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Goal 
 
Dynamic optical imaging experiments generate large, multivariate data sets that contain 
signal and noise components of considerable spatio-temporal complexity.  Advances in 
available computational power now make it possible to identify and remove noise 
components and characterize signal structure in a timely manner through the use of 
modern signal and image processing techniques.  The goal of this chapter is to present 
these techniques and illustrate their application to the analysis of optical imaging data. 
 
Area of application 
 
Noise in imaging data arises from two broad categories of sources, biological and 
technical.  Biological sources like cardiac and respiratory cycles are routinely present, as 
well as motion of the experimental subject and slow vasomotor oscillations (Mayhew et 
al., 1996; Mitra et al., 1997; Kalatsky and Stryker, 2003). In all studies of evoked 
activity, ongoing brain activity not locked to or triggered by the stimulus is another 
source of biological noise.  Technical noise sources in imaging experiments include 
photon counting statistics, electronic instrumentation, 50/60 Hz electrical activity, CCD 
camera refresh rates, and building vibrations to name a few.  All of this activity combines 
to mask the neuronal signals of interest. 
 
This chapter presents signal and image processing techniques that have proven to be 
useful in the analysis of optical imaging.  The main techniques are drawn from multitaper 
spectral analysis, harmonic analysis and the singular value decomposition (SVD).  The 
tools will be illustrated on two data sets:  optical imaging data from rat primary 
somatosensory cortex and cat primary visual cortex.   
 
The spectral methods presented here play a central role to sort out physiological artifacts 
and stimulus response with trial-averaging.  While the procedures overlap to a certain 
degree, the removal of physiological artifacts makes use of the harmonic analysis 
method, while stimulus response characterization uses the periodic stacking method. 
 

Application area Method 
Removal of physiological artifacts Harmonic analysis 
Stimulus response with trial averaging Periodic stacking method 
 
Mathematical methods 
 
Four tools for the analysis of optical imaging data are presented below; multitaper 
spectral estimation, harmonic analysis, the SVD in two different forms and the periodic 
stacking method. This presentation is focused on the use of the tools rather than on their 
derivation.  Further information on the technical aspects of the discussion is available in 
(Thomson, 1982; Percival and Walden, 1993; Mitra and Pesaran, 1999; Sornborger et al., 
2003a).  With regard to the choice of software, we typically do calculations in MATLAB 



(Mathworks, MA), a general purpose language for numerical analysis and visualization. 
MATLAB has a routine to calculate the Slepian functions used in spectral analysis called 
dpss. MATLAB also has a routine to calculate fast Fourier transforms called fft and a 
routine to calculate singular value decompositions called svd. In the statistics toolbox, 
one finds a routine to calculate the cumulative and inverse F-distribution functions called 
fcdf and finv, respectively. In the signal processing toolbox, there is a routine for 
calculating a multitaper power spectrum estimate called pmtm. All of these routines are 
helpful for coding the methods outlined below. 
 
Multitaper Spectral Estimation 
 
Spectral estimation is based on the premise that the frequency domain is the appropriate 
basis in which to examine dynamic activity.  This assumes that the activity is stationary.  
While this is not usually true of neural activity on long time-scales, say hours, it is not 
unreasonable to suggest that on a sub-second time-scale neural processes change very 
little.  The approach is to then repeat the calculation on neighboring windows overlapping 
in time, usually displaced by a fixed amount.  The result, called the spectrogram, is a 
time-frequency representation of the function being calculated.   
 
Conventional spectral analysis involves multiplying time series data by a single time 
series of the same length known as a taper, or more conventionally as a window function.  
Examples of such single tapers are Hamming, Hanning and Cosine tapers.  We use 
multitaper methods in which many tapers are used to operate on a single window in time 
of the data.  The tapers used are the Slepian functions, or discrete prolate spheroidal 
sequences (DPSS), which form a set of orthogonal functions.  The Slepian functions are 
characterized by a single parameter, W, also called the bandwidth parameter.  This 
parameter specifies the frequency and bandwidth of the Slepian functions. For a given 
frequency half-bandwidth W and length N, there are approximately 2 N W Slepian 
functions ( )kwt  (  NWk 2,,1 l= , Nt l,1= ) that have their power concentrated in the 
frequency range [ ]WW ,− . 
 
