50% densest labeling of digastric and biceps premotor neurons and 42% of intrinsic premotor neurons in SpV are overlaid on a

sagittal atlas section (Paxinos and Franklin, 2008); see STARMethods. SpVO cluster has 14 biceps, 88 digastric, and 57 intrinsic vibrissa premotor neurons. SpVIr

cluster has 33 biceps, 1 digastric, and 34 intrinsic vibrissa neurons. Total premotor neurons was 94 biceps, 178 digastric, and 218 intrinsic vibrissa premotor

neurons across nine mice.

(F) Schematic illustration of the injection scheme for a Cre-dependent AAVwith somatic GFP and synaptophysin-mRuby into SpVO and a retrograde AAV-Cre into

the facial motor nucleus.

(legend continued on next page)
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bigger with more elaborate dendrites (Figure S4B). Prior litera-

ture also suggested PrV as an important premotor structure for

jaw rhythmicity (Tsuboi et al., 2003). With pseudorabies labeling,

we found that SpVO and SpVIr had more labeled premotor neu-

rons than PrV (Figure S4A, middle panel). The tropism of pseu-

dorabies is unknown, but in a subset of mice, very dense labeling

was found in nociceptive-related substructures in SpVC (Fig-

ure S4A, right panel), leading to large variability in the number

of pseudorabies-labeled neurons present there (Figure S4C).

Although there aremany premotor neurons in the reticular forma-

tion, the somatotopy, distinct subdivisions, and raw sensory

input make the trigeminal complex an ideal location to examine

for coordination of motor control (three additional mice were

included in the Supplemental Information).

We reconstructed the labeled neurons fromSpVO and SpVIr in

three dimensions and projected them onto the sagittal plane

(Figure 4D). The top 50% densest labeled neurons (Figure 4E)

formed two clusters of premotor neurons. The first cluster is in

the dorsal part of SpVO, and the second is in the ventral part

of SpVIr. The dorsal cluster in SpVO receives somatosensory in-

formation for the jaw, inside the mouth, and the teeth (Jacquin

and Rhoades, 1990; Yoshida et al., 1994) and was found to

have premotor neurons for all three muscles: the biceps brachii

digastric and intrinsic vibrissa muscles. The ventral premotor

cluster in SpVIr receives sensory input from the face around

the eyes, the nose, and the vibrissae (Jacquin et al., 1986) and

has a more selective premotor neuron population for only the

biceps brachii and intrinsic vibrissa muscles. The distinction be-

tween the premotor clusters and the known sensory topography

suggests that these clusters are part of separate circuits (Figures

4D and 4E).

To further understand the nature of the pathway from MCtx to

muscles, we sought to determine if individual premotor neurons

in the trigeminus send collateral axons to motoneurons in

different cranial nuclei and the spinal cord. We injected a Cre-

dependent virus that labeled the axons with GFP and the pre-

synaptic terminals with mRuby into SpVO (Figures 4F, 4G, and

S5A), while injecting a retrograde AAV-Cre virus into the facial

motor nucleus (Figure 4H, left panel; Figure S5A), the location

of vibrissa, nose, and other face motoneurons (five mice). Collat-

eral terminals were observed in the trigeminal motor nucleus, the

location for most jaw opening and closing motoneurons

(masseter and anterior digastric motoneurons; Figure 4H, middle

panel; Figure S5B), and in the ventral horn motor neurons in the

lower cervical spinal cord, (Figure 4H, right panel; Figure S5B), at

approximately the level where forelimbmotor neurons are found.

Across animals, more terminals were observed within the facial

motor nucleus than the trigeminal motor nucleus or the ventral

horn of the spinal cord (Figure S5B). However, the effective

strength of individual connections remains unknown.

These data provide anatomical evidence for functional coordi-

nation of motor actions by the face, forelimb, and jaw via single
(G) Image of GFP labeling at the anterograde injection site in SpVO.

(H) Images of axon and terminal labeling in the retrograde injection site of the facial

nucleus (middle) and the lower cervical spinal cord (right).

(I) Example section of terminal labeling in the hypoglossal motor nucleus (left) and

and the upper cervical spinal cord (right).
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premotor neurons in SpVO. Additional collateral terminals were

observed in the hypoglossal motor nucleus while mostly avoid-

ing the nucleus ambiguus and the ventral horn in the upper

cervical spinal cord (Figure 4I), which suggests that although

some overlap among premotor pathways is present, the path-

ways are targeting a distinct subset of motoneuron pools.

Together, these data show that overlapping pathways from

premotor to motoneurons can be through the same premotor

neurons. They build on prior claims that individual premotor neu-

rons contact motoneurons in different cranial nuclei and within

the spinal cord (Li et al., 1993; Stanek et al., 2014; Yoshida

et al., 1994).

