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SUMMARY
The microvasculature underlies the supply networks that support neuronal activity within heterogeneous
brain regions. What are common versus heterogeneous aspects of the connectivity, density, and orientation
of capillary networks? To address this, we imaged, reconstructed, and analyzed the microvasculature con-
nectome in whole adult mice brains with sub-micrometer resolution. Graph analysis revealed common
network topology across the brain that leads to a shared structural robustness against the rarefaction of ves-
sels. Geometrical analysis, based on anatomically accurate reconstructions, uncovered a scaling law that
links length density, i.e., the length of vessel per volume, with tissue-to-vessel distances. We then derive a
formula that connects regional differences in metabolism to differences in length density and, further, pre-
dicts a common value of maximum tissue oxygen tension across the brain. Last, the orientation of capillaries
is weakly anisotropic with the exception of a few strongly anisotropic regions; this variation can impact the
interpretation of fMRI data.
INTRODUCTION

Neuronal computations in the brain require a large and relatively

continuous source of energy (Dienel, 2019). Glucose, oxygen,

and other substrates and signaling molecules are transported

by an extensive system of blood vessels that course throughout

the brain (Mchedlishvili, 1986; Shih et al., 2015). The flow of blood

is modulated by a multiplicity of neuronal and vascular mecha-

nisms (Attwell et al., 2010; Iadecola, 2004; Kleinfeld et al., 2011),

yet the modulation of flow is modest in the healthy brain. Flow in-

creases by nomore than a third of its baseline level upon sensory

stimulation (Drew et al., 2010; Lee et al., 2001), albeit greater in-

creases can occur during sleep (Bergel et al., 2018; Turner et al.,

2020). The connection between vascular architecture and sys-

tem-level brain energetics (Craigie, 1920), as well as the interpre-

tation of fMRI (Di et al., 2013), is a long-standing question (Attwell

and Laughlin, 2001). Here we focus on the reconstruction and

analysis ofmicrovascular networks, as these are the primary sites

of exchange of energy substrates in the brain.

Past work provided complete reconstructions of vasculature

with anatomically correct geometry for selected regions of hu-

man (Cassot et al., 2006), mouse (Blinder et al., 2013; Reichold

et al., 2009), and marmoset (Guibert et al., 2012) neocortex.
These data provided a means to estimate cortical blood flow

(Blinder et al., 2013; Gould et al., 2017; Schmid et al., 2017)

and ascertain the relation between vascular and neuronal den-

sity (Blinder et al., 2013; Guibert et al., 2012; Schmid et al.,

2019; Tsai et al., 2009). More recent studies have completed

brain-wide imaging of the vasculature (Kirst et al., 2020; Todorov

et al., 2020; Xiong et al., 2017). These and some earlier studies

(Boero et al., 1999; Craigie, 1920) have revealed variations in

the density of vessels across different brain areas (Table 1) and

have highlighted the effect of large-scale insults, such as stroke

on vascular remodeling (Kirst et al., 2020). While highly informa-

tive, current reconstructions do not provide full connectivity

among the vessels across brain region nor proper capillary radii;

this precludes topological and geometrical analysis.

’’Exact’’ reconstruction of the vasculature is fraught with chal-

lenges. As a matter of sample preparation, all vessels must be

fully labeled down to the finest capillaries. Morphological

changes from fixation and embedding must be minimized and

quantified. As a matter of microscopy, the entire brain needs to

be imaged at sub-micrometer resolution for accurate assess-

ment of capillary radii. In particular, estimates of flow dynamics

require knowledge of capillary radii at the sub-micrometer scale

in light of the steep dependence of flow resistance to vessel
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Table 1. Comparison with related works

This study

Kirst et al.,

2020

Todorov et al.,

2020

Xiong et al.,

2017

Wu et al.,

2014

Blinder et al.,

2013

Tsai et al.,

2009

Boero et al.,

1999

Craigie,

1920

Data

acquisition

Imaging serial two-photon

microscopy

lightsheet on

hemisphere

lightsheet on

whole brain

MOST MOST serial two-

photon

microscopy

serial two-

photon

microscopy

sections sections

Voxel size

(mm3)

0.30 3

0.30 3 1.0

1.6 3

1.6 3 1.6

1.6 3

1.6 3 3.0

0.35 3

0.35 3 1.0

0.35 3

0.40 3 1.0

1.0 3

1.0 3 1.0

1.0 3

1.0 3 1.0

– –

Labeling lumen perfusion

(FITC)

Acta 2, CD31,

podocalyxin

Evans blue,

wheat germ

agglutinin

modified

Nissl

staining

modified

Nissl

staining

lumen

perfusion

(FITC)

lumen

perfusion

(FITC)

Nissl staining,

silver emulsion

lumen

perfusion

(carmin

gelatin)

Clearing index

matching

iDISCO+ 3DISCO – – – Triton X-100

plus sucrose

– –

Sample size whole brain hemisphere whole brain whole brain whole brain vibrissa

cortex

vibrissa cortex – –

In vivo / in vitro

comparison

yes – – – yes – yes – –

Reconstruction Segmentation

resolution (mm)

1.0 1.6 3.0 0.35 0.35 1.0 1.0 – –

Radius estimation

resolution (mm)

0.25 1.6 3 0.35 0.35 1.0 1.0 – –

Reconstruction

scale

whole brain hemisphere whole brain selected

regions

selected

regions

vibrissa cortex vibrissa cortex – –

Spatial graph

representation

whole brain hemisphere – – – vibrissa cortex – – –

Graph refinement classifier based end-point tracing – – – classifier based – – –

Whole brain

statistics

Number of

nodes (N)

4,132,583 3,200,000 – – – – – – –

Number of

branches (B)

6,320,303 4,400,000 – – – – – – –

Average (B/N) 1.53 1.38 – – – – – – –

Number of

branches in

largest

component

6,238,701 – – – – – – – –

Brain volume (mm3) 443 1,000 424 – 402 – – – –

Total length per

brain (m)

384 288 – – – – – – –

Average length

density (m/mm3)

0.867 0.288 0.546 – – – – – –

Average vessel

radius (mm)

2.7 4 8 – – – – – –

(Continued on next page)
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Table 1. Continued

This study

Kirst et al.,

2020

Todorov et al.,

2020

Xiong et al.,

2017

Wu et al.,

2014

Blinder et al.,

2013

Tsai et al.,

2009

Boero et al.,

1999

Craigie,

1920

Regional

vascular

length density,

rLm/mm3)

Vessel Capillary Vessel Vessel Capillary Vessel Vessel Vessel Capillary Vessel

Somatosensory

cortex

1.01 ± 0.02 0.98 ± 0.02 0.41 0.91 ± 0.09 – – – – 1.07 –

Vibrissa cortex 1.00 ± 0.03 0.97 ± 0.03 0.42 0.63 ± 0.09 0.98 0.88 – 0.88 ± 0.17 – –

Auditory cortex 0.95 ± 0.01 0.92 ± 0.01 0.33 0.77 ± 0.14 – – – – 0.86 –

Motor cortex 0.93 ± 0.03 0.91 ± 0.03 0.37 0.74 ± 0.12 – – – – 0.87 –

Visual cortex 0.85 ± 0.02 0.82 ± 0.02 0.33 0.73 ± 0.11 – – – – 0.78 –

Hippocampus 0.71 ± 0.03 0.68 ± 0.02 0.30 – 0.69 – – – – –

Ammon’s horn 0.68 ± 0.02 0.65 ± 0.02 0.32 0.49 ± 0.02 – – – – – –

CA1 0.66 ± 0.03 0.63 ± 0.02 0.33 ± 0.01 – – – – – 0.58 –

CA3 0.71 ± 0.03 0.68 ± 0.03 0.33 ± 0.01 – – – – – 0.56 –

Caudoputamen 0.85 ± 0.03 0.82 ± 0.03 0.41 ± 0.01 0.58 ± 0.06 – – – – 0.49 ± 0.10 –

Thalamus 1.04 ± 0.08 1.00 ± 0.08 0.49 – 0.95 – – – – –

Hypothalamus 0.77 ± 0.03 0.74 ± 0.03 0.38 0.49 ± 0.14 0.66 – – – – –

Brainstem 0.97 ± 0.04 0.93 ± 0.04 0.46 0.47 ± 0.05 – – – – – –

Midbrain 0.97 ± 0.06 0.93 ± 0.05 0.43 0.60 ± 0.04 – – – – – –

Inferior colliculus 1.46 ± 0.04 1.41 ± 0.04 0.71 ± 0.01 0.81 ± 0.08 – – – – – –

Superior

colliculus

0.97 ± 0.06 0.92 ± 0.06 0.42 – 0.88 – – – 0.54 –

Pons 0.97 ± 0.04 0.93 ± 0.03 0.54 0.31 ± 0.06 – – – – – –

Medulla 1.03 ± 0.02 0.98 ± 0.02 0.48 0.36 ± 0.09 – – – – – –

Medial vestibular

nucleus

1.48 ± 0.08 1.41 ± 0.07 0.77 ± 0.02 – – – – – – 1.36 ± 0.04

Dorsal cochlear

nucleus

1.46 ± 0.08 1.39 ± 0.07 0.68 ± 0.03 – – – – – – 1.47 ± 0.04

Superior olive 1.42 ± 0.04 1.37 ± 0.04 0.76 – – – – – – 1.12 ± 0.04

Lateral vestibular

nucleus

1.02 ± 0.19 0.98 ± 0.19 0.58 ± 0.02 – – – – – – 0.93 ± 0.03

Cerebellum 1.10 ± 0.05 1.06 ± 0.04 0.63 0.47 ± 0.05 – – – – 1.20 1.11

Dentate nucleus 1.49 ± 0.12 1.45 ± 0.11 0.78 ± 0.08 – – – – – – 1.27 ± 0.03

For Kirst et al. (2020): (1) brain volume = (3.23 106 nodes per hemisphere3 2)O (average node density 6,400 /mm3) = 1,000mm3; (2) total vessel length per brain = (144 ± 2)m per hemisphere3

2 = (288 ± 4) m; (3) average length density = 288 mO 1,000 mm3 = 0.288 m/mm3; (4) average vessel radius is estimated from their Figures 4G, S3H, and S6C; (5) regional vessel length densities

are from their Figure 4B or by averaging over the included subregions. For Todorov et al. (2020): (1) average vessel radius is estimated from their Figure 5C; (2) regional length densities were

computed from supplemental data for C57BL/6 mice. For Xiong et al. (2017): regional length densities are estimated from their Figure 9E. For Boero et al. (1999) and Craigie (1920): estimated

regional length densities are averages of the included subregions. Error bars represent standard error. ll
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radius (Secomb et al., 1998). With regard to analysis, the topo-

logical and geometrical properties of the whole-brain vascular

network remain to be quantified. An unresolved challenge posed

by past observations (Borowsky and Collins, 1989; Weber et al.,

2008) is to delineate how transport depends on the length of

blood vessel per volume in different brain regions. Determination

of vessel length densities will therefore enable determination of

scaling laws to relate substrate transport to vascular geometry.

Here we ask which aspects of whole brain capillary organiza-

tion are either identical or distinct in different brain regions. (1) Is

the topology of the network, such as how vessels meet and inter-

connect, the same across different brain regions? If so, does this

imply an invariant percolation threshold, i.e., a fraction of vessels

that can be lost before the network fractures into disconnected

regions (Hudetz, 1993)? The answer bears on potential debili-

tating effects from cortical capillaries with stalled blood flow,

which is enhanced in Alzheimer’s disease brains (Cruz Hernán-

dez et al., 2019). (2) How does vascular length density of capil-

laries vary across brain regions? In particular, is there a simple

relation between length density and the distance between loca-

tions in the parenchyma and the nearest vessel? (3) Further, do

region specific variations in vascular length density relate to pub-

lished differences in regional glucose utilization (Hawkins et al.,

1985)? (4) Are there regional variations in the preferred orienta-

tion of capillaries across brain regions (Buxton et al., 2014; Gag-

non et al., 2015; Weber et al., 2008)?

RESULTS

Complete filling of the vasculature is a balance between suffi-

cient pressure to fill all vessels but not rupture vessels. We

used a variant of a past technique (Tsai et al., 2009) to fill vessels

with gelatin and fluorescein-conjugated bovine serum albumin

and then cross-link these constituents to lumen proteins (STAR

methods). As a control, we compared the same volume of

labeled vessels in cortex after perfusion in the living animal (Fig-

ure S1). We found seven partially unfilled short segments among

2,835 vessel segments in 15 volumes across 3 animals; i.e.,

0.998 of all microvessels had no discernable gap and the

0.002 of vessels had a gap of less than 10 mm.

Entire brains (three mice) were then extracted (Figure 1A),

post-fixed, index matched, and imaged at 0.3 3 0.3 3 1 mm3

voxel resolution (Economo et al., 2016). We roughly estimated

the coordinates for the centerlines of small vessels and the

lumen of larger vessels as a means to stitch all of the image

stacks by a non-rigid transformation (Figure 1B). This led to a

composite image of the entire brain at 0.25 3 0.25 3 1.0 mm3

voxel size with optical distortion and local tissue deformation

largely eliminated (Figure 1C). The composite image is down-

sampled to 1 mm isotropic voxel resolution and divided into

cubes that are 240 mm on edge, denoted 240-cubes, with a

208 mm pitch in Cartesian coordinates (Figure 1D). Each brain

is covered by about 50,000 of the 240-cubes.

Extracting an annotated graph that preserves physical
dimensions
See STAR methods and the MATLAB implementation in

Methods S1 for details of all numerical procedures.
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Segmentation
The first step is to label each voxel in the imaging data as a po-

tential vessel or as void. We remove shot-noise with a median fil-

ter, then perform two complementary computations on each

240-cube and take the intersection of the outputs. One compu-

tation is to apply a matched filter for rods (Tsai et al., 2009) fol-

lowed by a Frangi vesselness filter (Frangi et al., 1998) to select

for voxels that are likely part of vessels. The second computation

is to threshold the values in each 240-cube with respect to a level

that selects for voxels with a relatively high intensity. We then

take the overlap of the two computations. Last, we agglomerate

neighboring pixels with a high signal-to-noise ratios and discard

small clusters of voxels. The result is a refined classification of

voxels as either potential vessels or void.

