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Nobel honors for John Hopfield,
who ushered attractor dynamics
into neuroscience
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John Hopfield’s model on collective computation linked the recall of memories with interactions and dy-
namics associated with disordered magnetic systems. Insights from Hopfield’s work catalyzed formulations
that link the dynamics and emergent properties of recurrently connected generic neurons with the functional
properties and signaling observed from brain circuits.
The Nobel Prize in Physics was awarded

jointly to John Hopfield and Geoffrey

Hinton. The Nobel committee notes the

importance of Hopfield’s contribution to

‘‘ . inventions that enable machine

learning with artificial neural networks

.’’ Here, I provide a perspective on the

influence of his work on neuroscience

and on physicists who entered neurosci-

ence because of him. I had the privilege

to overlap with Hopfield for a decade at

the former AT&TBell Laboratories, Murray

Hill, and to get to know him personally.

Hopfield enjoys referring to himself as a

dilettante, which correctly reflects his in-

terest in many scientific areas yet belies

his deep knowledge and significant con-

tributions to those areas.

Hopfield began his scientific career in

solid-state physics.1 The subject of his

1958 thesis work, under the supervision

of Albert Overhauser, was on electromag-

netic excitation modes in solids. After

completing his doctoral studies, Hopfield

became a member of the theoretical phys-

ics department at Bell, only to leave after

2 years for the University of California,

Berkeley (1961–1964), then onto Princeton

University (1964–1980), the California Insti-

tute of Technology (1980–1997), and finally

back to Princeton (1997). All the while, he

remained a consultant at Bell. While Hop-

field’s scientific careerwas initially focused

on the properties ofmaterials and the inter-

action of light with matter, he showed a

growing interest in the physics of life.

Two of the papers that resulted from this

shift, both published in 1974, are now clas-
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sics. The first is on thermally assisted elec-

tron tunneling among reduction-oxidation

centers in large biomolecules.2 Electrons

are always in equilibrium on the timescale

of nuclear motion, and thus, thermal mo-

tion of large molecules provides the limit

to electron transfer. This leads to quantum

mechanical effects at room temperature in

some large biomolecules, as seen in the

initial step of photosynthesis. The second

paper is on error correction in ‘‘highly spe-

cific biosynthetic reactions.’’3 This led to a

qualitative jump in the understanding of the

replication and transcription of DNA. Hop-

field showed how the precision of molecu-

lar reactions could be increased without

bound through the consumption of energy.

Thus, errorswould be reduced to arbitrarily

small levels. Hopfield’s work in molecular

biophysics was widely appreciated by bi-

ologists and physicists alike.

Despite the acclaim for his work in mo-

lecular biophysics, the appreciation of the

neuroscience community to Hopfield’s

eponymous model was less than univer-

sal. In his 1982 paper titled ‘‘Neural net-

works and physical systems with emer-

gent collective computational abilities,’’4

Hopfield proposed a deceptively simple

and effective model network to address

two predominant attributes of memory

by brains. First, brains store memories

and then recall those memories based

only on partial information. For example,

the seed ‘‘To . or not . be, that . ’’

leads to the completed prose ‘‘To be or

not to be, that is the question.’’ Hopfield

networks will complete a pattern in the
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served, including those for text and data mining
sense that an input to the network of

only part of a memory can seed the recall

of the complete memory (Figure 1A). Sec-

ond, the process of recall must occur as a

parallel, robust process. This means that

all model neurons continuously update

their output so that, in some sense,

the output ‘‘flows’’ to a memory state.

This is the notion of an attractor. While

precedents are found in the literature,

e.g., by Shun-Ichi Amari in 1972, it was

Hopfield who introduced a formulation

that was tied to statistical mechanics

and provided a ready path to general as-

pects of computation.

Hopfield’s model contains only one

type of neuron with either excitatory or

inhibitory connections. This stands in

opposition to the extensive diversity of

neuronal cell types, each with different

rules for connectivity and spiking activity,

that are found in brains. Thus, Hopfield set

up a dichotomy for the emergence of

computational properties of nervous sys-

tems: can they arise solely from the col-

lective dynamics of simple elements, as

implied by his model, or is the vast

breadth of biophysical properties found

in neurons and synapses of fundamental

importance?