A final point concerns the range of input from orofacial MCtx to

SpVOandSpVIr.We used a retrograde lentivirus-Cit (Figure S6A)

to label cortical neurons that projected to either dorsal SpVO

(Figure S6B, top) or ventral SpVIr (Figure S6B, bottom panel). A

three-dimensional reconstruction (Figure S6D) shows that for

each viral injection in either dorsal SpVO or ventral SpVIr, neu-

rons in MCtx were identified from the rostral pole to bregma

and the entire mediolateral extent of AGm and AGl cortex (Fig-

ure S6D). Similar results were found in all retrogradely labeled

animals (11 mice contributed to the Supplemental Information).

In addition, labeling from both dorsal SpVO and ventral SpVIr

was seen across primary sensory somatosensory cortex

(Figure S6D).

Density Analysis of Motor Cortex Inputs
The density of axonal boutons from MCtx to premotor regions is

roughly constant for injection sites across MCtx (Alloway et al.,

2010; Jeong et al., 2016). Yet the distribution of inputs within

the trigeminal subnuclei has not been quantified (Alloway et al.,

2010). To form such amap, we first injected an anterograde lenti-

virus-synaptophysin-GFP virus that specifically labels pre-

synaptic endings (Figures 5A–5C) in three locations across the

mediolateral axis of MCtx (Figure 5D; three mice). The distribu-

tion of boutons was reconstructed in three dimensions and

then projected in the sagittal plane (Figure 5E). The medial injec-

tions projected most densely to ventral SpVO and SpVIr (Fig-

ure 5F). As the injections progressed toward the AGl cortex,

the density shifted to the dorsal region of SpVO and SpVIr (Fig-

ures 5E and 5F). This distinction in density suggests that the

MCtx differentially targets the dorsal, jaw sensory region, and

the ventral, vibrissa and nose sensory region of SpVO and SpVIr

depending on the mediolateral location in MCtx, further support-

ing the medial-exploratory and lateral-feeding division sug-

gested from Figures 1, 2, and 3.

The caudal part of the AGmcortex is known to be innervated by

primary visual and somatosensory cortices (Barthas and Kwan,

2017; Hoffer et al., 2003; Wang and Burkhalter, 2007), whereas

the more rostral region is innervated by the auditory cortex (Do-

noghue and Parham, 1983; Reep et al., 1987). We next tested if

there was a bias in the density of projections from these different
motor nucleus (left) and of collateral axons and terminals in the trigeminalmotor

lack of labeling in the region of motor neurons in the nucleus ambiguus (middle)
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(F) Overlaid histograms of dorsal-ventral density in PrV through SpVIc for injections in AGm and AGl; scaling information shown below.
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white outlines of MCtx injection, SpVO, SpVIr, the facial motor nucleus, and the pontine nucleus (D–F) for areas used for density calculation.

(D) Large view of MCtx injection site described in (A) with white outline used for density calculation.

(E) Retrograde injection into SpVO shown with collaterals found in SpVIr (E1), the medullary reticular formation (E1), and the cervical spinal cord (E2). White
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(F) Collaterals of SpVO-projecting MCtx neurons in the pontine nucleus (F1), the alpha part of the gigantocellular reticular formation (F2), the lateral para-

gigantocellular reticular formation (F2), and the facial motor nucleus (F3).
parts of AGm through a series of injections on the rostral-caudal

axis (Figure 5G; one of the three original plus five additional

mice). Here we found that injections into rostral AGm projected

most densely to SpVIr, and, as the injections were more caudal,
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the projections shift toward SpVO (Figures 5H–5J). This finding is

further confirmed by examining the rostral-caudal terminal den-

sity from the medial-lateral MCtx injections (Figures 5D–5F); all

injections were made at approximately the same rostral-caudal



coordinates.We find that all the resulting terminal densities in the

trigeminus have their major peak in the same approximate

rostral-caudal location in SpVIr (Figure S6E).

In toto, we observe two distinct gradients formed from MCtx

inputs to SpVO and SpVIr. Medial-lateral injections shift the in-

puts ventro-laterally (Figure 5F), while rostral-caudal injections

shift the inputs caudal-rostrally (Figures 5I and 5J). These data

suggest that although MCtx projects broadly to these nuclei,

one mechanism of movement specialization could be deter-

mined by gradients of cortical inputs.

Motor cortex corticofugal neurons are known to have broad

axonal collateralization across the brainstem (Economo et al.,

2018; Kita and Kita, 2012). As such, we asked if SpVO and SpVIr

receive collaterals from the same neurons inMCtx. We injected a

Cre-dependent AAV into MCtx and a retrograde AAV-Cre into

SpVO (Figure 6A). We observed boutons in SpVIr (Figures 6B

and 6C) in all animals (eight mice, five from vibrissa MCtx

[AP +1.5, ML 1.5] and three from jaw MCtx [AP +3.0, ML 2.0]).