Skeletonization and graph construction
An initial estimate of the centerline of the vessels was computed

by a topology-preserving thinning algorithm (Lee and Kashyap,

1994). The centerlines were found for clusters of nominally 5 3

5 3 5 of the 240-cubes with a pitch of 3 of the 240-cubes and

were refined by local operations. Each of the voxels in the center-

line was compared against that of neighboring voxels. The

centerline was shifted to the neighbor if the neighbor had higher

intensity and the shift preserved the topology of the network

(blue green voxels, Figure 1E). Each voxel on a centerline was

then classified as either an isolated voxel, an endpoint voxel

with one neighbor, a link voxel that connects two neighbors, or

a node voxel with three or more neighbors among their 33–1

possible neighbors. Finally, the associated radius was assigned

as the distance from the voxel to the nearest boundary between

vessel and void. This forms a primitive vascular graph.

Graph refinement
We trained random forest classifiers to perform whole-brain

automatic graph refinement. This involved removal of isolated

voxels, short segments with one or two endpoint voxels (Fig-

ure 1F), and false positive connections (Figure 1G). It further

involved the addition of segments of voxels to bridge free-ended

segments and form a contiguous centerline (Kaufhold et al.,

2012; Figures 1H and 1I). The classifiers achieved more than

0.95 fractional accuracy with respect to manual annotation (Ta-

ble S1). As a measure of the improved structural accuracy, a

fraction 0.49 of the 240-cubes that did not include an outer brain

surface also did not contain any vessel segments with an

endpoint (Figure 1J). Last, we inspected the reconstructed

microvascular network in six, randomly selected 240-cubes

from different brain regions and found three connectivity errors

out of 2,133 vessel segments; i.e., 0.999 of the vessels are free

of errors in connectivity (Figure S1).

Super-resolution vessel radius estimation
A nested, iterative procedure was developed to improve the es-

timate of the radius of each vessel by processing the 0.25 mm

lateral resolution images (Figure 2A). We first formed a look-up

table of the expected intensity profile, denoted I= Iðx; y; z; r; q;
uxy; uzÞ, for a vessel in terms of four parameters: the vessel

radius, denoted r, the elevation angle with respect to the focal

plane, denoted q, and three-dimensional Gaussian point spread



Figure 1. Sample preparation, imaging, image processing, and vascular graph reconstruction

(A) Photomicrograph of a whole mouse brain with vessel lumen filled with fluorescent gel.

(B) Vessel skeleton voxels in the overlapping volume of adjacent image tiles in z-direction were matched to compute the nonrigid transformation for image

stitching. The entire brain consists of about 20,000 partially overlapping images stacks.

(C) Maximum intensity projection image of a 100-mm-thick slab of brain after stitching.

(D) Mask of the whole mouse brain with vessel segmentation in one of the L3 = (240 mm)3 image volumes; these are denoted as ‘‘240-cube.’’

(E) Illustration of vessel centerline adjustment. Centerline voxels were moved to a neighboring position with higher intensity if the adjustment preserved the

topology. Unmoved voxel: red. Moved voxel before adjustment: blue. Moved voxel after adjustment: green.

(F–I) Illustration of candidate vessel segments for the graph refinement procedure. The reconstructed vessels are in red, the neighboring centerlines are in black,

and the segments to be classified are in green. Note the presence of the maximum projections along the surfaces of the cube. (F) A vessel segment with one free

endpoint that needs to be removed. (G) A false positive connection that results from relatively low axial imaging resolution and proximity of vessels. (H) A correctly

proposed linker that needs to be added to the centerline. (I) An incorrectly proposed linker that should not be added.

(J) Cumulative distribution function of the fraction of vessel segments in 240-cubes that have at least one endpoint voxel. On average, 0.485 of the 240-cubes that

are completely inside the brain do not have any open-ended vessel segment.
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function (PSF). The elevation angle of the vessel is readily deter-

mined from the skeletonization procedure and used without

furthermodification. The PSF is characterized by lateral and axial

half-widths-at-half-maximum intensity, denoted uxy and uz,

respectively (insert, Figure 2B). For each brain, we estimated

the PSF near tens of thousands of voxels along the centerline

and found relatively consistent values of the widths across

different brain regions (Table S2; Figure S2). The different

profiles I were computed as the convolution between a vessel
lumen with uniform fluorescence intensity and a three-dimen-

sional Gaussian PSF (Figure 2B). The intensity at the edge of a

vessel, denoted Ir at point ðx; y; zÞ= ð0; r;0Þ in the insert of Fig-

ure 2B, changes as both lateral and axial resolution decrease

and depends nonlinearly on vessel radius and elevation angle

(Figures 2B and 2C). The intensity at an edge is least sensitive

to changes in radius when the vessel lies in the axial direction

and is highly sensitive to changes for vessels that lie in the focal

plane.
Neuron 109, 1–20, April 7, 2021 5
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Figure 2. Super-resolution estimation and calibration of vessel radius

(A) Determination of the radius associated with a voxel that lies at the centerline (white square) of the vessel. Iterative progression from raw data to final super-

resolution estimate of the radius. The raw data have the centerline tilted at q = 6� and an initial estimate r0 = 2 mm. Then, the initial super-resolution estimate of r1 is

determined by thresholding the intensity profile of the raw data at the value of Ir0 (C), which leads to the new estimate, read from the distance map, of r1 = 1.46 mm.

This process is repeated until the radius converges to a final value of 1.35 mm.

(B) Calculated normalized horizontal radial light intensity profile of a vessel. The profile is along the y axis of the vessel in the insert, with q = 0� and r = 2.0 mm, for a

PSF of the beam with different uxy (uz = 3.4 mm; left) and different uz (uxy0.41 mm; right), respectively

(C) Normalized horizontal vessel edge intensity for vessels of different radius and orientation (uxy = 0.44 mm and uz = 3.4 mm).

(D) Estimation of the PSF. We numerically searched for parameters that maximized the weighted-average normalized correlation between the simulated intensity

profiles and the actual profile. The white dot shows the optimal PSF parameters at one centerline voxel (uxy = 0.41 mm, uz = 3.4 mm).

(E) Measured (blue) and simulated (red) lateral and axial intensity for the optimum PSF parameter found in (D); vessel fitted radius is r = 1.6 mm. The weighted-

average normalized correlation is 0.995.

(F) Joint distribution of in vivo vessel radius versus post-perfusion vessel radius of matched vessel centerline voxels from 6 mice. The solid curve is the median of

in vivo radius binned according to post-perfusion radius. The error bar shows middle quartiles.
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The skeletonization procedure estimated the radius of a vessel

with a resolution of 1 mm (Figure 2A). This radius, denoted r0,

was refined by thresholding the intensity profile of the raw data

at the value of Ir0, which leads to a new estimate of radius, denoted

r1. As a practical matter, the estimate of the radius is determined
6 Neuron 109, 1–20, April 7, 2021
from a map of the shortest distance to the lumen wall from inside

the vessel, the so-called ’’distance map.’’ The radius is further

refined by thresholding the intensity profile of the raw data at the

valueof Ir1. Thisprocess iscontinueduntil theestimateof the radius

converges, typically by three iterations (r3 in Figure 2A).
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Figure 3. Common network topology and branch and node geometry across all brains

(A) Reconstructed vessel mask (red tubes) with centerlines (green curves) in one 240-cube.

(B) Reconstructed rendering of a small segment of the vascular network highlighting angles at a triadic node.

(C) The probability density function (PDF) of the vessel branch tortuosity. The insert shows a vessel segment of tortuosity 1.27, which is the ratio between the

length of the branch (red) and the end-to-end distance (black). Each whisker shows the distribution of the probability density in the bin for all the 240-cubes within

the brains, outliers not shown, same as (D) and (E).

(D) The PDFs for the smallest, median, and largest branch tangent angle of vessels joined at a node, along with the cosine of the elevation angle between the third

tangent vector and the plane spanned by the first two tangent vectors. The average value of ft;min, ft;median, and ft;max are 84 ± 4�, 118 ± 2�, and 145 ± 3� (mean

± SE), respectively.

(E) The PDF of the number of branches in the shortest cycle of vessels.

(F) The PDF of the radius distribution for all vessels for all three brains (red, yellow, and blue dots); the mean (solid) and standard deviation (shadow) are in purple.

The mean value of the radius is 2.74 ± 0.09 mm (mean ± SD), and the median is 2.14 ± 0.04 mm. The power law (blue line) has a slope of �3.

(legend continued on next page)
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We next refined our estimate of the PSF using the refined radii

associated with the centerline points. For each centerline voxel,

the new estimation of PSF parameters was determined by maxi-

mizing the correlation between the measured and calculated

radial intensity profile along horizontal and axial directions,

weighted by orientation (Figures 2D and 2E). The newly refined

PSF was then used to re-calculate the look-up table for the

Iðx; y; r; q;uxy ;uzÞ (Figure 2C), and the radius of the vessel center-

line was recalculated (Figure 2A). This process of nested iteration

converged in two to three cycles and yielded a final estimate of

the radius associated with each voxel on the centerline.

In vivo radius calibration
We now turn to systematic errors in the estimation of the vessel

radii in the living versus gel-perfused brain. We collected data

from volumes of microvessels in parietal cortex using adaptive

optics two-photon microscopy to image vessels in living animals

with the blood plasma filled with fluorescein-dextran and, in the

same animal, after perfusion with a fluorescein-gel. The PSF has

0.2 mm lateral resolution (Liu et al., 2019). We iteratively esti-

mated the in vivo vessel radius using the same algorithm as for

the gel-perfused brains. By registering the post-perfusion vessel

skeleton voxels to the in vivo skeleton, we measured the change

in radius at 102,284 positions (6mice) to compute the radius cali-

bration curve (Figure 2F). Vessels with radii less than e 5 mm

shrunk after perfusion. We computed a calibration curve and

applied it to convert the post-perfusion vessel radii to their in-

ferred in vivo values. Of interest, the minimum in vivo vessel

radius is 1.9 ± 0.3 mm (mean ± SD).

Basic topology and geometry
The output of our pipeline is an annotated graph with branch-

points positioned at 1 mm resolution and the radii of vessels esti-

mated at 0.25 mm resolution (Figure 3A). A derived graph of

branches and nodes, with the branches labeled by the length

of the centerline and the radius found as the median of the radii

for all centerline voxels (Figure 3B), is formed from the annotated

graph (Table 1; Table S2). On average, ð278 ± 12Þ3106 (mean

± SD) centerline voxels form an undirected graph with

ð6:32 ± 0:27Þ3106 branches (B) and ð4:13 ± 0:17Þ3106 nodes

(N). We obtained 384 ± 16 m of vessel segments filling 443 ±

9 mm3 of brain tissue after correcting for tissue shrinkage during

the sample preparation (Figure S3). The largest graph connected

component contains 0.987 ± 0.012 of the branches. Thus, virtu-

ally all of the reconstructed vessel segments form an intercon-

nected network.

Coordination

The primary topological feature is the number of branches that

join at each node, defined as the degree of the node. Across

all 240-cubes, we found that branches dominantly jointed as tri-

ads, with 0.968–0.987 (middle quartiles) of the nodes being of
(G) The PDF of the capillary branch order from the nearest penetrating vessels a

(H) Catastrophic disassemble of regional vascular network after 0.44 of the vessel

connected component visualized in a 240-cube. The standard deviation of the lar

than 0.5 of the vessel segments removed. The standard deviation increases to 0

signed using the Common Coordinate Framework (Wang et al., 2020).

8 Neuron 109, 1–20, April 7, 2021
degree 3 and an average degree 3.02 ± 0.02 across all brains.

As a result, the branch-to-node ratio of 1.529 ± 0.004

(mean ± SD) is very close to the theoretical value of 3/2 for a

mesh graph of degree 3. Virtually all branches are in a single con-

nected component and virtually all branches connect exclusively

as triads. Thus, the vessels form a highly redundant network with

roughly N=2 independent loops, where the number of indepen-

dent loops is the maximum number of branches that can be

deleted before the network breaks into two connected compo-

nents (Newman, 2010).

What is the geometry of the triads? If we join three randomly

oriented straight lines in three dimensions, the distribution of

angles between lines would fall into a unit sphere. To determine

whether this holds for the angular distribution of the vascula-

ture, we computed the end-to-end vector ve, endpoint tangent

vectors vt, and the length l of each vessel segment (Figure 3B).

First, the ratio between the vessel length and the end-to-end

distance le = jvej, i.e., the tortuosity of the branch, is 1.27 ±

0.05 (mean ± SE) as an average over all 240-cubes (Figure 3C).

Thus, vessels in the brain are fairly straight. Using the branch

tangent vectors near the node, the average minimum, median,

and maximum angle between branches, denoted as qt;min,

qt;median, and qt;max, were found to be 84� ± 4�, 118� ± 2�,
and 145� ± 3�, respectively (Figure 3D). As two linearly inde-

pendent vectors defined a plane with the normal vector n12

(Figure 3B), we also computed the absolute value of its projec-

tion onto the third vector. The average projection was 0.255 ±

0.037 and corresponds to a small average elevation angle of

14.8�. This implies that branches tend to stay in a plane near

the branch point (Figure 3B).

Loops

Network topology can be further quantified by the number of

branches in the shortest path that one needs to traverse to return

to the same node. Relatively consistent distributions were found

across the whole brain, with 8.97 ± 0.53 (mean ± SE) branches

in the shortest loop (Figure 3E). Only about 0.011 (median) of the

loops consist of only two branches, i.e., branches in parallel,

which suggests the low frequency of matured brain vessels orig-

inate directly from intussusceptive angiogenesis.

Compactness

The interplay between Euclidean and geodesic distance, i.e., the

minimum number of branches, between nodes indicates the

compactness of the connectivity. We computed the pairwise

Euclidean distance between pairs of nodes and counted the

number of branches between the pairs. We find that 0.85–0.91

of the nodes were directly connected to its nearest node, while

the other branches form non-nearest neighbor connections.