Step 1: Computing the Slepian functions 
 
The Slepian functions are characterized by their length, N , and bandwidth parameter, 
W .  The parameters N and W determine the maximum number of functions useable, 

 NWK 2= and their selection is up to the judgment of the investigator based on a 
knowledge of the dynamics of the processes under investigation.  This choice is then best 
made iteratively by visual inspection and some degree of trial and error.  NW2 gives the 
number of effectively independent frequencies over which the spectral estimate is 
effectively smoothed, so that the variance in the estimate is typically reduced by a factor 

NW2 . Thus, the choice of W2 is a choice of how much to smooth.  As a rule of thumb 
we find that fixing the time bandwidth product NW at a small number (typically 3 or 4) 
and then varying the window length in time until sufficient spectral resolution is obtained 
is a reasonable strategy. 
 



Step 2: Computing the tapered Fourier transforms 
 
The next step is the computation of the tapered Fourier transforms of the data  

tx ),,1( Nt l= , for each taper ( )kwt  ),,1( Kk l=  
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It is important to note before taking the tapered Fourier transform, the data is typically 
padded with zeros(Mitra and Pesaran, 1999) to the nearest power of 2 greater than Nγ
where γ  is an integer greater than 2.  The zeros are added to one end of the time series 
after they are multiplied by the tapers. 
 
Step 3: Direct spectral estimate 
 
The simplest example of the multitaper method is the direct multitaper spectral estimate , 

( )fSMT  which is simply the average over individual tapered spectral estimates,  
  

( ) ( )
2

1

~1
∑

=

=
K

k
kMT fx

K
fS        Equation 2 

  

The spectrum may be computed with a moving window to obtain a spectrogram which 
provides a time-frequency representation of the data. 
 
Harmonic analysis 
 
Multitaper methods provide a robust and efficient way to carry out harmonic analysis: the 
analysis of discrete sinusoidal components of activity present in a continuous 
background.  This allows the detection, estimation of parameters and extraction of the 
sinusoidal activity on a short moving window. 
 
An optimally sized analysis window is needed.  This window must be sufficiently small 
to capture the variations in the amplitude, frequency, and phase, but long enough to have 
the frequency resolution to separate the relevant peaks in the spectrum, both artifactual 
and originating in the desired signal. 
 
Step 1: Detection and estimation of a sinusoid in a colored background 
 
The presence of a sinusoidal component in colored noise background may be detected by 
a test based on a goodness of fit F-statistic (Thomson, 1982).  The activity is modeled a 
sinusoid of frequency, f , with a certain amplitude and phase added to a random noise 
process that is locally white on a scale given by the bandwidth parameter W of the tapers. 
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The amplitude, nA , and phase, nφ , are given by the complex amplitude, ( )nn fµ , of the 
cosine wave.  This complex amplitude can be estimated using the tapered Fourier 
transforms of the data, ( )fxk , and the Fourier transform of the tapers themselves at zero 
frequency, )0(kU .  For this application, we find that the data should be padded by a factor 
of at least 25, and we usually pad by a factor of 100. 
 
 

( ) ( )

( )
( ) ( )

( )∑

∑
=

=

k
k

k
knk

nn

n
n

nn

U

Ufx
f

i
A

f

20

0~

ˆ

exp
2

µ

φµ

       Equation 4 

 
The goodness of fit F-statistic, which allows us to test the hypothesis that the sine wave is 
present at that frequency, is given by  
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The quantity in Equation 5 is F-distributed with (2,2K-2) degrees of freedom.  The 
significance level is chosen to be N/11−  so that on average there will be one false 
detection of a sinusoid across all frequencies. 
 
If the cause of the estimated sinusoid is considered to be noise, as may occur from regular 
breathing, heart beat or electrical noise, one may subtract it from the data and the 
spectrum of the residual time series may be obtained as before.  
 