Emergence of rich structure from
underlying simplicity
The output of a Hopfield network is

described in terms of states—that is, a

vector that lists which neurons are active

and which are quiet. This is not just an ab-

stract notion. Concurrent recordings from
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, AI training, and similar technologies.
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Figure 1. Pattern completion in a Hopfield network
Forty thousand threshold units were used as neurons, and 1,000 memories were stored. One neuron at a
time was randomly selected, and its output was updated if it differed in sign from its input.
(A) States arranged as 200-by-200-pixel images. An incomplete memory forms the initial state. The final
state matches the closest memory.
(B) The output of 30,000 of the 40,000 neurons shown as a raster plot, where black is Si = +1 and white is
Si = �1. Each time step corresponds in N potential updates by Glauber dynamics.
(C) Energy as a function of update monotonically decreased as the network relaxed from the initial state to
the nearest memory. The red line corresponds to convergence to the final stable state, amemory. The blue
scale is logarithmic to highlight small changes in energy.
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many sites in real nervous systems tend to

exhibit persistent patterns of spiking ac-

tivity that suggest the utility of a descrip-

tion in terms of states.

Hopfield showed that the sign and

strength of synaptic weights, i.e., a switch-

board of connections between neurons,

could be chosen so that a network could

store and recall a multiplicity of memories.

Starting from some initial pattern, the dy-

namics of the network would drive the

output to the closest memory. This pro-

cess has limits; as more and more mem-

ories are summed together, the ability to

recall memories is degraded because of

incoherent interference between different

stored memories and eventually lost.

A review of the mathematics of the

Hopfield network reveals how stability of

a memory is maintained, the role of

quenched disorder in limiting the number
3820 Neuron 112, December 4, 2024
of memories that can be stored, and the

flow of network dynamics on an energy

landscape.

Dynamics

The state of the network is given by the

output of each neuron, which is taken

to be +1 for active and �1 for quiescent.

The state is represented by a vector,

denoted by S. This takes the form S =

ð+ 1 + 1 �1 �1/Þ, for example, when

the first two neurons are spiking, the

next two are quiescent, etc. The neurons

interact through synaptic connections, a

symmetric set of connections in this

idealized case, which is represented by

a switchboard or matrix, denoted W.

Element Wij in the matrix connects the

output (axon) of neuron ‘‘j’’ to the input

(dendrite) of neuron ‘‘i.’’ The recurrent

dynamics of the network follows Glauber

dynamics: neurons asynchronously up-
date their output based on the summed

input from all neighbors, i.e.,

Siðt + DtÞ = sign

(XN
jsi

WijSjðtÞ

+ Iexti ðtÞ � qi

)

where Iexti ðtÞ is the external input, qi is the

rheobase for spiking, signfxg imposes a

threshold input/output relation, N is the

number of neurons, andDt is the time con-

stant of a neuron. Absent an external input

and taking qi = 0 for all neurons as befits

the case of random patterns, we have

Siðt + DtÞ = sign

(XN
jsi

WijSjðtÞ
)

where the term in brackets is solely the

recurrent input to the neuron.

Recall with one memory

Consider the case of just one pattern,

S = x, that we want tomemorize to moti-

vate the rule for forming the connection

weights. The condition for this pattern

to correspond to a stable state is just

xi = sign

(XN
jsi

Wijxj

)

since the update rule produces no

changes. It is easy to verify that the outer

product rule

Wijfxixj

satisfies stability since x2j is always one.

This storage rule corresponds to ‘‘neurons

that are co-active strengthen their excit-

atory synaptic connections,’’ while ‘‘neu-

rons that are anti-correlated strengthen

their inhibitory synaptic connections.’’ If

fewer than half of the elements of the initial

state are incorrect, i.e., xi = � xi, they will

be overwhelmed in the sum by themajority

that are correct. Then signfPN
jsiWijxjg will

still yield xi. Thus, an initial state nearmem-

ory x will flow to the memory state x, and

the network will have successfully per-

formed pattern completion.

Recall with many memories

How does the Hopfield network perform

pattern completion to the closest memory

state when many memories are stored in

the network? The simplest approach is

to form the synaptic weights by summing

together the outer products of each of the

memories, denoted xn, where ‘‘n’’ indexes
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the memory and there is a total of Pmem-

ories. This corresponds to

Wij =
1

N

XP
n = 1

xni x
n
j

and may be viewed as a formalization of

the Hebb rule. The connection matrix is

symmetric, i.e., Wji = Wij. To the extent

that the memory states remain the ground

states of the network, and for the case of

low levels of random (thermal) noise, the

state of the networkwill relax froman initial

state to the nearest memory (Figure 1B).

Limitations to storage

Howmanymemories can be embedded in

a network before the overlap amongmem-

ories leads to faulty pattern completion?

The answer leads to the notion of

quencheddisorder, i.e., noise that is frozen

into the network because of the storage of

multiple memories. Let S = x1, one of the

stored memory states. After plugging in

terms, the input to neuron i is

XN
jsi

WijSj =

�
1� 1

N

�
x1i +

1

N

XP
ns1

xni

XN
jsi

xnj x
1
j :

In the limit of a large network, the first term

on the righthand side leads to stability,

while the second term corresponds to dis-

order and potentially leads to instability.