Definition of capillaries

Microvessels dominated the probability density function (PDF) of

branch radius (Figure 3F), as anticipated. The PDF follows a po-

wer law decrement for radii larger than 3.5 mm (Figure 3F). We
s an average over three brains.

segments were randomly removed. Inserts were examples of the largest graph

gest connected fraction is less than 0.02 for cases with less than 0.4 or greater

.05 near the threshold for disassembling the network. Brain regions were as-
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classified vessel segments as capillary versus non-capillary

based on the threshold radius of 3.5 mm for deviation from a po-

wer law; this will be further justified by additional analysis. Under

this definition, capillaries comprise 0.8 ± 0.2 (mean ± SD) of the

vascular volume with each 240-cube (Figure S4) and account for

the vast majority, i.e., 0.959 ± 0.008, of the total vascular length.

The asymptotic power law has a scaling exponent of�2.73 ±

0.03 with R2 = 0.98 for radii larger than 3.5 mm (Figure 3F). This

exponent is close to that of �3 given by Murray’s Law to mini-

mize the cost required to drive the flow of liquids through a

network of tubes and concurrently maintain the transportation

system (Murray, 1926).

Starting from the non-capillaries, i.e., penetrating arterioles or

venules, we iteratively labeled branches according to the

geodesic distance to the nearest non-capillary segment. The

capillary branches that are directly connected to non-capillaries

were labeled as order 1, the unlabeled branches that are directly

connected to order 1 branches were labeled as order 2, and so

forth. The average capillary branch order was 3.4 ± 0.2 (mean ±

SD) (Figure 3G), which suggests that penetrating arterioles and

venules are typically bridged by capillary networks that have

seven branches as their shortest path. Conversely, few capil-

laries are more than seven branches from a penetrating vessel,

as shown previously (Kirst et al., 2020).

Structural basis of network robustness

Common network topology implies a similar bond percolation

threshold (Vyssotsky et al., 1961) across different brain regions.

To test this, we randomly removed different fractions of the

vessel branches and computed the fraction of remaining nodes

in the largest graph connected component. In all the brain re-

gions, the largest component rapidly broke into small graphs

when 0.433–0.447 of the branches were removed (Figure 3H).

Therefore, the bond percolation threshold was about 0.56. This

is very close to the known bond percolation thresholds of

0.542–0.556 for triadic lattices (Tran et al., 2013). Thus, as a

result solely of topology, the loss or stall of less than half of all

capillaries will lead to a catastrophic failure of the vascular

system.

Anisotropy of the brain capillary networks
A long-standing question is whether the capillaries have a net

orientation, particularly in regions where neuronal processes

tend to co-align, or whether the capillaries form an isotropic

bundle on the scale of identified brain regions (Báez-Yánez

et al., 2017). The latter assumption has been used to estimate

vascular density (Borowsky and Collins, 1989; Weber et al.,

2008) and blood flow in magnetic resonance imaging (Fisel

et al., 1991; Ogawa et al., 1993). To answer this question, we sys-

tematically quantified brain vessel anisotropy. End-to-end vec-

tors of vessel branches, weighted by the volume of the vessel,

were used to compute the correlationmatrix of the relative orien-

tations between all branches in each of the 240-cubes across all

brains (Figures 4A and 4B; Video S1). The anisotropy was

computed from the eigenvalues of the correlation matrix; a value

of zero means that orientation is isotropic, while a value of one

means that all capillaries are co-aligned. Statistical significance

was estimated from Monte Carlo sampling (Figure 4C). As an

average across all of the 240-cubes, the anisotropy was lowest,
yet statistically significant and relatively constant at e 0.4 when

vessels with radius at or below 3.5 mm were considered (Fig-

ure 4D); this corresponds to our cutoff for capillaries (Figure 3F).

The regional capillary anisotropy was visualized as an overlay

in horizontal and sagittal projections, color-coded with the p

value to indicate statistical significance (Figure 4E). The bound-

aries of brain regions were determined by registering brains to

the Common Coordinate Atlas (Wang et al., 2020). Particularly

striking anisotropy was observed within the superior colliculus

along the dorsal—ventral axis, and within the pons along the

caudal—rostral axis (Figure 4F). The corpus callosum also had

high anisotropy, albeit with low statistical significance as a result

of its relatively low density of vessels. Contrariwise, the inferior

colliculus had low yet significant anisotropy. The anisotropy

with neocortex varied with depth. Capillaries were found to pref-

erentially lie normal to the pial surfacewithin the superficial layers

yet were only weakly oriented within the deep layers of cortex

(Figure 4G).

Descriptive statistics of regional capillary lengths
Different brain regions have different susceptibility to micro-

strokes and varying energetic loads. As the first step to elucidate

the role of potential vascular geometry in explaining these differ-

ences, we examine the length density, denoted rL, of capillaries.

Qualitatively, selected brain slices indicate strong regional differ-

ences with a relatively high length density in neocortex, thal-

amus, and cerebellum (Figure 5A; Video S2). We next compute

the PDF of rL in each major brain region as an average across

hemispheres (3 mice) (Figure 5B; Table 1; Table S3). Three-fold

differences in length density are observed, from rL = 0.49 ±

0.12 m/mm3 (mean ± SE) in corpus callosum, a region domi-

nated by white matter, to 1.41 ± 0.05 m/mm3 in inferior collicu-

lus, an auditory nucleus known for high neuronal activity (Gross

et al., 1987).

The variation in capillary length density across the cortical

mantle is modest. Neocortical regions, like somatosensory cor-

tex, had higher average density than paleocortex regions, like

piriform cortex, i.e., rL = 0.98 ± 0.02m/mm3 (mean ± SE) versus

0.72 ± 0.01 m/mm3, respectively (Table 1). Consistent with past

work (Blinder et al., 2013; Kirst et al., 2020; Tsai et al., 2009; Wu

et al., 2014), the density within a multitude of neocortical areas

varied weakly as a function of depth (Figure 5C). There is a

peak in rL at approximately 400 mm below the pia for auditory,

somatosensory, and visual areas, albeit no discernable peak

for anterior cingulate cortex. In contrast to neocortex, the density

in piriform cortex was highest in the superficial layers and

decreased to a minimum value at approximately 400 mm below

the pia (Figure 5C).

The difference in length density across regions is related to the

difference in the distribution of the length of different capillary

branches. Regions with high values of rL, such as inferior collicu-

lus and somatosensory cortex, have relatively more short

branches, with median lengths of 45 ± 1 mm (mean ± SE) and

46 ± 1 mm, respectively. The corpus callosum, with relatively

low density (Figure 5B), has significantly longer median branch

lengths, i.e., 67 ± 3 mm. Interestingly, branches shorter than

40 mm dominate across the brain, while branches that extend

beyond 200 mm are rarely observed (Figures 5D and 5E). All
Neuron 109, 1–20, April 7, 2021 9



Figure 4. Vascular network anisotropy

(A) The reconstructed vascular network in a 240-cube.

(B) Abstracted vessel segments drawn as endpoint-to-endpoint straight lines.

(C) Volume-weighted local vascular network fractional anisotropy computed from the lines in (B) (red vertical line) and the distribution of anisotropy computed

from the same number of randomly orientated vessels with the same volume weights (blue histogram; 10,000 trials).

(D) The anisotropy distribution across 240-cubes in two brains, along with statistically significant (p value), as a function of the maximum vessel radius included.

Median p value is p< 0:01 down to radii of 2.4 mm. All p values smaller than 10�4 are set to 5310�5 for visualization purposes, same as (E)–(G).

(E) Local capillary (radius %3.5 mm) anisotropy statistical significance (p value) and preferred orientation (white lines) overlaid on a 240-mm-thick maximum

projection of reconstructed vessels. Black curves and red labels indicate regional contours and name abbreviations according to Allen Atlas. Full names for the

abbreviations are summarized in Table S4.

(F) The radius dependence of the average anisotropy, including standard error bands, and associated median p values, including 0.25–0.75 bounds over 4

hemispheres.

(G) Cortical depth dependence of the average orientation of capillaries, including standard error bands, and associatedmedian p values within a region, including

0.25–0.75 bounds. The plotted data are the mean orientation ðĉ Þ projected onto the normal to the cortical surface ðn̂ Þ as an average over 4 hemispheres.
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Figure 5. Descriptive statistics of capillary length

(A) Local capillary length density overlaid on a 240-mm-thick maximum projections of reconstructed vessels. Full names for the abbreviations are summarized in

Table S4.

(B) The PDF of capillary length density of 240-cubes in selected brain regions. Solid lines and transparent shadow show mean and SD for six hemispheres, the

same as (D).

(C) The depth dependence of the capillary length density within different regions of neocortex and piriform cortex. Solid lines and transparent shadow showmean

and SE for six hemispheres.

(D) The PDF of the length of individual capillary branches within selected brain regions. Regions with higher vessel density have more short vessel segments.

(E) The PDF of the length of individual capillary branches in the entire brain. Solid line and transparent shadow show mean and SD for 3 brains.
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told, regions with higher capillary density have more short

branches, and vice versa.

The distance map from locations in the extravascular
space to vessels
An important metric to relate angioarchitecture to physiology is

the distribution of distances from any point in the parenchyma

to the lumen of the nearest vessel (Figures 6A–6F). We consider

all vessels in our analysis, as substrates are available from pene-
trating vessels as well as capillaries (Intaglietta et al., 1996). We

quantified the space-filling properties of vascular network by

computing the distance map, denoted dðrÞ, between tissue at

location r= ðx; y; zÞ and its nearest vessel wall (Figure 6A). The

mean distance between tissue voxels and their nearest vessel

voxels, denoted d as found by averaging dðrÞ over each 240-

cube, increases from d = 10.0 ± 0.20 mm (mean ± SE) in inferior

colliculus to 20.2 ± 3.9 mm in corpus callosum (Figure 6B). Thus,

locations in a region with a high length density of capillaries lie
Neuron 109, 1–20, April 7, 2021 11
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Figure 6. Scaling relations of space-filling networks

(A) The distance map, dðrÞ, with respect to vessel segmentation (red). This determines the distance between tissue at r and the nearest vessel wall.

(B) The PDF of the average distance between the tissue and the nearest vessel wall in selected brain regions.

(C) Average vessel-tissue distance scales as vessel length density, i.e., d =mr
�1=2
L � 3:08with slopem= 0.494;R2 = 0.95. The data encompass 91,751 240-cubes

where capillaries accounted for the majority of the vascular volume. Slopes for (8, 3)-a, cubic, (10, 3)-a, (10, 3)-b, and (10, 3)-c lattices arem = 0.526, 0.497, 0.487,

0.474, and 0.463, respectively.

(D) The PDF of average tissue-to-vessel distance local maxima dmax in selected brain regions. Local maxima were found by moving a maximum filter with a

window size of 50 mm, which exceeds the fall-off in d, and averaged over 240-cubes.

(legend continued on next page)
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relatively close to a vessel (cf. Figures 5B versus 6B), and

vice versa.

Tissue-to-vessel distance scales with vessel length

density

We seek a quantitative relation between the distance map and

the length density. As scaling laws should depend on the

dimensionality but not details of the lattice, we consider first

the exact result for a cubic lattice where each branch has the

same length. The average distance to the branches between

neighboring lattice sites, d, is related to the length density

though d =mr
�1=2
L with slope m = 0.497 (STAR methods).

This scaling holds for other three-dimensional, degree-3 lat-

tices (Tran et al., 2013; Figure 6F) with a slope that depends

on lattice geometry (Figure 6C). Interestingly, we find that the

irregular vascular network, where the irregularity originates

from branches that are broadly distributed in length (Figure 5D),

tightly follows the scaling relation (Figure 6C). Across all the

240-cubes in which capillaries comprised the major vascular

volume (Figure S4), the average tissue-to-vessel distance is

proportional to r
�1=2
L through d = 0:494r

�1=2
L � 3:08, where the

negative intercept is consistent with vessel radius (Figure 6C).

This scaling relation also precisely connects the average tis-

sue-to-vessel distance and length density previously reported

for mouse vibrissa somatosensory cortex (Tsai et al., 2009),

where d = 13.3 ± 1.2 mm and rL = 0.88 ± 0.17 m/mm3.

The vasculature must supply energy substrates to cellular

structures that occupy all of the space between vessels.

Thus, a physiologically important analysis is to determine the

relation between the set of local, maximum distances to each

neighboring vessel and the vessel length density across

different brain regions. To address this goal, we searched for

local maxima in the distance map, denoted dmax, and

computed the average value of the local maxima (Figure 6D).

The PDF for dmax across different brain regions yields values

that are about twice as large as for the PDF of d (Figures 6B

and 6D). An exact derivation for a cubic lattice and numerical

calculation for regular degree 3 lattices lead to the same

scaling law for dmax as for d, i.e.,

dmax = n r
�1=2
L � d0; (Equation 1)

with slope n = 1.225 for a cubic lattice and n = 0.955 ± 0.001

and d0 = 1.85 ± 0.03 mm for the vascular network (Figure 6E).

This analysis provides a quantitative connection between
(E) Scaling relation between the maximum vessel-to-tissue distance and the vess

n = 0.955 and d0 = 1.85 mm; R2 = 0.94. The slope for cubic, (8, 3)-a, (10, 3)-b, (10, 3

respectively.

(F) Structures of 4 space-filling lattices with 3 nearest-neighbor connections, unifo

in the shortest loop for a (k, 3) lattice is k. Points of the same color in each lattice

(G) Illustration of perturbation analysis for two unit cells of a two dimensional hone

C0. Capillaries one branch away are denotedC1. The tissue was assigned to the n

C1’s. The scalar dðrÞ is the unperturbed distance map. After deletion of capillary

capillaries and the perturbed distance map is ddelðrÞ. In this two-dimensional exa

the maximum distance to a vessel remains unchanged, i.e., maxfddelðrÞ in C0 ter

(H) The maximum distance between the capillary and the furthest locations in its

average over capillary branches in different brain regions, the same as (I).

(I) Increase of the maximum distance between the territory of the deleted capilla
vessel-to-tissue distances and the length density for the irreg-

ular vascular networks across all regions of the brain. Given the

range of slopes across all degree-3 lattices that we analyzed

(Figures 6E and 6F), we suggest that capillary networks might

be able to reduce their tissue-to-vessel distance by optimizing

the structure of the network while keeping the length density

unchanged.