This shows that the same corticobulbar cell projects to two

distinct regions of the spinal trigeminal nucleus, although likely

not with the same density (Figure 5).

Given that the distinction between the SpVO and SpVIr premo-

tor clusters concerns their projections to jaw motoneurons, we

analyzed the projections from MCtx neurons that were located

where rhythmic jaw movements were consistently observed

(AP +3.0, ML 2.0; Figure 3B). We determined the density of

collateral inputs to both SpVO and SpVIr premotor neuron

populations as well as local collaterals within MCtx (Figures 6B

and 6C). We labeled pyramidal neurons in MCtx by the intersec-

tion of a Cre-dependent AAV injected into MCtx and retrograde

AAV-Cre into SpVO (Figure 6A); pre-synaptic terminals were

labeled with mRuby and expressed somatic GFP (Figures 6B–

6F and S7A–S7E). Distinct brainstem collateral projections

were observed in the pontine nucleus, superior colliculus, peria-

queductal gray, spinal cord, and reticular formation, that is,

parvicellular reticular formation (PcRt), intermediate reticular for-

mation (IRt), gigantocellular reticular formation (GiRt), the alpha

part of the gigantocellular reticular formation (GiA), the lateral

paragigantocellularis (LPGi), and midbrain reticular formation

(Figures 6E, 6F, and S7C–S7E). Fibers were seen consistently

in the VM and CM thalamic nuclei (Figure S7B), and sparse fibers

were seen in primary somatosensory cortex (Figure S7B) and the

facial motor nucleus (Figure 6F). To quantify the strength of the

relative projections, we counted the number of boutons formed

by axon collaterals of SpVO-projecting MCtx neurons in a known

dense target (i.e., the pontine nucleus), a knownweak target (i.e.,

the facial motor nucleus) (Grinevich et al., 2005), the retrograde

injection site SpVO, SpVIr, and within the anterograde injection

site in MCtx (Figures 6D–6F). The density was estimated on the

basis of labeled outlines forMCtx, SpVO, SpVIr, pontine nucleus,

and facial motor nucleus (Figures 6D–6F). We confirm a strong

collateral projection to the pontine nucleus, with 7 times the

density seen in MCtx, and a weak collateral to the facial motor

nucleus, with 0.2 times of MCtx (Alloway et al., 2010; Grinevich

et al., 2005; Kita andKita, 2012) (Figure 6C).With regard to collat-

eral activation of neighboring cortical neurons near the injection

site in MCtx, we found that the density of boutons is 4 times

higher in SpVO than within MCtx (Figure 6C).
Taken together, the data from our anatomical studies (Figures

4, 5, and 6) confirm that SpVO and SpVIr are both premotor and

receive input from MCtx. The patterns of connectivity are found

as gradients of inputs from cortex to the trigeminal nuclei along

two directions (Figure 5J) and both SpVO and SpVIr receive col-

laterals from the same corticobulbar neurons (Figures 6C and

6E). Notably, both theMCtx neurons that project to the trigeminal

complex (Figure 6) and the premotor neurons from SpV to the

facial motor nucleus (Figures 4F–4I) have many collaterals that

project to arrays of motor nuclei. This creates a parallel set of

connections that may be co-activated by cortical neurons.

Optogenetic Activation of SpVO- and SpVIr-Projecting
MCtx Neurons
We now address how an isolated corticobulbar pathway con-

tributes to coordination of motor actions. We used a transec-

tional virus strategy to label SpVO- or SpVIr-projecting MCtx

neurons with a red-shifted channelrhodopsin (Lin et al., 2013).

We then tested if stimulation of SpVO- and SpVIr-projecting

MCtx neurons activated distinct sets of muscles, consistent

with their respective, distinct populations of premotor neurons

(Figure 4E). AAV retro-Cre was injected into either SpVO or SpVIr

(Figures 7A, 7B, S7F, and S7G), while AAV-flex-ReaChR-Cit was

injected into two cortical locations (Figure 7C), one that in Thy1-

ChR2 mice evoked rhythmic jaw movements and a second in

vibrissa MCtx (Figure 2J). After the viruses expressed, mice

were head-fixed, and a scanning laser system was used to

selectively stimulate a discrete region within each injection site

in MCtx with a 10 Hz, 10 s long train of pulses of red light (Figures

7A–7C). We concurrently recorded EMGs from the biceps bra-

chii, digastric, intrinsic vibrissa, masseter, and splenius capitis

muscles and observed robust single-trial responses (Figures

7A and 7D).