The mean input is

mean

(XN
jsi

WijSj

)
= x1i :

The memory x1 is stable if the magnitude

of the second term is smaller than 1. As

in the example of a single memory, a small

fraction of neuronal outputs that are

different from amemory will be corrected,

and an initial state near to x1 thus flows to

x1. Yet, the memory x1 can become un-

stable if the magnitude of the second

term changes the sign of the output from

that of x1i to � x1i . The variance of this

term, in the limit of large P and N, is just

the fraction of memories to neurons, i.e.,

variance

(XN
jsi

WijSj

)
=
P

N
:

This variance is constant in time and de-

fines the quenched disorder. It limits the

number of memories that can be stored.

The severe constraint that the network

will produce, at most, one bit of error, i.e.,
one neuron’s output in only one of the

memory states that can be incorrect, leads

to the statistical bound P=N < 0:25=lnN.

This bound is relaxed for the case of near

but imperfect recall. As discussed later,

the network performs pattern completion

as long as P=N < 0:14. There is a phase

transition from a region ofmemory retrieval

with P=N < 0:14 to one with catastrophic

forgetting with P=N > 0:14.

Attractors and the energy

landscape

When the state of the network is initialized

near amemory, the neuronal activity flows

through many of the 2N possible patterns

until the memory is reached (Figures 1A

and 1B). A lasting contribution of Hopfield

was to introduce an energy landscape

into neural network theory to conceptu-

alize this flow.4 The landscape spans all

N dimensions, depends on the synaptic

weights, and defines a hilly surface with

deep pits in the valleys. The central prop-

erty of an energy function is that it either

decreases or remains constant as the

output of the network evolves according

to the update rule. The flow ends at an at-

tractor, which is defined by the deep pits

and corresponds to a memory so long

as the network is in phase (P=N < 0:14)

with retrieval. An energy function exists

only if the connection strengths are

symmetric. While symmetry is an unrea-

sonable assumption for brain circuits,

experimental data show that symmetric

synapses occur more than expected by

chance and that attractor dynamics can

hold close to minima even for the case

of weak symmetric interactions.

By analogy with the interaction energy

in lattices of magnetic spins, the energy

of each state S is defined by

Energy = �
XN
i

XN
jsi

SiWijSj

The change in energy for a change in

output at neuron i is

DEnergy = � DSi

XN
jsi

WijSj

where DSi = Siðt +DtÞ � SiðtÞ. The

energy is constant when the state remains

unchanged and decreases for any change

in state, since the signs ofDSi and the inputPN
jsiWijSjðtÞ are the same. Changes in the

state of the network continue until a local
minimum in energy, or a pit in the land-

scape, is reached (Figure 1C), for which

DSi = 0 for all values of i. Neuronal dy-

namics in real brains is, of course, more

complex thanaflowthroughmanypatterns

until a memory state is reached. Yet, Hop-

field’s abstraction provides a starting point

to characterize dynamics for any neuronal

computation, frommemory recall to motor

control. Further, it had a direct impact on

the formulation of the "Boltzmann Ma-

chine" by Geoffrey Hinton and Terrence

Sejnowski, as reported in 1983.

Embrace by physicists
Hopfield’s eponymous model4 was pub-

lished at a time of intense interest in the

magnetic properties of disordered sys-

tems, both theoretically and experimen-

tally, in terms of dilute magnetic alloys. In

fact, William Little had pointed out the

potential connection of recurrent neural

network to spin systems in 1970s. Thus,

Hopfield’s model was rapidly absorbed

and analyzed by the physics community.

Daniel Amit, Hanoch Gutfreund, and Haim

Sompolinsky saw an opportunity to solve

the thermodynamics of a system that ex-

hibited quenched disorder, i.e., variability

in synaptic strengths caused by the inter-

ference of stored patterns, as well as fast,

random noise. They used the replica

method of Samuel Edwards to derive the

different phases of the output of the Hop-

field network. The phase diagram, pub-

lished in 1985, is rich.5 It exhibits regions

of perfect recall, as expected from the sta-

tistical analysis, as well as regions with

recall close to the memory states, regions

where the memories are no longer the

most stable patterns, and an ergodic re-

gion where the output of the network no

longer has a relation to any of the mem-

ories. In 1988, Elizabeth Gardner showed

how the learning rule could be altered to

store as many memories as there are neu-

rons. As Hopfield hypothesized, many of

the assumptions that violatedbiological re-

ality, such as all-to-all connectivity, could

be softened, and the performance of the

network to complete patterns is merely

degraded.