Consequence of deleting a single capillary

There is a constant background of stalls of red blood cells in a

fraction of capillaries (Kleinfeld et al., 1998; Villringer et al.,

1994). This increases from about 0.005 of capillaries in normal

brains to 0.01–0.02 in mouse models of Alzheimer disease

(Cruz Hernández et al., 2019), as well as increases during reper-

fusion after ischemia (El Amki et al., 2020; Erdener et al., 2021).

How does removal of a single capillary impact the distance

map? A conceptual illustration that makes use of the distance

map shows the territories associated with selected branches

(red solid lines in Figure 6G) in a two-dimensional honeycomb

lattice. All points in the territory that are closer to the capillary

labeled C0 than any other capillary define the territory of C0

(gray area in Figure 6G), with associated distances dðrÞ. We

quantify the impact of deleting C0 on expanding the territory of

the neighboring vessels by recomputing the shortest distance

between r and the remaining vessels, denoted as ddelðrÞ. The ter-
ritory of C0 is redistributed solely to one of the four capillaries,

labeled C1, that were directly connected to C0.

We now estimate the impact of removing an individual capil-

lary for the reconstructed vasculature. The extent of the paren-

chyma closest to each capillary was parameterized by

computing maxfdðrÞ in territoryg for each vessel. We found

that the average over all capillaries in each of the brain regions,

denoted maxfdðrÞ in territoryg, increased as a function of capil-

lary branch length and, further, was greatest for regions with low

length density, e.g., corpus callosum, compared to regions with

high density (Figure 6H). How sensitive is this distance to loss of

a single capillary? The increase in the maximum distance calcu-

lated as an average over each region in the brain, i.e.,

maxfddelðrÞ in territoryg �maxfdðrÞ in territoryg, is surprisingly

modest (Figure 6I). It is negligible for territories close to a capil-

lary and asymptotes at about 2.1 mm across all brain regions.

Thus, while loss of a significant fraction of capillaries lead to a

catastrophic loss of connectivity (Figure 6I), deletion of a single

capillary appears tolerable, in agreement with the experiment

(Nishimura et al., 2006).
el length density. Regression for the vascular network was the same in (D), with

)-a, and (10, 3)-c regular lattices was n = 1.227, 1.138, 1.027, 0.952, and 0.914,

rm edge length, and a common branch angle of 120�. The number of branches

are related by translation.

ycomb capillary lattice (red) before and after removal of one capillary, denoted

earest capillary, i.e., gray regions toC0 and color-coded regions to neighboring

C0, the tissue originally in the territory of C0 was reassigned to the remaining

mple, the territory of C0 is completely redistributed solely to C1 capillaries, and

ritoryg = maxfdðrÞ in C0 territoryg.
tissue territory. Solid lines and transparent shadow shown mean and SE as an

ry and the remaining nearest vessel.
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Structural basis of diffusive transport from vessels
Small substrates molecules and metabolites, like O2 and CO2,

respectfully, transport between vessels and tissue through

diffusion. How does the known heterogeneous metabolism in

the brain (Gould and Linninger, 2015; Hawkins et al., 1985; Se-

comb et al., 2019) relate to network structure? We focus on

homeostasis and assume that on the scale of hundreds of mi-

crometers: (1) the metabolism rate and the diffusion coefficient

of the substrate of interest are homogeneous throughout the

tissue; (2) the concentration of the substrate in the vessel is

a constant; and (3) the metabolism rate is independent of sub-

strate concentration. These assumptions allow us to summa-

rize the properties of the substrate with a single parameter,

the ratio of the diffusion coefficient, D, to the consumption

rate, k, and model the concentration difference DcðrÞ between

vessel wall and the tissue at r= ðx; y; zÞ with a Poisson equa-

tion (STAR methods). This leads to a three-dimensional map

of the change in concentration (example data in Figure 7A)

that decreases as one moves away from a vessel until the

concentration reaches a minimum where the flux of the sub-

strate goes to zero. We label such points DcðrðcminÞÞ (dot in

Figure 7A).

A critical observation is that, under our assumptions, the con-

centration DcðrÞ tends to be minimized at the place that the dis-

tance dðrÞ is maximized (cf. black circles and plus signs in Fig-

ure 7A and 2D histogram of Figure 7B), i.e., dðrðcminÞÞzdmax.

To examine this correspondence further, we compute the

average distance between concentration local minima dcmin
and

their nearest vessels and find dcmin
and dmax to be statistically

identical throughout the brain (Figure 7C). This leads to the

empirical relation:

dcmin
= dmax (Equation 2)

that will allow us to connect the average of the concentration

minima, denoted Dcðdcmin
Þ, with rL (Equation 1).

The remaining step is to analytically model the spatial depen-

dence of the concentrationminima, i.e.,Dcðdcmin
Þ (Figure 7D), in a

manner that captures the physics of diffusion in the radial direc-

tion. We model the data by the radial component of Poisson’s

equation in cylindrical coordinates and fit a prefactor so that

the concentration of substrate at the locations where the flux

goes to zero matched the numerical result (Figure 7D). This

model accounts for spatial dependence of Dcðdcmin
ÞD =k, where
Figure 7. Numerical and analytical calculations of substrate diffusion

(A) Numerical solution of the change in substrate concentration, DcðrÞ, in one

DcðrðcminÞÞ, while + marks the positions of local maxima in the distance map.

(B) Two-dimensional histogram of the drop in substrate concentration, DcðrÞD=k
(C) The average distance between tissue local concentration minima and their nea

vessel distance local maxima, dmax . The slope is 1.00; R2 = 0.88.

(D) Best fit of the solution to the pre-scaled Poisson’s equation, DcðrÞD =k, with

(E) The rate of glucose metabolism versus the vessel length density for different

tissue. The data points are from Hawkins et al. (1985) and seem to maintain a rou

relative error of 0.17. Horizontal error bar: median and 25–75 percentiles of regio

(F) The areal rate of glucose metabolism versus the vascular fraction, correspond

plot average data from three species; data from humans (Cassot et al., 2006; Fe

1996; Kubı́ková et al., 2018; Kuhl et al., 1982; Pantano et al., 1984; Tomasi et al., 20

are listed in Table S6.
D is the diffusion constant and k is the rate of consumption,

across the entire brain (Figure 7D).

Finally, we apply the model across brain regions where resting

state glucose metabolism is known to vary by 3-fold (Hawkins

et al., 1985). Under homeostasis, glucose is the main energy

source and the glucose consumption rate kglu is related to the ox-

ygen consumption rate kO2
by k= kO2

=kglu = 5:65 (Mergenthaler

et al., 2013). We combine the scaling laws of Equations 1 and

2 with the solution to Poisson’s equation to link the measured

quantities kglu and rL in terms of DpO2 (STAR Methods), i.e.,

kglu = 4
aO2

DO2

lkn2
$

rL

ln
�
n2
�
r2crL

�� 1
$DpO2 (Equation 3)

where the average capillary radius rc = 2.19 mm, the prefactor is

l = 0.52 (Figure 7D), n = 0.955 (Figure 6F), andwe take the limit of

r2crL � 1, i.e., the vasculature occupies a small fraction of the

brain. The substrate specific parameters are oxygen diffusion

coefficient DO2
= 1.9 mm2/ms and solubility aO2

= 1.3 mM/

mmHg (Clark et al., 1978).

How does the scaling of observed glucose metabolism

compare with our prediction? We used data measured by

[2-14C]-glucose utilization in unstressed awake rats across 27

different brain regions (Hawkins et al., 1985). These data span

a factor of three in metabolic rate (Table S5). When matched

against our measured length density for the same 27 regions

(Figure 5), the observed glucose metabolism tracks the length

density (Figure 7E). Critically, this relation is described by Equa-

tion 3 using a universal drop in oxygen tension, i.e., DpO2 = 15.9

± 0.3 mmHg (mean ± SE), between the capillary wall and the lo-

cations with the lowest pO2 (Figure 7E). For fixed DpO2, the in-

crease of kglu with rL is weakly supralinear for a constant change

in oxygen tension. This formula accounts for the known correla-

tion between metabolism rate and vessel length density (Borow-

sky and Collins, 1989; Weber et al., 2008). It is equally applicable

to the diffusive removal of metabolic waste products.

DISCUSSION

We developed an experimental and computational pipeline to la-

bel, image, and reconstruct the microvascular system in whole

mouse brains with unprecedented completeness and precision

(Figures 1 and 2). Based on our annotated graphs, we identified

the brain-wide presence of scale-invariant structural properties.
and regional glucose metabolism in terms of vessel length density

240-cube. Black circle marks the location of local minimum in concentration

, and vessel-to-tissue distance map, dðrÞ. The symbols are defined in (A).

rest vessel wall, dcmin
, is statistically identical to the value of average tissue-to-

pre-scaling factor l = 0.52. The fit has R2 = 0.90.

values of DpO2, the drop in pO2 between vessel wall and the minimum pO2 in

ghly constant drop in pO2. The best fit has R2 = 0.756 and an average absolute

nal line density rL. Vertical error bar: mean ± SD.

ing to the vessel length density normalized by the capillary radius, i.e., r2crL. We

rnandez-Klett et al., 2020; Hatazawa et al., 1995; Heiss et al., 1984; Ishii et al.,

13; Vafaee et al., 2012) andmacaque (Kennedy et al., 1978;Weber et al., 2008)
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They include the triadic and near-planar structure of nodes (Fig-

ures 3A and 3B), the low tortuosity, i.e., relative straightness (Fig-

ure 3C), the compact nature of loops of microvessels (Figure 3E),

and a near-constant threshold of bond percolation, i.e., the frac-

tion of vessels that can be removed before the network splits

apart (Figure 3H). These ‘‘design rules’’ endow the network

with a high level of redundancy, such that loss of a single capil-

lary has negligible impact (Figure 6I), as observed (Nishimura

et al., 2006), yet lead to a total loss of network function when

nearly half of the vessels are lost or have no flow (El Amki

et al., 2020; Erdener et al., 2021).

We deduced a simple scaling relation that connects the vessel

length density to the vessel-tissue distances for the irregular

vascular network across all regions of the brain (Figure 6). We

also deduced that the net flux of energy substrates, but not the

concentration, delivered by the blood decrements to zero at

the locations furthest from the neighboring vessel (Figure 7).

This enables us to propose that regional metabolism alters the

local vessel density to maintain a constant maximum vessel-

to-tissue drop in pO2 (Equation 3), which we verified with litera-

ture data for rodent (Figure 7E). This emphasizes the central role

of vessel length density as the predominant vasculature struc-

tural parameter.

Organ-specific vascular patterns are highly conserved across

vertebrates (Larrivée et al., 2009). Thus, our structural findings in

rodent brain might generalize to primate vasculatures. There is

some limited data on the density of the microvasculature and

the metabolic load in different regions of the human brain and

in one region of the macaque brain (Table S6). We plot these

data and the mouse data on a universal plot where vessel length

density is normalized as the vascular fraction r2crL (Equation 3).

While there is unquestioned variability, the data across three

species data coalesce in the vicinity of the line for DpO2 =

16 mmHg (Figure 7F). Despite the simplifying assumptions

used to develop our model, the observed trend suggests a uni-

versal drop in the partial pressure of oxygen throughoutmamma-

lian brains.

How realistic is our estimate of DpO2e 16mmHg as the largest

drop in oxygen tension within tissue in the sedentary mammal

(Figures 7E and 7F)? Hypoxic levels of pO2 are taken to be

around 10 mmHg (Kasischke et al., 2011), so roughly we require

pO2e 26 mmHg near capillary walls in the sedentary state. This

level is well surpassed by the experimentally measured value

of pO2e 40 mmHg near capillary walls (Lyons et al., 2016), with

a similar value near penetrating arterioles (Li et al., 2019), in the

sedentary state. A more complicated situation occurs during

heightened brain activity, where the rate of neuronal metabolism

is believed to increase more than 1.9-fold (Bryan et al., 1983), for

an estimated increased drop of DpO2e1:9316e 30 mmHg within

tissue during heightened brain activity. We now require pO2 >

40 mmHg near capillary walls in the active state. This can only

be achieved by vasodilation and the increase in blood flow asso-

ciated with the ‘‘hemodynamic response’’ triggered by height-

ened brain activity (Devor et al., 2011; Zhang et al., 2019).

Vascular anisotropy
Given the highly organized neural structures revealed by diffu-

sion tensor imaging (Mori and Zhang, 2006) and the shared
16 Neuron 109, 1–20, April 7, 2021
developmental mechanism of nerve and vessels (Carmeliet

and Tessier-Lavigne, 2005), it is not surprising that a large frac-

tion of brain vascular network is nearly anisotropic down to capil-

lary level (Figure 4). These orientation preferences have been

described in cortex (Cassot et al., 2006; Kirst et al., 2020) and hu-

manwhitematter (Nonaka et al., 2003), while recent studies have

shown the profound impact of cortical vessel anisotropy onmag-

netic resonance imaging (Báez-Yánez et al., 2017; Gagnon et al.,

2015; Hernández-Torres et al., 2017; Viessmann et al., 2019).

Our systematic quantification of vessel anisotropy is consistent

with past observations in cortex (Cassot et al., 2006; Kirst

et al., 2020), provide structural evidence for the orientation-

dependent MRI signal in white matter (Hernández-Torres et al.,

2017; Viessmann et al., 2019), and reveal strongly orientated

vascular network in superior colliculus and pons (Figure 4F).