Step 2: Removal of periodic components 
 
Sometimes the parameters of periodic components vary slowly in time, drifting in center 
frequency, amplitude, or phase.  The parameters nA , nf , and nφ can be estimated as a 
function of time by using a moving time window.  The goal is to estimate the smooth 
functions ( )tAn , ( )tf n , and ( )tnφ  to give the component to be subtracted from the 
original time series.  
 



The frequency F-test described above is used to determine the fundamental frequency 
tracks ( )tf n  in Equation 3.  The time series used for this purpose may either be a single 
time series in the data or an independently monitored physiological time series.  The 
sequence of the fundamental frequency over time is then used to construct the 
frequencies for the harmonics and sums and differences of individual oscillations, usually 
respiration and cardiac rhythms, generated by interactions between them.  The final 
set ( )tf n contains all these frequencies. 
 
The estimated sinusoids are reconstructed for each analysis window, and the successive 
estimates are overlap-added to provide the final model waveform for the artifacts.  If 
more precision is required, the estimates for the amplitude and phase for each window 
can be interpolated to each digitization point to allow for nonlinear phase changes over 
the shift between each window.  This is akin to using a shift in time between two 
successive analysis windows of the sampling rate but achieved at far less computational 
cost. 
 
More details on implementation of this procedure are given below in the Protocol and 
procedures and Example of application sections.  
 
Multivariate time series methods 
 
To this point in the presentation, the operations have been described on univariate data, 
but optical imaging experiments record many pixels of activity simultaneously which 
leads to multivariate time series. 
 
The SVD is a general matrix decomposition of fundamental importance that is equivalent 
to principal component analysis in multivariate statistics, and generates low dimensional 
representations for complex multidimensional time series.  These low-dimensional 
representations are formed from distinct modes that are orthogonal to each other.  
Consequently, the SVD is a powerful tool to reduce the number of interesting dimensions 
of the data and to characterize coherent states of activity.  Here, we present two 
applications of the SVD, one to imaging data in its more usual space and time 
dimensions, the space-time SVD, and one when we have Fourier transformed the time 
dimension into frequency to give the space-frequency SVD.  Below another application 
of the SVD is presented for extracting responses to periodically presented stimuli. 
 
Space-time SVD 
 
The space-time SVD is a one step operation on the space-time data ( )txI , .  The SVD of 
such data is given by  
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where ( )xI n are the eigenmodes of the "spatial correlation matrix" ∫
∞

∞−
′ dttxItxI ),(),( .  

Similarly  ( )tan  are the eigenmodes of the "temporal correlation matrix" 

∫
∞

∞−
′ dxtxItxI ),(),( .  The eigenvalues, nλ , give the amount of power or variance in each of 

the ordered space and time eigenmodes.  Their relative values give an indication of how 
large the signal is compared to the noise.  Discarding modes with small eigenvalues 
allows a data dimension reduction for the purposes of visual inspection. 
 
Applications of the SVD on space-time imaging and receptive field data are abundant in 
the literature:  see (Golomb et al., 1994) for a didactic presentation.  However, in our 
experience the SVD when applied to the space-time data suffers from a severe drawback 
because there is no reason why the neurobiologically distinct modes in the data should be 
orthogonal to each other.  In practice this means segregation of the activity may be 
prevented because different sources of fluctuations may appear in a single mode of the 
decomposition or a single activity pattern may appear across different modes. 
 
In the next section a more effective way of separating distinct components in the data 
using a decomposition analogous to the space-time SVD, but in the space-frequency 
domain.  The success of the method stems from the fact that the data in question are 
better characterized by a frequency based representation.  
 
Space-frequency SVD 
 
The basic idea is to project the space-time data to a frequency interval, and then perform 
an SVD on this space-frequency data (Thomson and Chave, 1991; Mann and Park, 1994; 
Mitra et al., 1997).  Projecting the data on a frequency interval can be performed 
effectively by using DPSS with the appropriate bandwidth parameter.  
 