Prolonged, localized stimulation of cortex in mice with labeled

SpVO-projecting MCtx neurons led to concurrent activation of

the biceps brachii, digastric, intrinsic vibrissa, and masseter

muscles (Figures 7E and 7F). Averaged across animals (three

mice), there was statistically equal activation across all muscle

groups for stimulation at a given site (p > 0.1, ANOVA) (Figure 7G;

colors indicate significant responses from baseline, while gray

indicates insignificant responses).

In contrast to the result for SpVO-projecting MCtx neurons,

stimulating SpVIr-projecting MCtx neurons reliably activated

only the biceps brachii and intrinsic vibrissa muscles (Figures

7H and 7I). Critically, there was a significant and notable lack

of evoked activity in either jaw muscle, a result that held across

all animals (threemice) and fromboth stimulus sites (Figure 7J). A

final point is that SpVO-projecting MCtx neurons from the

‘‘vibrissa’’ site evoked larger amplitude movements than from

the ‘‘jaw’’ site (Figure 7G), while SpVIr-projecting MCtx neurons

in the ‘‘jaw’’ site evoked larger movements than from the

‘‘vibrissa’’ site (Figure 7J). This is consistent with the result that

SpVO receives a denser cortical input frommore caudalMCtx lo-

cations and SpVIr receives a denser cortical input from more

rostral MCtx locations (Figure 5J).

The reduced expression of channelrhodopsin with viral label-

ing versus expression in Thy1-ChR2 mice necessitated the use

of prolonged stimulation. Rhythmic and ballistic movements
Neuron 104, 765–780, November 20, 2019 775
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Figure 7. SpVO- and SpVIr-Projecting Motor Cortex Neurons Drive Different Networks that Activate Muscles Reflecting Their Respective

Premotor Clusters

(A) Schematic illustrating the injection scheme as well as the later used red laser and recorded EMGs in the bicep brachii, digastric, intrinsic vibrissa, masseter,

and splenius capitis muscles.

(B) Axon terminals in SpVIr, an example of a retrograde AAV-Cre injection site.

(C) Schematic of injection site and corresponding laser size (left). Cortex injection ‘‘jaw’’ site coordinates: bregma + 3.0, 2.0 lateral. Cortex injection ‘‘vibrissa’’ site

coordinates: bregma + 1.5, 1.5 lateral. Virus-labeled pyramidal neurons from a jaw MCtx and a vibrissa MCtx injection (middle and right, respectively).

(D) Envelopes of the EMG signal for the biceps brachii, digastric, intrinsic vibrissa, masseter, and splenius capitis muscles for a single trial. Note that the intertrial

interval was 50 s.

(E–G) Activation of EMGs using AAV retro-Cre targeted to the SpVO premotor cluster (E). Stimulus-triggered averages and standard deviations from stimulation

the MCtx ‘‘jaw’’ site (F) and averages across mice (G) from jaw MCtx (left) and vibrissa MCtx (right) (10–20 measurements per muscle per cortex location across

three mice). Gray traces in (F) or symbols in (G) show insignificant responses (p < 0.05, Student’s t test).

(H–J) Activation of EMGs using AAV retro-Cre targeted to the SpVIr premotor cluster (H). Stimulus-triggered averages and standard deviations from stimulation of

the MCtx ‘‘jaw’’ site (I) and averages across mice (J) from jaw MCtx (left) and vibrissa MCtx (right); 10–20 measurements per muscle per cortex location across

three mice.
have been shown to be continuously evoked throughout a

cortical stimulation for durations up to 10 s (Graziano and Aflalo,

2007; Huang et al., 1989; Isogai et al., 2012; Lund et al., 1984).

Nonetheless, we compared the response for blue light with

Thy1-ChR2 animals versus red light with virus-expressed

ReaChR animals using 10 s stimuli at the same stimulation loca-
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tion in MCtx (Figure S7H). Qualitatively similar EMG responses

are seen for the vibrissa intrinsic and digastric muscles, with the

exception that stimulation of SpVIr-projecting MCtx neurons do

not drive the digastric muscle (Figure 7J).

These stimulation data, in combination with the mapping data

of trigeminal subnuclei to different motoneurons pools (Figures
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Figure 8. Model and Summary

(A) Model summarizing the activation with the

anatomical data from Figures 5, 6, and 7. There are

two distinct premotor clusters, one in SpVO and

another in SpVIr. When activating cortical projec-

tion neurons targeting either SpVO or SpVIr, re-

sulting muscle activation reflects the premotor

neurons in the targeted cluster.