Methodological issues
We chose to acquire data with serial section two-photon micro-

scopy to maintain a stable signal-to-noise ratio and near-con-

stant optical resolution with depth (Figure 1). The earliest tech-

niques used counting of individual sections (Boero et al., 1999;

Craigie, 1920), which led to surprisingly close estimates of the

length density relative to more recent data (Table 1) but was

limited to sampling selected regions rather than complete

three-dimensional reconstructions. Tissue-clearing techniques

and light sheet microscopy have been combined to generate

whole mouse brain vasculature images with relatively short

data acquisition times (Di Giovanna et al., 2018; Kirst et al.,

2020; Lugo-Hernandez et al., 2017; Todorov et al., 2020; Zhang

et al., 2018). Yet light sheet microscopy has reduced resolution

when the wavefront of the excitation beam passes through ex-

panses of imperfectly cleared tissue. While this arrangement ac-

celerates image acquisition, it can lead to lower signal-to-noise

ratios and potential overestimates of vessel diameter (Kirst

et al., 2020; Todorov et al., 2020; Table 1). Last, the section-

by-section micro-optical sectioning tomography technique (Li

et al., 2010) has similar lateral but better axial resolution than

two-photon imaging. However, this technique uses negative la-

beling so the segmentation may be complicated (Wu et al.,

2014; Xiong et al., 2017). Beyond segmentation issues, we

calculated capillary radii based on optical deconvolution

methods (Figures 2A–2E) and comparisons of identified live

and labeled vessels (Figure 2F). The combination of precise

measurements and principled analysis provided a complete

graph for biophysical modeling and the identification of ubiqui-

tous topological invariants (Figures 3E and 3H) and scaling rela-

tions (Equations 1, 2, and 3)

Whole-brain vascular reconstructions give insights into micro-

vessels and their role as local supply chains (Table 1). Yet all ef-

forts to date fail to preserve the complete connectivity back to

the systemic circulation. This results from both the collapse

and close opposition of surface arteries and veins (Blinder

et al., 2013) and the embedding of venous sinuses into the

foramina (Cai et al., 2019; Herisson et al., 2018). Moving forward

will require an in situ analysis of the vasculature, a challenge than

may be met with all optical histology (Tsai et al., 2003) and/or

X-ray tomographic techniques (Dyer et al., 2017; Quintana

et al., 2019; W€alchli et al., 2020).
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Relation to Krogh-Erlang model
Over a century ago, August Krogh reported a formula for calcu-

lating the maximum oxygen tension between capillaries and

muscle cells (Krogh, 1919). The simplicity and validity of the

so-called Krogh-Erlang model are rooted in the near uniform

orientation and regularity of capillary network in muscles. Today,

technical advances allow us to extend quantitative physiological

methods to the highly irregular capillary network in the brain.

By combining biophysical analysis with numerical results, we

transcended the theoretical intractability of irregular capillary

networks. The surprisingly accurate scaling relation between tis-

sue-to-vessel length and vascular length (Equation 1; Figure 6E)

allowed us to connect the substrate utilization rate to the vessel

length density (Equations 2 and 3; Figures 7E and 7F). This

explicit dependence of substrate utilization on vascular density

was anticipated by Krogh (1919) and others (Borowsky and

Collins, 1989; Weber et al., 2008) but would not have been

possible without accurate measurements and quantitative

analysis.
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robustness of intra-cortical vascular territories. Neuroimage 62, 408–417.

Hatazawa, J., Fujita, H., Kanno, I., Satoh, T., Iida, H., Miura, S., Murakami, M.,

Okudera, T., Inugami, A., Ogawa, T., et al. (1995). Regional cerebral blood flow,

blood volume, oxygen extraction fraction, and oxygen utilization rate in normal

volunteers measured by the autoradiographic technique and the single breath

inhalation method. Ann. Nucl. Med. 9, 15–21.

Hawkins, R.A., Mans, A.M., Davis, D.W., Vina, J.R., and Hibbard, L.S. (1985).

Cerebral glucose use measured with [14C] glucose labeled in the 1, 2, or 6 po-

sition. Am. J. Physiol. Cell Physiol. 248, C170–C176.

Heiss,W.D., Pawlik, G., Herholz, K.,Wagner, R., Göldner, H., andWienhard, K.
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Data and code availability
The data supporting the current study have not been deposited in a public repository because of the size (200 TB). These data are

available from the corresponding author on request. The source code is available at https://neurophysics.ucsd.edu/software.php

and in the Methods S1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

3 male C57BL/6 mice between 50-80 days of age contribute to this study. All experimental procedures followed the Guide for the

Care and Use of Laboratory Animals and has been approved by the Institutional Animal Care and Use Committee at the University

of California, San Diego.

METHOD DETAILS

Vascular fluorescent-gel fill based labeling
Adult male mice between 50-80 days of age were prepared for whole brain vascular labeling. Mice were injected ip with heparin

(200U) and then overdosed with isofluorane delivered in oxygen and injected with fatal plus (ip injection). For mouse 1 and mouse

2, exsanguination was performed by transcardial perfusion of 60-150 mls Oxygenated Ringers Carbicarb (37�C) with 10U/ml of hep-

arin added to the perfusate. Ringer’s perfusate was delivered from a peristaltic pump, set at a pump rate of 30 ml/minute, through a

blunted 18 g cannula that was inserted through an incision made in the left ventricle; the right atria was snipped to provide an exit for

exsanguinated blood. For mouse 3, exsanguination was performed at a pump rate of 13 ml/minute. Exsangination was judged com-

plete by blood clearing of sternal vessels and of the dental pulp. Following the exsanguination step, the head of the mouse was tilted

down; the descending aorta was clamped for mouse 3. Fluorescently labeled gelatin (10% porcine gelatin- 0.4% FITC-BSA in PBS-

azide) was then administered from a glass syringe-tubing assembly connected to a blunted perfusion cannula that was inserted into

the original incision in the left ventricle. Toward the end of the perfusion, as the perfusion cannula was withdrawn from the left

ventricle, a small chip of dry ice was used to rapidly freeze the heart to minimize leakage of the warm gelatin through the perfusion

incisions. The entire body was then covered with wet ice for 1 hour to cool the intravascular gelatin. The brain was immersion fixed in

the skull by placement in cold paraformaldehyde/PBS for 48 h. After a cold PBS wash step (48 h), the brain was removed from the

skull under a fluorescent dissection microscope. The extracted brain was stored in cold PBS.

Gelatin solution was prepared by first blooming the porcine gelatin powder with cold PBS and then microwave heating it to tem-

peratures that were not in excess of 60�C. FITC-BSA in PBS-azide was added to liquefied gelatin that had been cooled to 37�C.While

the resultant solution is typically clear after coarse filtration, microscopic examination of the fluorescent gelatin revealed bubbles and

occasional particulates. To minimize these defects, the liquefied gelatin was sterile filtered after warming in a 47�C water bath. Re-

sidual air bubbles were then removed by suction of the surface after centrifugation (3000 g – 2 min). The filtered labeled gelatin was

held in a 47�C water bath and transferred to the warmed glass syringe-tubing assembly just before use.

Chronic cranial window preparation
Adult (more than 12 weeks old) male wild-type mice (C57BL/6J) were anesthetized with isoflurane using a vaporizer (Ohmeda, Isotec

4), 3% (v/v) in oxygen for induction and 1 - 2% (v/v) for maintenance. Body temperature wasmaintained at 37�Cby a heating padwith

feedback control during anesthesia. The animal was given analgesic buprenorphine (s.c., 0.1 mg per g body weight) and placed in a

stereotaxic frame. The scalp, the periosteum on the parietal and occipital plates was removed. A 3-mm diameter craniotomy was

made over the right somatosensory cortex with the centroid at 1.5 mm posterior to Bregma and 2.5 mm lateral from midline. Dura

was left intact. A single piece of 3-mm round coverslip (no. 1, 170-mm thick) was then embedded in the craniotomy and sealed around

the edge with cyanoacrylate glue (Loctite, no. 401). Meta-bond (Parkell) was further applied around the edge of the coverslip to rein-

force stability. A titanium headbar was glued onto the skull with Meta-bond (Parkell) for head-fixation during in vivo imaging. The re-

maining exposed bone were covered with dental acrylic (Lang Dental) to ensure stability. All experimental procedures on our animals

were accordance with Guide for the Care and Use of Laboratory Animals and have been approved by Institutional Animal Care and

Use Committee at University of California, San Diego.

Vascular radius calibration imaging
Imaging was performed 7 days after the cranial window surgery. Habituation training to head fixation was performed for one hour daily

for 3 days prior to imaging. A 5% (w/v) solution in physiological saline of fluorescein isothiocyanate-dextran (2 MDa; Sigma no. 52471)

was prepared for vascular labeling. Before imaging, mice were briefly anesthetized with isoflurane to label the lumen of blood vessels

via a retro-orbital intravenous injection of 50 mL fluorescein isothiocyanate-dextran solution. The cranial windowwas carefully aligned to

be perpendicular to the objective axis using a goniometer stage (Thorlabs, GNL20). Mice stayed awake during imaging.

In vivo vascular imaging was performed under a previously developed two-photon microscope (Liu et al., 2019) with Galvo x re-

placed by a resonant scanner (Cambridge Technology, CRS 8 kHz). The Galvo y (Cambridge Technology, 5-mm mirror 6215H) re-

mained the same. A tunable femtosecond laser (Coherent, Chameleon Discovery) was set to 920 nm, and the imaging power at post-

objective was less than 100 mW in all in vivo experiments within 500 mm depth. Vasculatures were imaged at 0:230:230:94 mm3
e2 Neuron 109, 1–20.e1–e13, April 7, 2021
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through a 25x objective (Olympus, XLPLN25XSVMP2, 25X, 1.0 NA and 4-mmworking distance), with system-level aberration correc-

tion. The microscope was controlled by ScanImage (Vidrio Technologies) running on MATLAB (Mathworks).

After the mice were perfused with fluorescent-gel, the brain was left intact and remained inside the skull. A repeat imaging with the

same setting was performed through the cranial window at the exact same location on the perfused brain.

Tissue preparation and whole brain imaging
All three brains were embedded in 12% (w/v) gelatin and fixed in 4%paraformaldehyde for 12 h. Indexmatching for optical clarity was

achieved by immersing the sample in solution of 40% DMSO in 10 mM PB with increasing concentrations of D-Sorbitol (up to 40/60

w/v). InBrain 2 andBrain 3, nuclei were stainedwith 10 mMNuclearID-Red solution (ENZ-52406, Enzo Life Science, Farmingdale, NY).

To improving the signal-to-noise level and optical resolution, Brain 3 was further delipidated after verifying the compatibility of the

sample preparation methods. The processed whole brain samples were imaged using a resonant scanner two-photon microscope.

Imaging was performed using a 40x/1.3 NA oil-immersion objective (#440752, Carl Zeiss, Oberkochen, Germany) at 0:33 0:33

1:0 mm3 voxel resolution. The surface of the sample was automatically detected and divided into partially overlapping image stacks

of size 38534503250 mm3. After the 250 mm thick block-facewas imaged, the vibratome removed the top 175 mmof the tissue before

proceeding to the next iteration of imaging. Overlap between adjacent image stacks is 25 mm in lateral direction and 75 mm in axial

direction. Detailed description for the protocol in this section could be found in Economo et al. (2016) and Winnubst et al. (2019).

Image stitching
Feature-based registration algorithmwas applied to stitched the partially overlapping image stacks across thewhole brain (Economo

et al., 2016; Winnubst et al., 2019). As the scale of vessels spans two orders of magnitude, both capillary skeleton and large vessel

edges were used as descriptors for estimating local deformation field. Local adaptive thresholding was used to generate vessel seg-

mentation. Vessel skeleton was obtained by morphological thinning (Lee and Kashyap, 1994), while vessel radius was estimated by

2D Euclidean distance transform within the segmentation. Skeleton voxels in vessel segments longer than 10 mmwith median radius

no greater than 3 mmwere selected as descriptors. For image tiles that include large vessels, position of vessel wall was computed by

canny edge detector. Both skeletons and edge voxels in adjacent image tiles were matched by Coherent Point Drift algorithm (Myr-

onenko and Song, 2010) and the matched descriptors were used for computing the nonrigid transformation that projects the image

tiles into an integrated image at 0.25 3 0.25 3 1.0 mm3 voxel resolution(Winnubst et al., 2019).

Computational resources
The image stitching pipeline was deployed on a high-performance cluster described in (Winnubst et al., 2019). The rest of the image

processing and analysis pipeline was implemented in MATLAB (2019b) and deployed on a desktop workstation with dual Intel Xeon

E5-2687W CPUs (2 sockets, 24 cores), 512 GB RAM, a NVIDIA GeForce GTX 1080Ti GPU and a NVIDIA GeForce RTX 2080 GPU.

Image segmentation
The integrated image was down sampled to 1 mm isotropic voxel size and divided into ð240 mmÞ3 image cubes, each cube has 32 mm

overlaps with its 6-neighbors (top, bottom, front, back, left, right). For each 240-cube, a 33 33 3 median filter was applied to reduce

the noise before background noise level estimation, contrast stretching and intensity normalization. First, the resulting image cube I

was down sampled 8 times by max-pooling to calculate the local intensity maximum Imax and the local intensity threshold Ith was

estimated by

Ith = max
�
0:35Imax; Ibg

�
; (1)

where Ibg was estimated by the mean and standard deviation of the estimated background voxel intensity. Ith was smoothed by a 3D

Gaussian filter, up-sampled and used to produce intensity-based vessel mask Mint. We assumed the original image was not satu-

rated and therefore voxels of intensity greater than half of the maximum bit value were also added to the intensity mask Mint.

Second, we calculated the maximum response of each image voxel to rod-shaped filters at different orientations. For a rod filter

orientated at ðq;fÞ in spherical coordinate, a 3D filter array was generated by:

rodðr; q;fÞ = N exp
�� rT

�
Rðq;fÞTdiag�s�2

X ;s�2
Y ;s�2

Z

�
Rðq;fÞ�r�; (2)

where r= ðx;y;zÞ, diagð $Þ was the diagonal matrix and the rotation matrix Rðq;fÞ was defined as:

Rðq;fÞ = RY ðqÞRZðfÞ=

2664 cosðqÞ 0 sinðqÞ
0 1 0
�sinðqÞ 0 cosðqÞ

3775
2664 cosðfÞ sinðfÞ 0
�sinðfÞ cosðfÞ 0
0 0 1

3775 (3)

To approximate a cylinder, sY and sZ were set be 1 mm to match the scale of capillaries, while sX was set to be three orders of magni-

tude greater sY . The length of the cylinder was set to be 7 mm. Voxels with value smaller than e�1 were zeroed andN was the normal-

ization factor calculated after zeroing. Since 3D Gaussian distribution was centrosymmetric, we generated 36 rod filters of different
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orientation that uniformly cover the upper half of the unit sphere. These filters were convoluted with the image using Fast Fourier

Transform (FFT) and the maximum response of the correlation value for each voxel was recorded in an array as the

enhanced image Ie.