Step 1:  Constructing the space-frequency matrix 
 
Given the NN x ×  space-time data matrix ( )txII ,= , the space-frequency data 
corresponding to the frequency band [ ]WfWf +− ,  are given by the KN x ×  matrix of 
complex numbers. 
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Step 2:  SVD of the space-frequency matrix 
 
We are considering the SVD of the KN x ×  complex matrix with entries ( )fxI n ;~  for 
fixed f .  
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This SVD can be carried out as a function of the center frequency f , using an   
appropriate choice of W .  At each frequency f  one obtains a singular value spectrum 

( )fnλ   (n=1,2,..,K), the  corresponding (in general  complex) spatial mode ( )fxI n ;~ , and  
the corresponding local frequency modes ( )fkan ;~ .   The interval W  separates 
independent values of frequency in this analysis.  The frequency modes can then be 
projected back into the time domain to give (narrowband) time-varying amplitudes of the 
complex eigenimage (Mann and Park, 1994). 
 
Step 3:  A measure of spatial coherence 
 
In the space-frequency SVD computation, an overall coherence ( )fC  may be defined as 
(it is assumed that xNK ≤ ) 
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The overall coherence spectrum then reflects how much of the fluctuation in the  
frequency band  [ ]WfWf +− ,   is captured  by the dominant spatial mode.  The value 
ranges between 0 and 1 and for random data ( ) KfC /1≈ .  This sets a threshold for 
significance. 
 
Periodic Signals, Trial Averaging and High-Resolution Methods 
 
Experimental data of the dynamical response of a noisy system to a stimulus typically 
consist of repeated measurements of the response of the system to one or more stimuli.   
The most common method for increasing the signal-to-noise ratio for stimulus-response 
data is to average repeated measurements of the response, a method called trial-
averaging. The methods described above can all be used with simple trial-averaging of 
responses.  Improvements can, however, be made on simple trial averaging by using 
high-resolution sinusoid detection methods in the frequency domain that were presented 
above. 



 
One approach that makes use of sinusoid detection methods in the frequency domain is 
called the periodic stacking method (Sornborger et al., 2003a). This method was 
developed to denoise and characterize the response to stimulus in optical imaging data of 
the intrinsic signal in cats and macaques. A related method has been used to characterize 
periodic electrical activity in the heart (Sornborger et al., 2003b).  The technique is 
similar in spirit to that presented by Kalatsky and Stryker (2003), but involves extraction 
of stimulus information at all harmonics of the stimulus frequency, not just the 
fundamental.  When the signal lies in a distinct band of frequencies, the signal-to-noise 
ratio of periodic stacking estimates significantly increases relative to the trial averaged 
estimate. Further improvements can be made in multivariate estimates, in which a 
subspace of the vector space within which the images lie can be identified as containing 
statistically significant signal. 
 
The Periodic Stacking Method 
 
We begin by considering univariate stimulus-response data. During an experiment, 
multiple responses to a stimulus are measured. We assume all response measurements 

( )txm  defined for Tt <<0  are of equal duration and concatenate all the M  responses to 
a given stimulus. The resulting function, of duration MT , we denote by ( )tX . We 
define )()( txtmTX m≈+ where ( )txm  is the measured response to the thm  repetition of 
the stimulus, of duration T . Since we are measuring M responses to the same stimulus, 
the signal ( )tX  is a combination of a T -periodic piece and measurement noise, ε . 
 

( ) ( ) ( )tTifttX
f

f επα += ∑ /2exp       Equation 10 

 
To understand the structure of the signal in Fourier space, we perform a Fourier 
transform on the signal 
 

( ) ( )∑=
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q MTiqtxtX /2exp~ π        Equation 11 

 
The coefficients qx~  are then given by the expression 
 

)(~)(~ qfMqx
f

fq εδα +−= ∑        Equation 12 

 
where ( )qε~  indicates the Fourier transform of the noise, ε .   From this expression, we 
see that the signal is a sequence of harmonics, fα , at frequencies that are integral 
multiples of the base, stimulus frequency T/2π  (i.e. fMq =/ ). 