(B) Summary of published data, as well as data

from this manuscript, on the connectivity from

premotor areas, including peripheral (Bereiter

et al., 2000; Capra andDessem, 1992; Furuta et al.,

2006; Ren and Dubner, 2011; Sabino et al., 2002;

Sakurai et al., 2013; Yoshida et al., 1994) and

cortical (Smith et al., 2015; Sreenivasan et al.,

2015) areas, through all trigeminal premotor areas

to distinct motor neurons (Borke et al., 1983;

Erzurumlu and Killackey, 1979; Esposito et al.,

2014; Kurnikova et al., 2019a; Li et al., 1995; May

et al., 2012; Pinganaud et al., 1999; Stanek et al.,

2014; Takatoh et al., 2013; van Ham and Yeo,

1996). See tab for Figure 8B in Table S2 for a link of

publications to specific pathways.
4E and 4H), highlight that motor control is in part set by premotor

neurons and not strictly by neurons in MCtx (Figure 8A). Taken

altogether, our data show that MCtx corticobulbar pathways

have specific contacts at the premotor level with premotor neu-

rons in control of certain aspects of movement and thus coordi-

nation of orofacial movements is controlled at the premotor level

as well as the MCtx (Figures 8A and 8B).

DISCUSSION

We observed that ethologically relevant movements were tiled

across orofacial MCtx (Figures 1, 2, and 3). The combined results

from anatomical (Figures 4, 5, and 6) and cortical activation (Fig-

ure 7) studies support the presence of two distinct circuits that

originate from the same locations in cortex and act, in part,

through identified clusters of premotor neurons in trigeminal

subnuclei SpVO and SpVIr. Activation of either pathway drove

the forelimb and vibrissa muscles (Figures 7E–7J), while jaw

movements occurred only from activation of SpVO-projecting

MCtx neurons (Figures 7E–7G). These different patterns occur

even though both SpVO and SpVIr receive collateral input from

the sameMCtx neurons (Figures 6C and 6E). We thus conjecture

that neighboring corticobulbar projections neurons from MCtx

form synapses on specific subsets of neurons in each trigeminal

target. These feedforward circuits then drive specific combina-
Neu
tions of motor actions that involve the

forelimb, head, jaw, and vibrissa (Figures

3G and 8A).

The corticobulbar inputs to the trigemi-

nus are broadly distributed in the form of

spatial gradients (Figure 5). The data on

projections from localized regions in

MCtx to the trigeminus (Figure 5) reveal

a newfound organization of the cortical

activation of trigeminal premotor nuclei.
When we activated one of two distinct locations in MCtx

that selectively targets SpVO versus SpVIr (Figure 7), the

strength of the evoked amplitudes of muscle activity reflects

the gradients of input; that is, larger amplitude responses

occurred for regions of denser corticobulbar connections (Fig-

ures 5J, 7G, and 7J).

One caveat to this study is the reliance on viral methods.

Although viruses show very clear labeling of axons and can be

used to encode opsins, they, like traditional tracers, can spread

beyond the intended injection target. As such, we purposely

show injection sites for example data and include measures of

the spread of the injected virus (Figures S5A and S7F). Further-

more, electrophysiological recording was used to identify these

target structures for injections. For anterograde injections into

SpVO (Figures 4G and S5A), all neurons were identified to be

within SpVO. For retrograde injection sites into SpVO and SpVIr

(Figures 6A and 6E), it was difficult to identify the spread, as there

are collateral axons in many of the neighboring structures. It is

possible that some spill occurred, most likely into the PcRt, as

the spinal trigeminal nucleus is most narrow in the medial-lateral

dimension.

Altogether, our data highlight the distributed nature of the

coordination of motor actions into behaviors along both the

MCtx to trigeminus projections and the trigeminus to moto-

neuron projections (Figure 8A). Although we focused on two
ron 104, 765–780, November 20, 2019 777



subpathways from MCtx, we also confirmed the previously

reported existence of broad collateralization (Figure 6). It is

important to note that all the stimulation experiments (Figure 7)

were simultaneously activating the trigeminal nucleus targeted

with the AAV-retro Cre (i.e., SpVO or SpVIr), as well as the collat-

eral targets of those corticobulbar neurons (Figure 6). Further-

more, the complexity of activation continued as the premotor

neurons acted on all their collaterals (Figures 4G and 4H).

Notably however, in both the stimulation of the Thy1-ChR2

mice (Figures 1, 2, and 3) and virus-encoded ReaChR mice (Fig-

ure 7), the activity patterns were consistent across short (i.e., 1 s)

versus long (i.e., 10 s) stimulation (Figures 2 and 7). This result

indicates that corticobulbar neurons engage entire networks

and that multiple corticobulbar and corticospinal networks

work together to piece different movements into behaviors.