Ie was used to compute the Frangi vesselness filter (Frangi et al., 1998) at the scale of ss˛f0:5; 1; 2g mm. After smoothing Ie with a

3-dimensional isotropic Gaussian kernelGð0;ssÞwith standard deviation ss, the g-normalized derivatives were computed to form the

Hessian matrices. The ðm; nÞ element of the Hessian matrix for voxel ði; j; kÞ was given by:

Hm;nði; j; kÞ = sg
s

	
v2

vmvn


eIeði; j; k; ssÞ (4)

where g= 1 and ~Ieði; j;k; ssÞ=Gð0;ssÞ � Ie. As a 3 3 3 real symmetric matrix, the eigenvalues of the Hessian matrix l1, l2, l3 were

computed using the analytical formula (Smith, 1961) and sorted in ascending order according to their absolute value

ðjl1j%jl2j%jl3jÞ. The Frangi vesselness response at scale ss was:

Vss =

0 l2 > 0 or l3 > 0

1� e
�1
a

l2
2

l2
3

0@ 1Ae
�1
b

l2
1

jl2l3 j 1� e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1
+ l2

2
+ l2

3

p
c

 !
; otherwise

8>>><>>>: (5)

The vesselness response was repeated for all the scales and the final vesselness response was the maximum response across mul-

tiple scales:

Vði; j; kÞ = max
ss

Vssði; j; kÞ (6)

The vessel maskMv was produced by thresholding the Frangi vesselness response and combined with the intensity maskMint by a

voxel-wise AND operation. The Frangi filter provided a relatively reliable way to recognize the cylindric objects, but failed to detect the

branch point due to the more complicated geometry. To improve the connectivity accuracy, adaptive hysteresis thresholding was

applied to the region outside of theMv to add voxels of high local signal-to-noise (SNR) level near the existing mask intoMv. Finally,

small connected components in the segmentation were removed before the vessel mask in a 240-cube was saved.

Segmentation to graph
We generated a cubic grid of length 1072 mm out of the grid of 240-cubes. These 1072-cubes contained 53 53 5 240-cubes, with a

240 mm overlap with their 6-neighbors. We computed the vessel centerline in each 1072-cube independently, and saved the center-

lines in the included 240-cubes separately. The coordinates of centerline voxels in the overlapping 240-cubes were iteratively up-

dated according to their minimum distance to the boundary of the 1072-cubes. This resulted in a continuous centerline throughout

the brain, where the final position of every centerline voxel was at least 240 mm away from the boundary.

Computing vessel centerline position
For each 1072-cube, themasks in 125 240-cubes were stitched for computing the vessel centerline. First, small holes in the segmen-

tation were filled bymorphological operation. The resulting mask was skeletonized by removing the ’’removable simple points’’ in the

mask from 6 directions iteratively. The ’’removable simple point’’ was defined as the voxel that was not an endpoint (with only one

26-neighbor) and whose removal does not changes the topology of the skeleton (measured by the Euler characteristic) (Lee and

Kashyap, 1994). Note that this algorithm only produced a skeleton that approximates the centerline. To refine the position of the skel-

eton voxels for radius estimation, we assumed that microvessels have the brightest intensity along the centerline andmoved the skel-

eton voxels to their brighter neighbors, if the adjustment did not alter the topology of the skeleton. For each skeleton voxel, we

searched for brighter background voxels in its 26-neighboring, among which we selected the brightest one that (1) was a ’’removable

simple point’’ in the original configuration, and (2) made the original skeleton voxel a ’’removable simple point’’ in its 26-neighbors if it

was added to the skeleton. This ’’centering’’ procedure was carried out iteratively until no skeleton voxel could bemoved. Voxels that

became ’’removable simple points’’ were removed along the way of centering. The centerline voxels radii were initialized as the dis-

tance between skeleton voxels and the nearest vessel boundary by 3D Euclidean distance transform (DT).

To convert the skeleton to graph, skeleton voxels were classified into endpoint, link, and node voxels according to the number of

skeleton voxels in their 26-neighbors. Voxels with more than 2 neighbors were used to construct a mask, from which the connected

components (CC) formed the nodes in the graph. The remaining voxels were used to construct another mask, where the connected

components formed the edge of the graph. To enable a rapid reconstruction of the graph in whole-brain scale, sparse matrices were

used for searching the connected components. AMATLAB structure was designed to store the position and radius of every centerline

voxel in the node and edge connected components, as well as the connectivity between nodes and edges.

Graph refinement
The skeletonization algorithm preserved the topological characteristics of the vessel mask and is highly sensitivity to segmentation

errors: a false positive voxel in the segmentation could lead to a false positive connection, while a false negative voxel could lead to an
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artificial loop or hole. To improve the graph connectivity accuracy, we developed a classifier-based pipeline to automatically refine

the derived vessel graph across the brain.

First, short free-ended links and loops consist of one or two links were deleted. The short free-ended links were mainly artifacts of

the skeletonization algorithm, while short loops were the result of stitching artifacts and noise. Among all the possible configurations

of loops, a ’’self-loops’’ is a link that connect a node back to itself, while a ’’bi-link loop’’ has a pair of links connecting a pair of nodes.

Self-loops are not biologically plausible, though ’’apparent’’ long self-loops could appear when one of the nodes of bi-link loops

happen to be on the edge of the 1072-cube. Short bi-link loops were found to be mainly artifacts under visual inspection. As deleting

a link changed the identity of the connected links, the graph needed to be iteratively updated during deletion, as described below:

Algorithm 1: Delete short free-ended links and short loops

needRefinementQ = true;

while needRefinementQ do

Delete free-ended link of length % 2 mm;

Find links that connect a node to itself (‘‘self-loop’’) and delete the ones

of length % 30 mm;

Find loops that consist of two links and at least one of the links of length

%15 mm. For each of these loops, delete its link with lower average

fluorescence intensity;

Update the graph;

if no link deleted then

needRefinementQ = false;

end

end

Classify links with single unconnected endpoint
The remaining free-ended links could be artifacts or incompletely labeled vessels. For links with one unconnected endpoint, a

random forest classifier was trained to further identify segments for removal using the following features:

d Segment length

d Maximum, minimum, mean, standard deviation and coefficient of variance of the skeleton voxel radii

d Median, coefficient of variance and SNR level of the skeleton voxel intensity

d Intensity difference between the two voxels at the end of the segment

d Ratio between maximum skeleton voxel radius and segment length

d Distance to the nearest unconnected endpoint voxel

d Inner product between the segment tangent vector and the nearest unconnected endpoint tangent vector

d Number of skeleton voxels in the segment of the nearest unconnected endpoint
Classify short links with low SNR level
The inter-capillary distance could be only a few micrometers, which is comparable to the axial optical resolution. These nearby ves-

sels might be incorrectly connected by the segmentation algorithm. We trained classifiers to reduce this type of false positive con-

nections. First, we selected vessel segments with the following criteria as candidates:

d Minimum skeleton voxel intensity is lower than a threshold (depends on the imaging system and image intensity histogram)

d Segment length <25 mm

d Ratio between the sum of endpoints radii and segment end-to-end distance >0:15

Another random forest classifier was trained to identify the false positive connections among the candidates using the following

features:

d Segment length and end-to-end distance

d Maximum, minimum, median, standard deviation and coefficient of variance of the skeleton voxel radii

d Minimum, Mean, median, standard deviation and coefficient of variance of the skeleton voxel intensity

d Relative position of the minimum intensity voxel along the segment skeleton, and its normalized distance to the middle

d Intensity of themiddle skeleton voxel, intensity different between themiddle skeleton and theminimum intensity of the skeleton

voxels

d Ratio between the sum of endpoints radii and segment end-to-end distance

d Ratio between the difference in endpoints radii and the segment length

d Ratio between the middle intensity and the maximum intensity of the skeleton voxel

d Ratio between the middle intensity and the maximum intensity at the two ends of the segment
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d SNR level of the surrounding vessel mask, segment skeleton, and the middle skeleton voxel

d Difference between average endpoint intensity and the middle skeleton voxel intensity, normalized by the average endpoint

intensity

d The z-component of the segment end-to-end unit vector
Purpose and select linkers
For the remaining free-ended links, a modified version of threshold relaxation algorithm (Kaufhold et al., 2012) was used to propose

the possible voxel lists (linkers) that connect the unconnected endpoints to their surrounding skeleton. First, the local volume of

vessel image, existing vessel mask and skeleton were cropped around the unconnected endpoint. The cropped vessel image

was then thresholded by iteratively decreasing intensity threshold until getting a CC that contained both the unconnected endpoint

and voxels in the original vessel mask that are not connected to the unconnected endpoint in the cropped volume. This CC defined

the search space for finding the ’’linker’’ to bridge the endpoint to its neighboring skeleton. Voxels in this search space were used to

construct an undirected graph, where each node had intensity-weighted edges connecting to their 6-neighbors in the CC. The Dijks-

tra’s shortest path algorithm was applied to obtain an ordered set of voxel coordinates (denote as a linker) that maximize the

SNR level.

For each linker, the following features were computed, and the third random forest classifier was trained to further select the linkers

to be added to the existing skeleton.

d Original length of the link with the endpoint

d Number of links in the cropped volume

d Number of adjacent links of the linker

d Linker length, end-to-end distance, straightness, end-to-end vectors of the linker

d Ratio between the length of the linker and the link with the endpoint

d Mean, standard deviation and signal to noise level of the linker voxel intensity

d Mean, standard deviation and signal to noise level of the linker voxel intensity outside the original vessel mask

d Linker radius (derived from the radii of the skeleton voxels near the two ends of the linker)

d Mean, median, standard deviation and SNR level of the voxel intensity in the reconstructed mask of the linker

d Mean and standard deviation of the intensity of the background voxels near the linker mask

d Mean and standard deviation of the ratio between linker-skeleton distance and linker-endpoint distance

d Inner product between the endpoint tangent vector and the linker end-to-end vector

d Number of unconnected endpoints in the link

d Number of times the derivative of the linker voxel - skeleton distance change sign

For a link with one unconnected endpoint, the endpoint voxel might be converted to link voxel if the linker was added, or remain an

endpoint voxel if the linker was rejected by the classifier. For a link with two unconnected endpoints, if the linkers for both endpoints

were rejected, the link was deleted directly. Otherwise, the linkmight become part of a new linkwith 0, 1, or 2 unconnected endpoints.

The remaining links with endpoint(s) could be further refined in the next iteration. The entire graph refinement process was repeated 3

times for each 1072-cubes. In summary, the graph refinement process could be abstracted as below:

Algorithm 2: Graph refinement

i = 0; needRefineQ = true;

while i < 3 & needRefineQ do

i = i + 1;

Delete short free-ended links and short loops;

Find, quantify, and classify links with single endpoint to delete. Update

graph;

Find, quantify, and classify short links with low SNR to delete. Update

graph;

Find, quantify, and classify linkers to add. Update graph;

Delete unmodi_ed links with two unconnected endpoints;

Delete short free-ended links and short loops;

if graph is not modified then

needRefineQ = false

end

end

We implemented a MATLAB GUI to facilitate labeling link CCs for training the classifiers. Thousands of link CCs from a few 1072-

cubes in different regions of the brain were labeled and randomly split into 80%–20% for training and testing, respectively. The re-

sulting classifiers were used for automatically refining the vessel graph in the whole brain. All classifiers achieved more than 95%

accuracy.
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Super-resolution radius estimation
Wepre-computed the light intensity profiles near vessels of different radius at different orientation. These intensity profiles were used

to iteratively estimate the vessels radius and the Point Spread Function (PSF) in selected brain regions, and the resulting averaged

PSF was used to estimate vessel radius throughout the brain.

Vessel image profile simulation
PSFwasmodel as a 3DGaussian with diagonal covariancematrix diagðsxy; sxy; szÞwith rotational symmetry on x-y plane. Vessel was

locally approximated as a cylinder along x-direction, of radius r and elevation angle q (with respect to the horizontal plane) with uni-

form lumen fluorescence density. The 3D theoretical vessel images were computed as the convolution between the cylinder and the

PSF. The simulation voxel size was chosen to be less than 20% of the smallest relevant scale (r, sxy, and sz). For each set of param-

eters, lateral radial (along y-direction) and axial radial (along z-direction) intensity profile (Ixyðyjr; q;sxy ;szÞ and Izðzjr;q;sxy;szÞ) were

recorded and the normalized edge intensity in the radial direction on horizontal plane was defined as:

Ith
�
r; q; sxy;sz

�
=
Ixy
�
r
��r; q; sxy;sz

�
Ixy
�
0jr; q;sxy;sz

�: (7)

The simulation was done for series of radius ðr ˛½0:5;15� mmÞ, elevation angle ðq˛½0;p =2�Þ and PSF size (FWHMxy˛½0:45; 2� mm and

FWHMz˛½1:33;12� mm).

Radius estimation with a known PSF
Initially, vessel radius r was estimated as the distance between skeleton voxel and the nearest voxel not in the vessel mask. Vessel

segment local elevation angle q was calculated using the coordinates of the neighboring skeleton voxels. Given PSF parameters,

radius estimation was refined iteratively in the following way:

Algorithm 3: Radius estimation

r0 = –1; n = 1; N = 6;

Initialize radius estimate re from vessel segmentation;

Calculate skeleton voxel position xs in 0:25 mm resolution image stack;

Crop 0:25 mm resolution image stack around xs according to re, denote as

I xð Þ;
Locally search for the intensity maximum Imax around xs;

Estimate background light intensity level Ibg;

Normalize light intensity: In xð Þ= I xð Þ�Ibg
Imax�Ibg

;

while r0sre & n % N do

r0 = re, n= n+ 1;

Use re and q to calculate normalized edge intensity Ithðre;q;sxy;szÞ;
Generate local vessel segmentation M xð Þ= In xð ÞRIth;

Apply morphological close to M xð Þ;
Compute 2D distance transform D xð Þ for each horizontal plane of M xð Þ;
re = Local maximum of D xð Þ around xs;

end

The estimation normally converged within 3 iterations.