 
We can estimate the signal from the frequency and complex amplitude of the harmonics 
that carry the response.  We use multitaper harmonic analysis described above to 
accurately determine the amplitude and phase of the periodic response.  This also gives 
an estimate of the noise and the statistical significance of deterministic sinusoids in a 
signal using equations 3,4 and 5.  Since we know the periodicity of the repeated stimulus, 
we identify and extract the sinusoids in the data that lie at multiples of that base 
frequency. Response contributions that are not located at frequencies commensurate with 
the base frequency are discarded as noise. We then recombine the estimated sinusoids, to 
form an estimate of the response as before.  This procedure is equivalent to demodulating 
the data at the stimulus frequency and harmonics of the stimulus frequency and summing 
the demodulates. 
 
The periodic stacking method can be extended to the case of a multivariate dataset using 
the SVD.  It is impractical to analyze a typical set of images pixel-by-pixel, due to the 
fact that there are often 000,10=P  pixels or more per image. So we first perform a 
singular value decomposition on the data, ( )txI , .  Usually, most of the variance in the 
data is captured in the first 100 or 200 eigenfunctions. We can therefore consider the 
compressed dataset 
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where Q = 200, for example. With this step, we have thrown away P-200 eigenfunctions. 
However, we hope not to have thrown away the signal. One should always investigate as 
many eigenfunctions as possible for signal features, especially with unfamiliar data, so as 
to minimize the risk of throwing away signal in high index eigenfunctions. 
 
The next step in the analysis is to use multitaper harmonic analysis, as described above, 
to estimate the amplitudes nA  for the time courses ( )tan  at each harmonic of the stimulus 
frequency.  For this application, the bandwidth of the estimate should be chosen to be 
slightly less than the stimulus frequency. This choice avoids any significant overlap that 
might introduce correlations between harmonic estimates.  
 
Following the multitaper harmonic analysis procedure, we can obtain the estimates for 
sinusoidal components at each harmonic of the stimulus frequency.  Then we check, 
harmonic by harmonic, to see if there are any statistically significant sinusoids in any of 
the first Q  time series ( )tan . As described above, statistical significance is determined by 
checking the value of the cumulative distribution function of the F-statistic for a given 
harmonic component is larger than N/11− . We then assemble an estimate of the 
statistically significant periodic content: 
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where ( )tanˆ  is the sum over statistically significant estimates for each harmonic of the 
stimulus frequency. 
 
Estimates obtained using the multivariate signal estimation method outlined above have 
higher signal-to-noise ratios (SNR) than trial-averaged estimates largely because this 
method makes use of a measure of the statistical significance of the harmonics across all 
Q  eigenfunctions ( )tan . Therefore, eigenfunctions with no statistically significant 
content are discarded. Noise associated with these eigenfunctions is thereby eliminated, 
in contrast to trial-averaged estimates. 
 
The above discussion is simplified as we only consider the case where a single repeated 
stimulus is presented to the animal. The intrinsic optical signal measures changes in 
reflectance of the cortex due to subtle changes in blood oxygenation. Responses to 
multiple stimuli in optical imaging measurements of the intrinsic signal typically consist 
of a change in the global blood oxygenation and blood volume that is not related to any 
particular stimulus (the non-specific response), accompanied by relatively smaller local 
changes in deoxy- and oxyhemoglobin concentrations that change depending on the 
stimulus (the stimulus-specific) response). This approach can also be extended to 
distinguish between these two aspects of the signal (Sornborger et al., 2003c). 
 
Protocol and procedures 
 
Step 1:  Visualization of the raw data 
 
Direct visualization of the raw data is the first step to check the quality of the experiment 
and direct further analysis.  Individual time series from the images and movies of the 
images should be examined.  If the images are noisy, for example due to large shot noise, 
truncation of a space-time SVD with possibly some additional smoothing provides a 
simple noise reduction step for the visualization. 
 
 

 [Figure 1 approx. here] 
 
 
A space-time SVD of the data is computed and the leading principal component time 
series modeled as a sum of sinusoids. This is useful for two reasons: (1) The images in 
question typically have many pixels, and it is impractical to perform the analysis 
separately on all pixels.  (2) The leading SVD modes capture a large degree of global 
coherence in the oscillations. However, the procedure may as well be applied to 
individual image time series.  
 