One feature of the trigeminus is the convergence of peripheral

sensory input, including input related to self-motion of the sen-

sors (Nguyen and Kleinfeld, 2005; Bellavance et al., 2017) as

well as nociception (Capra and Dessem, 1992; Sabino et al.,

2002), with input from higher order cortical centers (Kleinfeld

et al., 1999; Bosman et al., 2011; McElvain et al., 2018). This in-

cludes input from MCtx along with primary and secondary

somatosensory cortices (Smith et al., 2015; Sreenivasan et al.,

2015) to premotor neurons (Figure 8B). Although rodent MCtx

targets many premotor nuclei, the trigeminal complex is unique

in receiving an abundance of somatosensory information in

addition to motor information. The pattern of connectivity from

premotor neurons in the trigeminal complex to muscle groups

that span different motor nuclei has the form of a highly divergent

feedforward network. Going forward, the more far reaching goal

would be to identify the specific role of different collaterals from

corticobulbar and corticospinal neurons. Conditional expression

of Cre transsynaptic from neurons in MCtx, a potential emerging

technology (Lo and Anderson, 2011), should enable us to parse

these connections. At the intersection of motor and sensory, the

trigeminal nuclei have the potential to be an ideal location to

begin this process (Figure 8B).
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Celine Matéo, Lauren McElvain, and Fan Wang for discussions; Grégory

Scherrer for the use of reagents; Agnieszka Brzozowska-Prechtl for assistance

with histology; and Beth Friedman for assistance with the manuscript. This

work was supported by NIH grants NS058668, NS0905905, and NS097265.

The Neuroscience Microscopy Imaging Center was supported by NIH grant

NS047101 and gift funds through the University of California (UC), San Diego,

School of Medicine.

AUTHOR CONTRIBUTIONS

H.J.K., P.M.K., D.K., and N.M.L. planned the experiments. D.G. and A.F.L. pre-

pared viral reagents. P.M.K. and D.K. designed the apparatus. P.M.K. wrote

the acquisition software. N.M.L. performed all experiments and data analysis.

D.K. and N.M.L. prepared figures and wrote the manuscript. D.K. attended to

the myriad university rules and forms that govern environmental health and

safety, including the ethical use of animals, as well as the use of chemicals,

controlled substances, hazardous substances, lasers, and viruses.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 4, 2019

Revised: July 7, 2019

Accepted: August 19, 2019

Published: October 3, 2019

REFERENCES

Alloway, K.D., Smith, J.B., and Beauchemin, K.J. (2010). Quantitative analysis

of the bilateral brainstem projections from the whisker and forepaw regions in

rat primary motor cortex. J. Comp. Neurol. 518, 4546–4566.

Amri, M., Car, A., and Roman, C. (1990). Axonal branching of medullary

swallowing neurons projecting on the trigeminal and hypoglossal motor nuclei:

demonstration by electrophysiological and fluorescent double labeling tech-

niques. Exp. Brain Res. 81, 384–390.

Amundsen Huffmaster, S.L., Van Acker, G.M., 3rd, Luchies, C.W., and

Cheney, P.D. (2017). Muscle synergies obtained from comprehensive map-

ping of the primarymotor cortex forelimb representation using high-frequency,

long-duration ICMS. J. Neurophysiol. 118, 455–470.

Arenkiel, B.R., Peca, J., Davison, I.G., Feliciano, C., Deisseroth, K., Augustine,

G.J., Ehlers, M.D., and Feng, G. (2007). In vivo light-induced activation of neu-

ral circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54,

205–218.

Barthas, F., and Kwan, A.C. (2017). Secondary motor cortex: where ‘sensory’

meets ‘motor’ in the rodent rrontal cortex. Trends Neurosci. 40, 181–193.

Bellavance, M.-A., Takatoh, J., Lu, J., Demers, M., Kleinfeld, D., Wang, F., and
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti GFP (made in goat) Novus NB600-308, RRID: AB_1048879

Biotinylated anti rabbit IgG (made in goat) Vector BA-1000, RRID: AB_2336201

Goat anti rabbit conjugated with Alexa 488 Invitrogen A-11034, RRID: AB_221544

DAB tetrahydrochloride Sigma D5637-5G

Cytochrome C Sigma C-2506

Bacterial and viral strains

Pseudorabies-GFP (strain 152) Enquist lab N/A

Lentivirus-CAG-synaptophysin-eGFP Adrian Lozada N/A

Retrograde lentivirus-hsyn-Cit Daniel Gibbs N/A

AAV2.5-hsyn-flex-Cit John Lin (Lin et al., 2013) N/A

AAV2.5-hsyn-flex-ReaChR-Cit Salk Virus Core Special preparation

AAV retro-hsyn-Cre UPenn Virus Core Special preparation

AAV-DJ-hsyn-flex-mGFP-2a-mRuby Stanford Virus Core GVVC-AAV-100

Retrograde lentivirus-hsyn-Cre Fan Wang N/A

Deposited data

Raw data This paper N/A

Experimental models: Organisms/strains

Mouse: C57BL/6J Jackson Laboratories #000664, RRID: MGI:5657312

Thy1-ChR2-YFP alias B6.Cg-Tg(Thy1-COP4/EYFP)