Radius - PSF joint estimation
The radius estimation algorithm mentioned above assumed known PSF inside the tissue, but the actual PSF size in tissue differed

from the measurement under ideal imaging conditions. To improve the accuracy of radius estimation, we iteratively estimated

both PSF and vessel radius by an additional layer of PSF estimation:

Algorithm 4: PSF-Radius Joint Estimation

Lmax = � 1; L0 = � 2; n = 0; N = 6;

Initialize sxy and sz by rough estimation from image;

Initialize re from vessel segmentation;

while L0 <Lmax & n < N do

n = n + 1, L0 =Lmax;

Calculate skeleton voxel position xs = xs; ys; zsð Þ in 0.25 mm resolution

image stack; Update re using Algorithm 3;

Get axial intensity profile at: izðzjxs;ysÞ;
Get lateral radial intensity profile ixyðbr jf;zsÞ, where f is the azimuth

angle of the vessel radial direction, and br = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xsÞ2 + ðy � ysÞ2

q
;

For all the simulated PSF parameter sets fPxy;
P

zg, calculate the
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angle-weighted normalized cross-correlation C(d, d) between measured

light intensity i and simulated light intensity I:

LðPxy;
P

zÞ= 1
1+ cosðqÞ fCð

��ixy��ðbr jf;zsÞ; Ixyðbr jre;q;Pxy;
P

zÞÞ + cosðqÞCðizðzjxs;ysÞ; Izðzjre;q;
P

xy;
P

zÞÞg;
Update PSF estimation by maximizing L:
fLmax;sxy;szg= arg maxP

xy
;
P

z

LðPxy ;
P

zÞ;
end

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample deformation correction
Sample deformation was quantified by comparing the vascular images in different steps of the sample preparation process with the

in vivo images. In Brain2, part of the vasculatures in somatosensory cortex was imaged in vivo and right after perfusion before the

brain was extracted. The vessel centerlines in post-perfusion images were aligned to the vessel centerline voxels in the in vivo images

by similarity transformation to quantify the scale changes during perfusion. After whole brain vasculature imaging and reconstruction,

the final vessel centerlines were registered to the post-perfusion vessel skeleton by Affine transformation. Sample deformation in

three-dimensions was quantify by QR decomposition of the Affine transformation matrix. A very uniform sample shrinkages was

found in three orthogonal directions and therefore their geometric average (1.051) was applied to correct the length scales. (Fig-

ure S3). To further quantify the stability of the shrinkage, the same sample preparation procedures were applied to the brains

used for vascular radius calibration experiments. For ten 180 mm3180 mm3400 mm volumes in one brain, a linear scaling factor of

1.048 ± 0.007 was found. The extra sample deformation due to the delipidation process applied to Brain 3 was quantified by regis-

tering its whole brain image stack to the whole brain image of Brain 1 at 16 mm isotropic resolution using similarity transformation in

MATLAB. The resulting linear scaling factor of 1.0926 was applied to correct the length scales.

Perfusion labeling quality quantification
The in vivo and post perfusion cortical vascular images used for vessel radius calibration were processed to extract the vessel skel-

eton. Vessel skeleton was used to compute the similarity transformations from the post perfusion image to the in vivo images. The

post perfusion images were transformed to overlay on the in vivo images according to the similarity transform. To facilitate visual in-

spection, RGB images were synthesized by using the in vivo images as the red channel, the post perfusion images as the blue chan-

nel, and the average of the in vivo and post perfusion images as the green channel. Moreover, the reconstructed vessel graphs in the

post perfusion images were transformed and added to the green channel (of value 255), while the unconnected endpoints were

added to the red channel (of value 255). For each channel, 20 mm moving maximum intensity projection was computed and the

max-projection images were further enhanced by saturating the grayscale value of 2.5% of the pixels. Classifier-based graph refine-

ment was not applied the extracted vessel skeleton, and therefore the position of the unconnected endpoints helped to highlight the

potential unlabeled vessels in the post perfusion image. The unlabeled parts of the vessel segments in the post perfusion images had

signal level comparable to its adjacent background. The image stacks were inspected multiple times and any uncertainties in the

filling completeness were verified in the original images. 15 regions of size 18031803400 mm3 from 3 mice (5 regions from each)

were inspected. Among 2835 inspected vessel segments, 7 were partially unlabeled (Figure S1).

Registration to Allen mouse brain atlas
Whole brain image stacks were down-sampled to 25 mm isotropic resolution and aligned to the Allen mouse common coordinate

framework version 3 (CCFv3). The nucleus staining channel of Brain3 was registered to the average template at 25 mm using inten-

sity-based Affine transformation in the BRAINS module of 3D Slicer (https://www.slicer.org/) (Fedorov et al., 2012), and the registra-

tionwas further refined by iterative landmark thin-plate registration. Registration was saved as deformation field to transform the atlas

annotation and the binary hemisphere mask to the image space by nearest-neighbor interpolation. For Brain1 and Brain2, vascular

images of Brain3were used as anatomical template for both the Affine transformation and landmark registration. The resulting defor-

mation fields were used to transform the registered annotation of Brain3.

Reconstruction quality quantification
To quantify the reconstruction quality of the microvascular network, six 240-cubes were randomly selected from cortical regions,

thalamus, superior colliculus and pons to reconstruct the microvascular network and visualized using itk-snap software (Yushkevich

et al., 2006) along with the image at 1 mm resolution. To highlight the vessel segments with unconnected endpoints inside the volume,

unconnected endpoints voxels that are at least 1 voxel away from the cube edges were reconstructed as spheres and visualized in a

separate color (green). Reconstruction errors, including unconnected segments, potential false positive connections due to the prox-

imity of microvessels, sample preparation and image processing, were detected by visually tracing the reconstruction mask overlaid

on the image and inspecting the three-dimensional visualization. Among 2133 inspected segments, 1 false positive connection and 2

unconnected segments were founded (Figure S1).
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Vascular network features
Link features

Vessel segment i with ni skeleton voxels was recorded as an ordered set:

Ei =
n
x
ðiÞ
1 ; x

ðiÞ
2 ;.; xðiÞ

ni

o
; (8)

where voxel at x
ðiÞ
j was the 26-neighbor of voxels at x

ðiÞ
j�1 and x

ðiÞ
j + 1. Each skeleton voxel jwas associated with a radius and the radius of

the vessel segment ri was defined as the median of its skeleton voxel radii.

d Length: li = 1+
Pni�1

j = 1 kx ið Þ
j � x

ið Þ
j + 1 k 2

d End-to-end vector: VðiÞ
e = x

ðiÞ
ni � x

ðiÞ
1

d End-to-end distance: d
ið Þ
ep = kV ið Þ

e k 2 + 1

d Orientation vector: v
ðiÞ
e =VðiÞ

e =d
ðiÞ
ep

d Surface area: Si = 2pri li
d Volume: Vi =pr2i li
d Straightness: si =d

ðiÞ
ep=li

d Tortuosity: li=d
ðiÞ
ep

d Tangent vector at endpoint x
ðiÞ
1 ðxðiÞni Þ: vðiÞt;1 ðvðiÞt;2Þwas the leading principal component of the 3D coordinate of the first (last) 10 (or

ni) skeleton voxels in the vessel segment i, with negative (positive) inner product with the orientation vector v
ðiÞ
e (v

ðiÞ
e $ v

ðiÞ
t;1 < 0, v

ðiÞ
e $

v
ðiÞ
t;2 > 0).

d Is capillary: Qi equals 1 if the link has radius ri no greater than rcap = 3:5mm and 0 otherwise.

d Capillary branch order: geodesic distance to the nearest non-capillary. Starting from noncapillaries, the vessel segments

directly connect to the noncapillaries are defined as capillaries of branch order 1. The unlabeled capillaries directly connect

to the branch order 1 capillaries are defined as branch order 2. The labeling continues until no capillary segments can be

labeled.

d Number of edges in the shortest loop: number of vessel segments in the shortest loop measured by segment length

Distance transform with respect to the reconstructed vessel mask gave the distance transform field dðxÞwhose value at xwas the

minimum distance between the tissue at x and the nearest reconstructed vessel wall. In single vessel segment removal perturbation

analysis, denote the distance between tissue at x and its nearest vessel after perturbation as dpðxÞ. For vessel segment i, the voxels in

the tissue whose distance to segment i was smaller than to any other segments were defined to be in the tissue territory ti of

segment i.

d Maximum distance to the territory tissue: d
ðiÞ
max =MaxfdðxÞ interritoryg=maxx˛tifdðxÞg

d Maximum distance between the territory tissue and the nearest vessel after perturbation: d
ðiÞ
max;p =maxx˛tifdpðxÞg

d Average increment of tissue-vessel distance after perturbation: CDd ið ÞD=

R
ti

dx

"
dp xð Þ�d xð Þ

#
R
ti

dx
d Increase of maximum tissue-vessel distance: Dd

ðiÞ
max =d

ðiÞ
max;p � d

ðiÞ
max

Node features

The node connected components contained one or more skeleton voxels and were stored as unordered set of skeleton voxel

coordinates:

Ni =
n
x
ðiÞ
1 ; x

ðiÞ
2 ;.xðiÞ

ni

o
(9)

d Branch to the nearest node: number of vessel segments in the shortest path from node i to its nearest node in 3D space

d Maximum,median, andminimumbranch angles between link tangent vectors: ft;max, ft;med, ft;min were the largest, median and

smallest angle (in degree) between the tangent vectors of the vessel segments (link) endpoints that connected to node Ni

d Maximum,median, andminimumbranch angles between link end-to-end vectors: fe;max,fe;med, fe;min were the largest, median

and smallest angle (in degree) between end-to-end vectors of the vessel segments (link) that connected to node Ni

d

����bnt12$vt3

����: The tangent vectors of the two connected endpoints were used to define the normal unit vector bn = vt13vt2
kvt13vt2 k 2

. The

absolute value of the inner product between the normal unit vector bn and the third tangent vector vt3 quantified the how close

the connected vessel branches were on the same plane.

240-cube features

Vessel segments were extended objects that might be partially present inside the 240-cube. For a 240-cube with nE vessel segments

passing by:
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d Vessel length density: rl =
1
Vc

PnE
i li fi, where fi was the fraction of vessel skeleton voxels inside the bounding box of the 240-cube

and Vc was the volume of the 240-cube ðVc = 2403 mm3Þ
d Capillary length density: rlc =

1
Vc

PnE
i li fiQi

d Similarly, the vessel (capillary) surface area density and volume density could be defined

d d: Average distance transform value over the extravascular space in the cube.

d dmax: average value of the DT local maxima inside the cube. Local extrema of dðxÞ were found by a 50 mm width moving

maximum filter.
Local vascular network anisotropy
The end-to-end vectors of the vessel segments inside the 240-cubes were used to quantify the network anisotropy. The end-to-end

vector represents the net orientation of the vessel segment, as it equals the integral of the vessel tangent vector along the segment.

The volume of a 240-cube is about an order of magnitude larger than the iter-vessel distance, while relatively small compare to the

brain structures.

For vessel segment i, the volume-weighted orientation vector was Viv
ðiÞ
e . As the order of two segment endpoints were assigned

randomly,�Viv
ðiÞ
e was also the volume-weighted orientation vector of segment i. To remove the randomness in endpoint assignment,

the volume-weighted orientation matrix of the N vessels was a 2N-by-3 matrix with each column sum to 0:

M =

26666666666664

V1

�
ve

ð1Þ�T
:::
VN

�
ve

ðNÞ�T
�V1

�
ve

ð1Þ�T
:::
�VN

�
ve

ðNÞ�T

37777777777775
(10)

The 3-by-3 correlation matrix C was computed asMTM=ð2N � 1Þ, from which the three eigenvalue l1, l2 and l3 were obtained. The

preferred orientation of the local vascular network was given by the eigenvector corresponded to the largest eigenvalue, while frac-

tional anisotropy (FA) was used to quantify the absolute anisotropy level of the network:

FA =

ffiffiffiffi
1

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1 � l2Þ2 + ðl2 � l3Þ2 + ðl3 � l1Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 + l22 + l33

q (11)

For isotropic network, as N/N, l1 = l2 = l3 = 1=3, and therefore FA = 0, while if all the vessel segments were along one direction,

FA = 1. For finite N, the statistical significance of network anisotropy was quantified by Monte Carlo sampling. The same volume-

weights were assigned toN unit orientation vectors randomly sampled from the surface of a unit sphere to compute FA. The sampling

was repeated for 10000 times, and the resulting null hypothesis distribution was used to compute the z-score FAz and p value FAp of

the local vascular network. For visualizing p value in log scale, FAp < 10�4 was set to be 5310�5.

Regional bond percolation transition
For each brain region in each hemisphere, a vessel graph was reconstructed and reduced to an undirected graph. A fraction of edges

in the graph were randomly removed according to a removal fraction p, and the fraction of nodes in the largest graph connected

component sðpÞwas computed. The process was repeated for 500 times for each removal fraction and each region. The percolation

transition threshold was computed as the value of removal fraction p that maximize jds =dpj.

Geometric scaling relations
Suppose vascular network is a cubic lattice with segment length l that fills a chuck of tissue of length L, the volume of the tissue is L3,

the total length of the vessels is Ltot = 3L3=l2, and the vessel length density rL is therefore 3=l2. The average distance between any

point in the space to the nearest edge could be calculated as:

d =

R l=2

0
dx
R l=2�x

0
dy
R l=2�x

0
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 + z2

pR l=2

0
dx
R l=2�x

0
dy
R l=2�x

0
dz

=

ffiffiffi
2

p
+ sinh�1ð1Þ

8
l; (12)

and therefore

d =

ffiffiffi
3

p 
 ffiffiffi
2

p
+ sinh�1ð1Þ

�
8

r
�1=2
L = 0:497r

�1=2
L (13)
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The distance between tissue and its nearest vessel is maximized at the center of each cube, and therefore the DTmaximum is dmax =ffiffiffi
2

p
l=2, and its relation with vessel length density is:

dmax =

ffiffiffi
3

2

r
r
�1=2
L = 1:225r

�1=2
L (14)

Though derived for cubic lattice, we expected the scaling relation dmaxfr
�1=2
L to hold for any regular space-filling networks, while the

slope n depends on specific network geometry, indicating howwell a network can reduce themaximum distance between tissue and

vessels, given the same length density. Moreover, if we consider vessels of finite radius r0, then as dmax is the distance between tissue

and the vessel wall, we have:

dmax = nr
�1=2
L � r0 (15)

For regular degree-3 lattices, the slopes for the scaling relations are numerically computed from their three-dimensional reconstruc-

tion. For all these regular lattices, dmax =dmax in the main text. Equation 15 is Equation 1 in the main text and is used for the fitting in

Figure 6F.