As time progressed,many of the theoret-

ical efforts became driven by specific

experimental observations, particularly

those that involved invariance to stim-

ulus parameters. Hopfield shifted his atten-

tion toward concentration-invariant odor
Neuron 112, December 4, 2024 3821
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recognition.6 Sompolinsky and I formed a

connection between attractor dynamics

and central pattern generators for locomo-

tion.7 In 1995, Sompolinsky conceived an

extension of theHopfieldmodel toa contin-

uous ‘‘ring’’ of attractor states.8 This model

highlights thecompetitionbetween feedfor-

ward and recurrent connections in deter-

mining the dynamics of a network and

was later found to capture the representa-

tion of heading relative to a landmark. Two

decades later, observations by Vivek

Jayaraman and Johannes Seelig at HHMI

Janelia demonstrated that the ring model

captured the neural computation of head-

ing within the central complex in flies. In

1996, Sebastian Seung proposed the

‘‘line’’ attractor to understand the stability

of eye movement and neural integrators.9

These and related successes suggest a

close correspondence between the mini-

malist approach of Hopfield and biological

reality, yet a critique is that the matches

only apply for behaviors and underlying cir-

cuits with few degrees of freedom.

Hopfield and neuroscience at
Murray Hill and beyond
In 1981, Hopfield convinced then-Bell

president Arno Penzias (a 1978 Nobel

laureate in Physics) to take a position in

neuroscience given the potential impact

on computing and algorithms. Hopfield

further argued that one needed a thriving

experimental, as well as theoretical, effort

to make progress, even if the goal for

AT&T was advancement in computation.

John Connor and Alan Gelperin joined

Bell in 1982. David Tank joined a year

later. Follow-up work by Hopfield in

1984 relaxed the form of the nonlinear

input/output relation from a threshold to

a smoothly saturating function, and Hop-

field and Tank used this as a starting point

to extend recurrent networks to problems

in computation and optimization.10

Hopfield’s insistence on an experi-

mental program in neuroscience led to

new technologies and findings. A particu-

larly fruitful circle of discovery that was

catalyzed by Hopfield’s scientific and

institutional roles concerns intracellular

ionic calcium (Ca2+) imaging and the evi-

dence for a ring attractor. Connor pub-

lished the first paper on digital imaging

of space-time patterns of intracellular

Ca2+ in neurons in 1986, starting with cells

in culture. He utilized Roger Tsien’s then
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newly developed fluorescence-based ra-

tiometric Ca2+ indicators (Tsien shared

the 2008 Nobel Prize in Chemistry), which

incorporated a prodrug method to trap

the indicator in a cell, and a cooled

charge-coupled device (CCD) as a low-

noise imager (Bell scientists Willard Boyle

and George Smith shared half of the 2009

Nobel Prize in Physics for inventing the

CCD). Tank then teamed with Connor

and Rodolfo Llinas (NYU) and extended

Ca2+ imaging to the cerebellar brain slice

in 1988. However, single-cell in vivomea-

surements in the mammalian brain were

all but impossible because of light scat-

tering by overlying brain tissue. The

answer to this conundrum was the intro-

duction of two-photon laser-scanning

microscopy (TPLSM) to neuroscience.

Winfried Denk, whose graduate work

with Watt Webb included the invention

of TPLSM, joined Bell in 1993 and pio-

neered this application. This technique

permits excitation of fluorophores deep

in tissue when the scattering of light is

predominantly in the forward direction,

as occurs in neocortex.

Denk first used TPLSM tomake intracel-

lular measurements of Ca2+ from spines in

brain slices, working separately with Llinas

and with then-postdoctoral fellow Rafael

Yuste in1995; the latterworkdemonstrated

the signature of pre- and postsynaptic co-

incident activity. With functional imaging

now feasible and following Denk’s and my

1994 observation that anatomically labeled

neurons in rat vibrissa cortex could be

imaged in vivo, a teamof Denk, fellowKarel

Svoboda, Tank, and I measured Ca2+ dy-

namics within individual neurons in rat

vibrissa cortex in 1997. Just a few years

later, Jing Wang, a fellow with Gelperin,

brought in vivo TPLSM imaging to the fly

brain in a second fellowship with Richard

Axel (a 2004 Nobel laureate in Physiology

or Medicine) at Columbia. The year 2003

marked the introductionof TPLSMCa2+ im-

aging to study networks of neurons: Axel,

Wang, and their colleagues introduced ge-

netic expression of a Ca2+-sensitive fluo-

rescent protein in the fly brain, while Arthur

Konnerth’sMunichgroup introducedmulti-

cellular labeling in the mouse brain. Finally,

three decades after Connor’s initial mea-

surements, the circle was closed by

Jayaraman’s adoption of TPLSM Ca2+ im-

aging and his 2015 report of evidence for

a ring attractor in the fly brain.
Epilogue
Hopfield gifted us with insights that pulled

physics into neuroscience. His model laid

bare an unsettled dichotomy between

minimalist models and complexity in ner-

vous systems. Time will tell how each of

these views will inform us about how intel-

ligence can emerge from the interactions

among neurons.
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