18Gfng/J

Jackson Laboratories (Arenkiel

et al., 2007; Wang et al., 2007)

#007612, RRID: IMSR_JAX:007615

Software and algorithms

MATLAB Mathworks 2007b to 2017b

Chronux Chronux.org http://chronux.org

FIJI NIH http://imagej.net/Fiji
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed and will be fulfilled by the Lead Contact, David

Kleinfeld (dk@physics.ucsd.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
50 female C57BL/6mice and 5 female Thy1-ChR2mice (JAX strain B6.Cg-Tg (Thy1-COP4/EYFP)18Gfn/J) (Arenkiel et al., 2007) age 5

- 18 weeks contributed to this study. All experimental procedures followed the Guide for the Care and Use of Laboratory Animals and

has been approved by the Institutional Animal Care and Use Committee at the University of California, San Diego.

METHOD DETAILS

Muscle Injections
Nine C57BL/6 mice were anesthetized in a box with 2% (v/v) isoflurane with oxygen until they did not respond to a toe pinch. A single

injection of 500 nL of pseudorabies was injected into either the whisker pad, the anterior belly of the digastric muscle, or the biceps

brachii muscle. 75 to 80 h later the mice were deeply anesthetized with pentobarbitol before being transcardially perfused with a

0.01 mM phosphate buffered salt solution (PBS) followed by 4% (w/v) paraformaldehyde in PBS.
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Brain Injections
Each animal was anesthetized with 2% (v/v) isoflurane with oxygen until they did not respond to a toe pinch. Body temperature was

maintained at 37�C (no. 40-90-8; FHC Inc.) and isoflurane decreased to 1.5% (v/v) once placed in the stereotaxic frame (Kopf). The fur

above the skull was cleanedwith betadine before being cut to open access to the skull. Small holes were drilled over themotor cortex

and/or the spinal trigeminal nucleus (EXL-M40, Osada, CA, USA). Injections were made using a Nanojet (Drummond). Anterior-

posterior (AP) and medial-lateral (ML) coordinates are relative to Bregma, while dorsal-ventral coordinates are relative to the surface

of the brain, as follows: jawmotor cortex = AP +3mm,ML 2mm, DV 0.8 mm; dorsal SpVO = AP –5.4 mm,ML 2.0mm lateral, DV 3.9 -

4.1 mm; SpVIr = AP –5.7 mm, ML 2.0 mm, DV 4.2-4.5 mm; facial nucleus = AP –5.0 mm, ML 1.5 mm, DV 6.0 mm. Coordinates for

SpVO and SpVIr were confirmed by electrophysiology recordings probing somatosensory responses prior to injecting. Coordinates

for the facial nucleus were determined from intercranial microstimulation. For virus details, see Table S1.

Headbar Placement
Six C57BL/6 mice and nine Thy1-ChR2 mice were anesthetized and placed in a stereotaxic apparatus as described above. The fur

over the skin was cleaned with betadine before a straight anterior posterior cut was opened from the nasal to the intraparietal bone. A

4 mm diameter cranial window was made over the frontal bone with a centroid over the spot AP +2 mm, ML 2 mm. A thin layer of

ACSF was applied before a 4 mm diameter glass coverslip (Fisher Brand) was gently placed over the brain surface. A small amount

of cyanoacrylate glue was used to seal the bone to the glass. Once the glue was dry, the remaining exposed skull was cleaned and

layered with cyanoacrylate glue. Once dry, a metal headbar was attached to the skull via cyanoacrylate glue. Last, a layer of dental

cement covered the headbar and skull.

Optogenetic Stimulation Experiments
The scan maps and specific positions of the laser were made using a scan system of Murphy and colleagues (Lim et al., 2012) (Fig-

ure 1A). Either a blue 446 nm laser (Cube; Coherent Inc.) or a red 637 nm laser (Obis; Coherent Inc.) was scanned. The scan objective,

effective NA of 0.01, was used to create a focal spot of 35 mm in diameter

Electrodes for EMGs were made of 50 mm diameter insulated tungsten wire (AM systems 795500). The tip of the wire for recording

was stripped 1mm before threaded through a 30-gauge needle and hooked. EMGs were inserted at the beginning of each recording

session while the mice were under light (0.5–1.0%) isoflurane. Two EMGs electrodes were inserted in each muscle, i.e., biceps bra-

chii, digastric, intrinsic vibrissa, masseter, quadriceps, or splenius capitis. Three to five muscles were recorded per session. EMG

recordings were taken using individual amplifiers for each muscle (DAM 80, World Precision Instruments) at 10 kHz. The raw signals

were processed for extraction of the EMGenvelope by using an 8th order Butterworth filter between 250 Hz and 2.5 kHz in the forward

and reverse direction, then rectified by taking the absolute value, followed by a low pass 2nd-order Butterworth filter at 50 Hz in the

forward and reverse directions. Last, a median filter was applied.