Step 2: Preliminary characterization 
 
The next stage aims to identify the various artifacts and determine a preliminary 
characterization of the signal.  A time-frequency spectral estimate described above should 
be calculated.  This can be done on individual pixels or a space-time SVD can be first 
calculated followed by operations on the leading principal components.   
 

 [Figure 2 approx. here] 
 
A more powerful characterization is obtained by the space-frequency SVD. There is 
sufficient frequency resolution in optical data so that, as a practical matter, the oscillatory 
artifacts tend to segregate well. Studying the overall coherence spectrum reveals the 
degree to which the images are dominated by the respective artifacts at the relevant 
frequencies, while the corresponding leading eigenimages show the spatial distribution of 
these artifacts more cleanly compared to the space-time SVD. Moreover, provided the 
stimulus response does not completely overlap the artifact frequencies, a characterization 
is also obtained of the spatio-temporal distribution of the stimulus response.  
 
Step 3: Artifact removal 
 
Based on the preliminary inspection stage, one can proceed to remove the various 
artifacts to the extent possible. The techniques described in this chapter are most relevant 
to artifacts that are sufficiently periodic, such as cardiac/respiratory artifacts, 50/60 Hz 
and other frequency-localized noise such as building or fan vibrations.  An example of 
artifact removal from data from rat primary somatosensory cortex is presented below. 
 

 
Step 4: Stimulus-response characterization 
 
This may be the most delicate step, since the goal of the experiment is usually to find the 
stimulus response that is not known a priori. If the stimulus is presented periodically 
and/or repeatedly, as is usually the case, the characterization of stimulus response is fairly 
straightforward using the periodic stacking method.  An example of this technique on 
data from cat visual cortex is presented below.  Alternatively, coherent activity related to 
a single presentation of the stimulus may also be efficiently extracted by the space-
frequency SVD technique if the stimulus response is know a priori to inhabit a particular 
frequency band (including a low frequency band). An example of the use of this 
technique may be found in (Prechtl et al., 1997). 
 
Example of application 
 
In this section we present an application of the tools described above to intrinsic signal 
optical imaging data.  There are two stages to the analysis, exploratory and confirmatory.  
Exploratory analysis determines parameters of interest and the structure of any noise 
present.  Following this, the noise is filtered and the signal structure characterized.  The 
first application presents techniques for denoising intrinsic optical imaging data from rat 



primary somatosensory cortex.  The second application presents techniques for 
characterizing signal structure from intrinsic optical imaging data from cat primary visual 
cortex. 
 
Application 1 
 
Experimental method 
 
Widefield fluorescent imaging was used to record optical signals from the surface of rat 
somatosensory cortex.  The subjects were Sprague-Dawley rats prepared and maintained 
as described previously (Kleinfeld and Delaney, 1996).  In brief, bone and dura were 
removed from a 4-by-4 mm region of the primary vibrissa areas of parietal cortex.  The 
exposed cortex was then stained with the dye RH-795 (Molecular Probes, Eugene, OR).  
A metal frame was fixed to the skull that surrounded the craniotomy as a means to rigidly 
hold the head of the animal to the optical apparatus.  With the addition of agarose gel and 
a cover glass window, this frame further served as a optically clear chamber that sealed 
and protected the cortex; resealing the craniotomy was crucial for the mechanical 
suppression of excessive motion that would otherwise result from changes in cranial 
pressure with each heart beat and breath. 
 
We recorded the fluorescent yield from the cortical surface with a charge coupled device 
(CCD) camera  (no. PXL 37; Photometrics, AZ).  The signal was calculated as the change 
in fluorescence relative to the background level, i.e., avgavg IIIF /)( −=∆ where avgI  is 
the average intensity in the record.  For the sample data shown in figure 1, the pixel field 
was 30 by 90, the sampling rate was 95.4 Hz, and records were 3000 frames (286 s) in 
length.  Each digitized CCD pixel collected up to an estimated 300,000 electrons, so that 
the sensitivity per pixel per sample (or per frame) was limited to a fractional change of 
~0.002.  The electrocardiogram, as an indicator of heart rate, and chest expansion, as an 
indicator of respiration, were further recorded.  For the sample data shown in figure 1, no 
stimuli were applied to the rat during data acquisition. 
 