Diffusive substrate transport and consumption
Consider steady state metabolic substrate exchange between vessel and tissue through diffusion. By assuming constant substrate

concentration on vessel wall, tissue metabolism rate k, and diffusion coefficient D, the concentration difference between the tissue

and vessel wall DcðrÞ in the tissue at r= ðx; y; zÞ can be described by the Poisson equation:

V2 Dc rð Þð Þ= k

D
; r˛Utissue

Dc rð Þ= 0; r˛vUvessel

8<: (16)

Concentration depends on metabolism rate, vessel geometry, and diffusion rate. However, Equation 16 is linear, with a constant

inhomogeneous term and a constant Dirichlet boundary condition. Therefore, we can solve the following equation for the ’’normalized

concentration difference’’ uðrÞ:
V2u rð Þ= 1; r˛Utissue

u rð Þ= 0; r˛vUvessel

�
(17)

and obtain DcðrÞ by a linear transformation:

DcðrÞ = k

D
uðrÞ (18)

In other words, under our assumption, the effects of network geometry on tissue substrate concentration can be separated from

properties specific to the substrates (k, D and c0).

We numerically solved Equation 17 using iterative multi-scale finite difference method. The numerical solutions were obtained for

the reconstructed vessel mask at different resolutions. Solutions from lower resolution were interpolated to initialize the solution at

higher resolutions. The final resolution of 2 mm was a compromise between relevant scale of capillaries, target precision and the

computation resource. At each resolution, iteration was terminated when the maximum relative update was less than 13 10�6 or

the maximum iteration number (20000) was reached. At 2 mm voxel resolution, the solution near vessel wall was not accurate, but

our analysis focused on the local concentration minimum. For a typical tissue volume, uðrÞ calculated from 1 mm and 2 mm resolution

only differed by less than 3% for tissuesmore than 20 mm away from the vessel wall. Themaximum iteration number was set such that

the characteristic diffusion distance is about an order of magnitude longer than the typical inter-capillary distance. The brain was

divided into cubes of length 816 mm and each cube had 160 mm overlap with its 6-neighbors. Adiabatic boundary condition was

applied on the systemboundary, and the overlapping volume (80 mm on each side) was necessary for eliminating the boundary effect.

The solutions in these 816mm-cubes were divided backed into 240-cubes for the following analysis.

We assumed the tissue metabolism rate k to be the same within each 240-cube, as 240 mm is smaller than the scale of typical

anatomical regions that could be resolved by metabolic measurements in the brain. We used a 50 mm square moving window to

search for local normalized concentration minima umin =DcminD=k at rumin
in each 240-cube. Note that under this assumption, the lo-

cations of uðrÞ local minima are exactly the same as DcðrÞ’s (i.e., rumin
= rcmin

). The distance transform was used to compute the dis-

tance between each local concentration minima and its nearest vessel wall dcmin
=dðrumin

Þ. For each 240-cube, we compute the

average of local concentration minimum value umin and the average distance between local concentration minima and their nearest

vessel wall dcmin
.

A critical observation is that, under our assumptions, uðrÞ tends to be minimized at the places that dðrÞ is maximized. Note that

though this is intuitively true for some simple system geometries, in general it is not the case. A simple counterexample is:
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d2c rð Þ
dr2

+
1

r

dc rð Þ
dr

= k; r˛ R1;R2½ �;

c R1ð Þ= c R2ð Þ= c0;

8><>: (19)

whose concentration is minimized at

rc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 � R2
2

2logðR1=R2Þ

s
(20)

but the shortest distance to either cylinder is maximized at ðR1 +R2Þ=2. However, with the solutions of both dðrÞ and uðrÞ in 91751

240-cubes across 3 brains, we found dcmin
= 1:001dmax (Equation 2 in themain text) withR2 = 0:88 (Figure 7C). The dependence of this

approximation on the window size used for searching the local extrema was further analyzed and shown in Figure S5.

We then looked for an analytical formula to approximately relate umin with dmax. First, notice that generally uðrÞ deceases as dðrÞ
increases (Figure 7B), but the spread of the joint distribution indicates the complexity of the numerical solution due to the vascular

network geometry. Second, at local concentration minima, the concentration gradient vanishes (Vuðrumin
Þ= 0), and so does the diffu-

sion flux. Therefore, we looked for a formula that (a) describes substrate diffusion from vessels wall, (b) has concentration minimized

at dcmin
, and (c) has a maximum tissue-vessel concentration difference umin.

The Kroghmodel (Krogh, 1919) is a special case of Equation 16, where one infinitely long cylindric vessel of radius r0 presents in the

tissue, and the concentration reaches a minimum level cmin at tissue dcmin
away from the vessel wall:8>>>>><>>>>>:

1

r

d

dr

�
r
dc

dr

�
=
k

D
; r˛ðr0; rmaxÞ

cðr0Þ= c0;

dc

dr
jr = rmax

= 0;

(21)

where rmax =dcmin
+ r0. The solution gives the maximum substrate concentration difference between tissue and vessel as:

DcðrmaxÞ = k

D

	
� r2max

2
log

�
rmax

r0

�
+
r2max � r20

4



=
k

D
uðrmaxÞ: (22)

Note that Equation 22 takes the same form as Equation 18 and terms inside the squared bracket uðrmaxÞ completely depend on the

vessel geometry. The Krogh model was derived for vessels in the mussel, where capillaries are aligned along one direction with rela-

tively uniform spacing. Brain capillary network is far less regular, and our numerical solution suggested that uðdmax + r0Þ calculated
from Equation 22 is about 100% higher than umin. Nonetheless, Equation 22 provides a simple relation between concentration dif-

ference and vessel geometries for substrates transported through diffusion. To reconcile the quantitative difference, we used Equa-

tion 22 as a ’’functional form’’ to fit umin with respect to dmax using linear regression, and denote the slope as l:

umin = � l

2

	
r2max

�
log

�
rmax

r0

�
� 1

2

�
+
r20
2



; (23)

where rmax =dmax + r0. This is the equation used for fitting l in Figure 7D. For 91751 240-cubes across 3 brains, the fitting yielded l=

0:5185 with R2 = 0:897. Note that Equation 23 relates normalized concentration difference to vascular network geometrical param-

eters, and is independent of substrate properties andmetabolism rate. The accuracy of the fitting suggests that the functional form of

the Krogh model capture most of the dependence of umin on dmax, while l captures the shared structural properties of the vascular

network across the brain. The Krogh model describes diffusion from a single vessel segment, while l is a structural parameter that

relates the single vessel solution to the vascular network solution (only for the local extrema).

We applied Equation 23 for oxygen transportation in the brain under homeostasis. Using Equation 18, the oxygen consumption rate

kO2
can be expressed as:

kO2
=

2aO2
DO2

l

	
r2max

�
log

�
rmax

r0

�
� 1

2

�
+

r2
0

2


DpO2; (24)

where oxygen concentration has been converted to partial pressure through oxygen solubility aO2
, and DpO2 is the oxygen partial

pressure difference between vessel wall and tissue oxygen partial pressure minimum.

Furthermore, using the scaling relation between dmax and vessel length density Equation 15, and the oxygen-glucose index k=

kO2
=kglu, we obtained a relation between vessel length density and glucose metabolism rate:
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kglu =
4aO2

DO2

kl

rL

n2
�
logðn2Þ � 1� log

�
r20rL

��� r20rL
DpO2

z
4aO2

DO2

kl

rL

n2
�
logðn2Þ � 1� log

�
r20rL

��DpO2; (25)

wherewe took the limit of rLr
2
0 � 1 in the last step. Note that in the denominator the logarithmic term in rL grows slowly, and therefore,

regional glucose metabolism rate kglu is approximately linear in vessel length density rL if DpO2 is held a constant. This is the Equa-

tion 3 visualized in Figures 7E and 7F.

Reported statistics
d Figure 1J: For each 240-cube, we compute the fraction of the included vessel segments with at least one unconnected

endpoint. This fraction is computed for the internal 33 33 3 240-cubes in a 1072-cube, and the ’’included’’ vessel segments

has at least one centerline voxel inside the 240-cube. Figure 1J shows the cumulative probability density function of this fraction

for all the 240-cubes inside three brains separately.

d Figures 3C–3E: For each 240-cube, we compute the probability density functions of the features. For a given feature, the PDFs

of 105,252 240-cubes in 3 brains are merged directly to compute the boxplots. Each whisker shows the distribution of prob-

ability density for the feature within the range specified by the binning edges. Themaximumwhisker length is computed as 1:53

ðq3 �q1Þ by default, where q1 and q3 are the 25th and 75th percentiles, respectively. Outliers are not shown.

d Figure 3F: For each brain, the probability density function of the vessel segment radius is computed and plotted as solid dots.

These probability density functions are computed with the same bins of radius, and therefore are used to directly compute the

average probability density and the standard deviation, for each radius bin, as shown in the purple solid curve and the

shadow patch.

d Figure 3G: For each brain, the probability density function of the capillary branch order is computed with the same bins. The

plotted solid curves and the shadow patch show the mean and standard deviation of the probability density functions over 3

brains.

d Figure 3H: For each structure in each hemisphere, 500 percolation simulations are computed to obtain the average percolation

transition curve. Each curve in Figure 3H is the averaged curve over 6 hemispheres. For display clarity, standard error is

not shown.

d Figure 4D: For each 240-cube, we quantify network anisotropy for vessel segments of radius between 0 and rmm, where r takes

the values on the x axis. For each radius upper limit, data from brains are merged to generate the boxplots.

d Figure 4F: For each structure in each hemisphere, we compute the average anisotropy andmedian p value for all the 240-cubes

inside the structure for each range of vessel segment radius. The upper panel shows the average and standard error of average

anisotropy over 4 hemispheres. The lower panel shows themedian and 25-75 percentiles interval of the p values across 4 hemi-

spheres.

d Figure 4G: For each structure in each hemisphere, we compute the average projection of the principal orientation unit vector of

the capillary network to the normal direction of the cortical surface across all the included 240-cube and the median of the p

value. The upper panel shows the average and standard error of the average projection across 4 hemispheres. The lower panel

shows the median and 25-75 percentiles interval of the p value across 4 hemispheres. The normal direction to the cortical sur-

face is computed according to the gradient of the distance transform with respect to the brain surface.

d Figure 5B: For each structure in each hemisphere, we compute the probability density function of the capillary length density for

all the 240-cubes inside the structure. Each curve and the shadow area show the mean and standard deviation over 6 hemi-

spheres. Same method for Figures 6B and 6D.

d Figure 5C:We use the distance transformwith respect to the brain surface to bin the vessel centerline at different cortical depth,

and compute the capillary length density within each bin. Each curve and the shadow area show the mean and standard de-

viation over 6 hemispheres.

d Figure 5D: For each structure in each hemisphere, we compute the probability density function of the capillary segment length

inside the structure. Each curve and the shadow area show the mean and standard deviation over 6 hemispheres. Same

method for Figures 6H and 6I.

d Figure 5E: The lengths of all the vessel segments in each brain are used to compute the probability density function. The

average and standard deviation of the resulting density functions are shown as solid line and shadow area, respectively.

d Figures 6C, 6E, 7C, and 7D: two-dimensional joint histogram for features in 91,751 240-cubes from 3 brains, where capillaries

account for more than 50% of the vascular volume inside the cube.

d Figure 7E: For each regions in each brain, the length densities in the 240-cubes in both hemispheres are combined to compute

the median and 25-75 percentiles.

d Figure 7F: For each regions, the length densities in the 240-cubes in all 3 brains are combined to compute themedian and 25-75

percentiles for the rodent data points.
Neuron 109, 1–20.e1–e13, April 7, 2021 e13


	NEURON15570_proof.pdf
	Brain microvasculature has a common topology with local differences in geometry that match metabolic load
	Introduction
	Results
	Extracting an annotated graph that preserves physical dimensions
	Segmentation
	Skeletonization and graph construction
	Graph refinement
	Super-resolution vessel radius estimation
	In vivo radius calibration
	Basic topology and geometry
	Coordination
	Loops
	Compactness
	Definition of capillaries
	Structural basis of network robustness

	Anisotropy of the brain capillary networks
	Descriptive statistics of regional capillary lengths
	The distance map from locations in the extravascular space to vessels
	Tissue-to-vessel distance scales with vessel length density
	Consequence of deleting a single capillary

	Structural basis of diffusive transport from vessels

	Discussion
	Vascular anisotropy
	Methodological issues
	Relation to Krogh-Erlang model

	Supplemental Information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★methods
	Key Resources Table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Vascular fluorescent-gel fill based labeling
	Chronic cranial window preparation
	Vascular radius calibration imaging
	Tissue preparation and whole brain imaging
	Image stitching
	Computational resources
	Image segmentation
	Segmentation to graph
	Computing vessel centerline position
	Graph refinement
	Classify links with single unconnected endpoint
	Classify short links with low SNR level
	Purpose and select linkers
	Super-resolution radius estimation
	Vessel image profile simulation
	Radius estimation with a known PSF
	Radius - PSF joint estimation

	Quantification and statistical analysis
	Sample deformation correction
	Perfusion labeling quality quantification
	Registration to Allen mouse brain atlas
	Reconstruction quality quantification
	Vascular network features
	Link features
	Node features
	240-cube features

	Local vascular network anisotropy
	Regional bond percolation transition
	Geometric scaling relations
	Diffusive substrate transport and consumption
	Reported statistics