Videography were used to track the forelimb, jaw, nose, and vibrissae. Nose and vibrissa videographs were taken from above. The

forelimb and jaw utilized two mirrors, one in front and one to the side, that reflected the front image of the mouse up to the camera

above. A high speed, 1000 by 1000-pixel camera was used with a frame rate of 200 frames per second (no. A504K; Basler Vision

Technologies). For vibrissa tracking, one vibrissa was painted (Tulip dimensional fabric paint, 65101) for light contrast imaging

with a mask for live tracking. For nose and jaw tracking, a dot of paint was placed on the top of the nose or the center bottom of

the jaw. Forelimb tracking focused bright light on the paws.

Histology
After perfusion, brains were left in 4% (w/v) paraformaldehyde in PBS between 4 and 24 h and then cryoprotected in 30% (w/v)

sucrose in PBS. Sections were collected on a sliding microtome maintained between�21 and�24�C. For synapse reconstructions,

sections were cut horizontally at 16 mmandmounted on slides prior to immunostaining. For cell reconstructions, sections were cut at

60 mm and every other section was immunostained free floating. The synapse and cell labeling was converted to dark product using

rabbit anti GFP (Novus; 1:1000 (v/v) in a 2% (v/v) goat block solution in PBS), biotinylated anti-rabbit secondary antibodies (1:200 (v/v)

in goat block), amplified with ABC kit (Vector Labs) and converted to dark product with the SG kit (Vector Labs). Slides were

processed with increasing ethanol concentrations, followed by xylines, before being coverslipped with DPX (Sigma). All slides

with dark product were counterstained with cytochrome oxidase. Slides or free-floating sections were incubated in cytochrome

oxidase (37.5 mL PBS + 1.5 g sucrose + 33 mg DAB tetrahydrochloride (Sigma D5637-5G) + 15 mg cytochrome C (Sigma

C-2506)) and maintained at 37�C for 1 - 3 h. All slides were scanned on a Hammamatsu Nanozoomer and loaded into Neurolucida

and then MATLAB for three-dimensional reconstruction. Fluorescent sections were cut between 30 and 50 mm. Citrine containing

sections were amplified with rabbit anti GFP (Novus; 1:1000 in goat block) and Alexa 488 conjugated goat anti rabbit (Invitrogen;

1:1000 (v/v) in goat block) and coverslipped with Fluoromount (Southern Biotech). 16-bit images were collected on a fluorescent

microscope and analyzed in ImageJ.

Computational Analyses
All code was written in MATLAB (The Mathworks). For the spectral analysis we used the Chronux package (Mitra and Bokil, 2008).

Composite maps in Figure 2F were created by taking the average amplitude within the trial, then averaging all trials at a given location
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across all animals (20 trials in each of five mice) and interpolating linearly between locations. Clusters identified in Figure 4E were

found using a 2-D density plot of data in Figure 4D.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Tests
Statistical tests are identified in the Results section. To identify if EMG signals were significantly different from baseline in Figure 1

we used a K-S test with p < 0.001. To compare normalized muscle activation across muscles in Figure 7 we used an ANOVA test

with p > 0.1. To compare activation of muscle EMG from baseline in Figure 7 we used a Student’s t test with p < 0.05. In Figures

7F, 7G, 7I, and 7J, greyed out traces and graph markers indicate that the result was not significant. All activation analysis used all

data taken during the stimulus period and compared it with an equal period of time during the baseline period.

Quantification
All quantification of synapses and neurons in Neurolucida or FIJI. For 3-D reconstructions in Figures 4, 5, and S5, Neurolucida was

used to both count and identify coordinate location of each synapse or neuron. To create sagittal projections and histograms in Fig-

ures 5 and S5, Neurolucida data were exported to MATLAB. For density quantification in Figure 4E, neurons were counted within the

peak density region of the 2-D histogram as described in the figure legend. For density quantification for Figures 4J and 6C, 5–8 sec-

tions were taken at even intervals through a structure. An area outline was created around the structure in FIJI based on histological

markers except for motor cortex in which the outline was create around the injection site as marked by the presence of neurons and

their prominent dendrites (white outlines in Figures 4, 6, and S6). All presynaptic terminals were identified by co-labeling of mRuby

and GFPwithin the white outlines. Volume of a structure in one image was calculated bymultiplying the area of the structure, as iden-

tified by the white outline, by the thickness of the section. For each section, the number of synapses were divided by the volume and

final density was calculated by averaging across sections (Table S2).

DATA AND CODE AVAILABILITY

The datasets generated during this study are available in Table S2.
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