We now consider practical issues involved in implementing harmonic analysis on our 
widefield imaging data.  These considerations hold for both voltage sensitive dye images 
(Fig. 1a) as well as intrinsic optical imaging of rat somatosensory cortex.  Prior to the 
harmonic analysis, we reduced the impact of artifacts associated with large blood vessels 
by excluding pixels inside such blood vessels from further analysis.  The main harmonic 
artifacts in our datasets were due to breathing, heartbeat, mixing of the breathing and 
heartbeat, and a vibrational mode in the building. 
 
As a first means to decrease processing time, we assumed that the dominant frequency of 
each harmonic artifact was independent of the spatial extent of the images. To identify 
the artifacts, we averaged all pixels in each image frame to generate a univariate time 
series and calculated the spectra from the entire time window.  In practice, we selected a 
range of frequencies for each artifact by hand since the relevant frequencies may drift 
during the acquisition of the image series.  In typical data sets, heartbeat, breathing and 
vibration artifact frequencies remained stable enough over several hours to use a fixed set 



of frequency ranges.  The selected frequency range were chosen to be wide enough that 
they covered the variations of the artifact, but narrow enough that only one harmonic 
artifact was present in each range. 
 
We used sliding windows to detect and track changes in the amplitude of the artifact over 
time.  These windows were typically 1.5 s long and were shifted by 0.1 s.   The frequency 
for each artifact was fit at each point in time by calculating the direct multitaper spectral 
estimate in each sliding time window (Eqns. 1 to 4). We selected the frequency with the 
largest F-statistic within the user-selected artifact band to represent the dominant artifact 
frequency at that point in time (Fig. 1b). It is possible for several frequencies for one 
artifact in a time window to be significant according to the F-statistic test because the 
frequency of the artifact may shift, or because the frequency resolution of the spectral 
estimate is less than the Rayleigh range. 
 
After the time course of artifact frequencies are identified, the phase and amplitude of the 
harmonic artifacts can be calculated for each pixel in the series of images.  A direct 
approach is to treat each pixel in the image data as a time series that is used to calculate 
the phase and amplitude of each artifact at that point in space.  This approach can be 
computationally intensive due to a large number of pixels.  Alternatively, as our second 
procedure to decrease processing time, we use the space-time SVD to reduce the number 
of components that require harmonic analysis.  In practice, a typical number of 
significant modes was determined empirically to be 0.1 of eigenmodes; for the present 
example with 3000 modes (Fig. 1a), about 300 independent  time series would be 
analyzed. The harmonic analysis to determine phase and amplitude at the frequency of 
the artifacts was preformed only on the SVD time eigenmodes associated with significant 
eigenvalues. 
 
In both the pixel-by-pixel and the space-time SVD analysis, each harmonic artifact was 
modeled by using a sliding window in time. Finally, the reconstructed artifact was 
subtracted from the original time series (Percival and Walden, 1993).  For the space-time 
SVD analysis, the artifact-free time eigenmodes and their corresponding eigenvalues and 
space eigenmodes were used to calculate a new series of images. 
 
 
Application 2 
 
 
Experimental method 
 
The experiments were carried out on adult (2-5 kg) cats (Felis domestica). Anesthesia 
was induced with intramuscular injections of Xylazine [Rompun (Miles), 2 mg·kg 1] and 
Ketamine [Ketaset (Fort Dodge Laboratories, Fort Dodge, IA), 10 mg·kg 1] and later was 
maintained with intravenous (i.v.) infusion of Pentothal (Astra, Westborough, MA) (1-3 
mg·kg 1·hr 1). Muscular paralysis was induced by i.v. infusion of Pancuronium bromide 
(Abbott) (1.3 mg·kg 1·hr 1). The state of anesthesia was monitored and maintained 
carefully in accordance with the National Institutes of Health guidelines. The animals 



were respired mechanically and the end-expiratory concentration of CO2 was kept at 3.5-
4%. Blood pressure, electroencephalogram, electrocardiogram, and core body 
temperature were monitored and maintained within normal physiological ranges.  A 
craniotomy and durotomy exposed a region of V1 cortex corresponding to 2-8° 
eccentricity in the visuotopic representation. A cylindrical, stainless steel, glass-topped 
chamber was attached to the skull with screws and plumbers epoxy (Propoxy 20, 
Hercules, Passaic, NJ), and was filled with inert silicone oil. The cortex was illuminated 
uniformly with 600 nm light and imaged through a tandem-lens configuration by using a 
cooled 12-bit charge-coupled device (PXL, Photometrics, 536 × 389 pixels) that was 
synchronized to the cardiac and respiratory cycles.  
 
An example of results using the periodic stacking method is shown in Figure 3.  In panels 
A and C, we plot the first two eigenfunctions resulting from an SVD of the estimated 
signal ( )txI ,ˆ . In panels B and D we plot estimates of their time courses plotted with one-
sigma (i.e. one standard deviation of the standard error of the mean) error bars. The 
vertical lines denote changing stimulus. The first segment is the response to a °0 oriented 
drifting grating, the second is the response to a °30  oriented drifting grating, etc. These 
two eigenfunctions make up 95% of the estimated signal. 
 

 [Figure 3 approx here] 
 
The eigenfunction in A is responsible for most of the signal at °0  and °90 , while the 
eigenfunction in C is responsible for most of the signal at °45  and °135 . The envelopes 
of the responses of these two eigenfunctions form a cosine and sine. This is due to the 
periodic nature of the stimulus (rotate the orientation of a drifting grating by °180  and the 
grating is back at °0 ) The spatial dappling of the eigenfunctions gives rise to the classic 
result (Blasdel, 1992a, 1992b; Everson et al., 1998) that singularities or pinwheels exist 
in the response to oriented drifting grating stimuli. As the orientation of the drifting 
grating changes, the maximum response rotates about the pinwheels. Note that the sharp 
changes in dynamics in the signal at the boundaries between the changing stimuli are 
accurately captured. These changes are introduced artificially when the data were 
concatenated.  
 
Advantages and limits 
 
Spectral methods, with averaging of selected frequency bands, rejection of physiological 
artifacts, and statistical tests of significance, provide a robust means to analyze imaging 
data with significant correlations in space and time.  For example, the raw data of Figure 
3 had a signal-to-noise ratio of 0.0002 which was increased to 21 after processing.  The 
ability to compute confidence limits on the results of the analysis provides a means to 
compare and contrast features across time an across different data sets.  The main 
limitation of this approach is that in general, when no model for signal is proposed the 
resolution of the estimates is limited because the time-bandwidth product must be greater 
than 1.   
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Figure Captions 
 
Figure 1:  Optical imaging data from rat somatosensory cortex. 

a) Noise suppression of cardiac and respiratory rhythms.  The figure shows the 
results of filtering the respiratory and cardiac rhythms from a single principal 
component mode in the time domain.  The top curve is the raw mode.  The middle 
curve shows the reconstructed noise signal using the overlap-add technique 
described in the text.  The bottom curve shows the residual signal after noise 
suppression. 

b) Time-frequency representation of the raw mode from the top of a).  The black 
lines show the estimated frequency tracks. The fundamental of the respiratory 
rhythm was at 1.5Hz and that of the   cardiac rhythm at 7Hz. 

 
Figure 2:   Space-Frequency SVD.   

a) The amplitude of the dominant eigenimages as function of center frequency.   
The respiratory rhythm is present as a derivative highlighting the blood vessels at 2Hz 
and harmonics.  The cardiac rhythm is present as an increase in luminescence on the 
vessel at 6.8Hz.  At intermediate frequencies spatial structure is diminished.   
c) Overall coherence for the eigenimages in a). 

 
 
Figure 3: Results from a periodic stacking estimate of the stimulus-specific response of 
cat primary visual cortex to oriented drifting grating stimuli at °0  , °30 , ..., °150 .  

a,c) The first two eigenfunctions of a singular value decomposition of the 
estimated signal ),(ˆ txI .  
b,d) Estimates of the time courses plotted with one-sigma (i.e. one standard 
deviation of the standard error of the mean) error bars. See text for discussion. 
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Figure 2 
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Figure 3 
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